FCC-hh injectors and collider beam transfer

scSPS and LHC as injectors incl their transfer lines and injection and beam dump system of the collider

W. Bartmann with valuable input from C. Bracco, E. Carlier, M. Giovannozzi, B. Goddard, G. Perez, F. Velotti, F. Zimmermann CERN FCC Week, 5-9 June 2023, London

Midterm review deliverable 6.3

topics to cover

- injector possibilties
- \cdot transfer lines and their synergy to FCC-ee
- overlap of inj and extr in PB and related difficulties, also news from Sushi magnet test

Injectors

- scSPS at 1.3 TeV¹
- LHC modified or superferric (4T) ring in LHC tunnel at 3.3 TeV²

¹JAI project report

²FCC hadron injector options, FCC week 2018 Amsterdam

scSPS

L. Dyks, D. Posthuma de Boer, A. Ross, M. Backhouse, S. Alden, G. D' Alessandro, D. Harryman

Parameter	\mathbf{Unit}	scSPS
Circumference	m	6900
Dipole Bending Radius	m	723
Injection Energy	GeV	25
Maximum Energy	GeV	1300
Minimum Dipole Field	\mathbf{T}	0.12
Maximum Dipole Field	\mathbf{T}	6
Number of Dipoles		372
Number of Quadrupoles		216
Ramp Rate	T/s	0.35 - 0.5
Number of Bunches per Fill		640
Number of Protons per Bunch		$\leq 2.5\times 10^{11}$
Dipole Length	\mathbf{m}	12.12
Half Cell Length	\mathbf{m}	32
Dipoles per Cell		4
Quadrupole Gradient	T/m	146.25
Maximum Beta Function	m	107
Maximum Dispersion	m	4.3
Normalised Emittance $\epsilon_{x,y}$	$\mu\mathrm{m}$	2.2
$\delta p/p$	-	5×10^{-4}

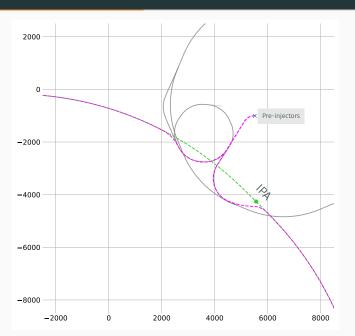
Table 2: The baseline parameters for the scSPS as detailed in [2].

Main design points

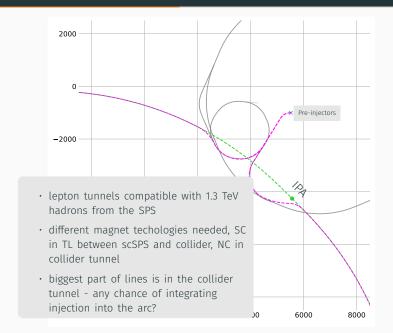
L. Dyks, D. Posthuma de Boer, A. Ross, M. Backhouse, S. Alden, G. D' Alessandro, D. Harryman

- Lattice has to follow tunnel shape and is kept simple as for the present SPS with missing bend DS
- Layout to include collimation system
- \cdot Beam transfer dominated by MP ightarrow 640 b per inj
- Filling time to be revised in view of reduced number of bunches and possibly higher ramp rate
- Slow extraction for FT program could be considered with crystal extraction only → reduction of required aperture
 - now having a spiral step of 20 m which could be reduced to a few mm
- · Magnet design crucial

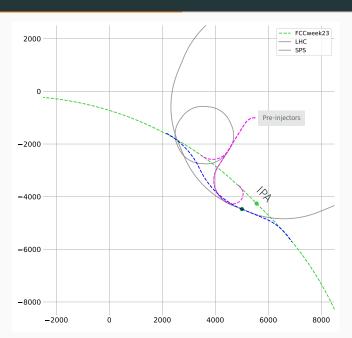
Magnet design

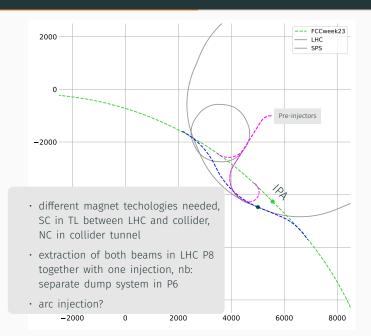

L. Dyks, D. Posthuma de Boer, A. Ross, M. Backhouse, S. Alden, G. D' Alessandro, D. Harryman

- 2D designs for main dipoles and quadrupoles, single and double layer
 - 4.2 K compatible for 2 layer designs (needs optimisation of grading for quads)
 - Enlarged quadrupoles for LSS to be added in design
- Energy swing, field at injection, AC losses would strongly benefit from doubling the injection energy to 50 GeV
- scPS or PS2 to replace >100 year old PS? also get rid of transition crossing
- need to look at full hadron injector chain considering the future needs for FCC and other experimental programs at CERN


Transfer lines

- · cell and basic parameters as shown in previous talk
- result of synergy with lepton lines
- summary for hadron lines
- integration of lines inside the collider tunnel


FCC lines for 1.3 TeV hadrons from scSPS


FCC lines for 1.3 TeV hadrons from scSPS

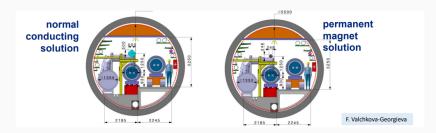
FCC lines for 3.3 TeV hadrons from LHC

FCC lines for 3.3 TeV hadrons from LHC

Summary table for hadron lines

1.3 TeV	(SPS)	TL length [km]	tunnel [km]	dipole fields [T]	Comments
PB		12.9	1.8	4.2/0.5	from SPS-LSS4 via TI8 to PB
PL		6.9	0.9	7.4/0.5	from SPS-LSS6 to PL

Summary table for hadron lines

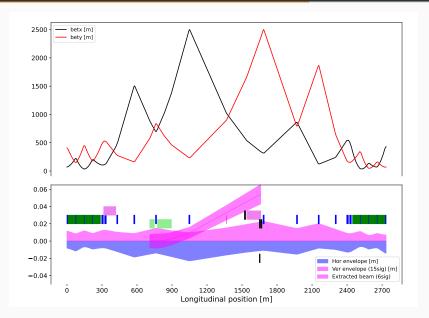

1.3 TeV (SPS) | TL length [km] tunnel [km]

PB	12.9	1.8	4.2/0.5	from SPS-LSS4 via TI8 to PB
PL	6.9	0.9	7.4/0.5	from SPS-LSS6 to PL
,				
3.3 TeV (LHC)	TL length [km]	tunnel [km]	dipole fields [T]	Comments
3.3 TeV (LHC)	TL length [km]	tunnel [km]	dipole fields [T] 8/1.1	Comments from LHC-P8 to PB
	0			

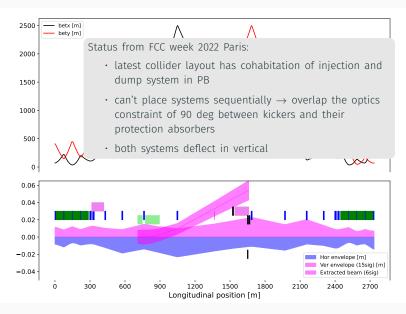
dipole fields [T] Comments

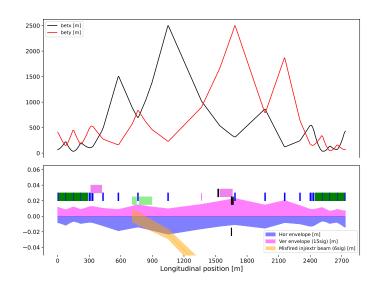
Transfer line integration

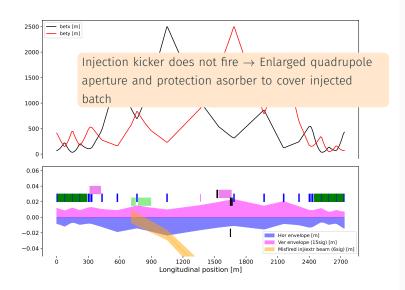
Integration needs to take into account margin for avoiding cross-talk

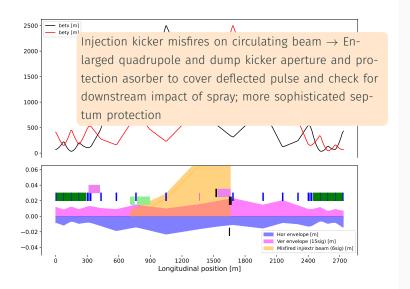


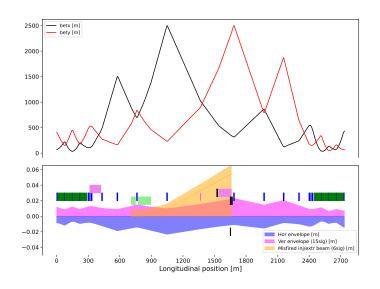
Injection and dump in PB

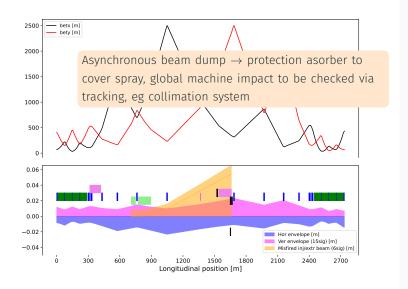

- general specs of dump system unchanged wrt CDR, ie externally triggered, extract full beam at once, dilute and absorb on external dump, use several abort gaps
- · main characteristics are reliability and availability
- overall concept and HW design driven by machine protection and 'satellite' approach, high segmentation, simple units, hot spares, remote control/exchange³

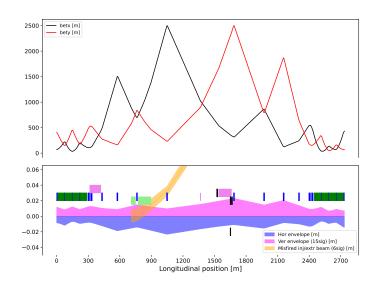

³E.Renner et al. FCC week 2018, Amsterdam

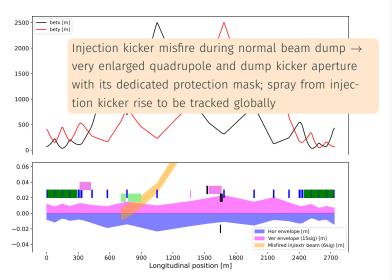

Injection and dump in PB

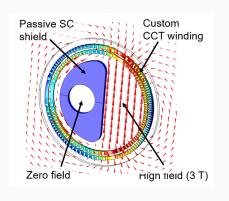



Injection and dump in PB









Failure scenarios summary

- for sake of simplicity only one side of the dump system is shown
 symmetric arrangement around LSS centre → needs careful look into integration of injection vs dump lines
- Certain failure scenarios independent of overlap in PB, eg asynchronous dump
- Most of the scenarios impact common (quadrupole) and other system equipment (aborbers)
- so far refrain from linking the injection and dump system which would allow to actively suppresse some of the failure scenarios since this would almost certainly compromise the reliability of dump system
- I recommend to have another look on the layout if the dump and injection system can be separated

Superconducting Shield (SUSHI) dump septum⁴

D. Barna, M. Atanasov, J. Borburgh, K. Brunner, F. Lackner, T. Bagni, K. Sugita

- Very simple (canted cosine theta) winding topology
- Bulk SC septum wall, small thickness
- Perfectly zero field for circulating beam

⁴DOI:10.1109/TASC.2022.3149726

Sushi prototyping progress

D. Barna, M. Atanasov, J. Borburgh, K. Brunner, F. Lackner, T. Bagni, K. Sugita

- Modified CCT dipole magnet design, eg wax impregnation
- A half moon shaped bulk MgB2 sc shield manufactured in industry
- CCT magnet without shield was tested successfully up to nominal current without quenching
- Next: Install shield and perform magnetic measurements, then repeat with NbTi/Cu multilayer shield

Conclusions

- review of scSPS as injector, will be useful to look at status and needs of full hadron injector complex given the time scale
- transfer lines at 1.3 TeV from SPS and 3.3 TeV from LHC calculated with magnet technology presently in reach and well in synergy with the lepton lines - injection into arc unfavourable or to be checked?
- overlaying injection and dump system creates delicate failure scenarios, with risk of compromising the dump system reliability
 → layout to be checked