BEAM-BEAM CODE PROGRESS

Special thanks to:
F. Carlier, M. Hofer, K. Oide, L. van Riesen-Haupt, D. Shatilov, D. Zhou

FCC-week
5–9 June 2023

This work was performed under the auspices and with support from the Swiss Accelerator Research and Technology (CHART) program.
Outline

1. Introduction
2. Performance of the Xsuite beam-beam model
3. Scan of x-z instability
4. 3D flip-flop instability
5. Bhabha scattering
6. Summary
Outline

1. Introduction

2. Performance of the Xsuite beam-beam model

3. Scan of x-z instability

4. 3D flip-flop instability

5. Bhabha scattering

6. Summary
Synergies and New Developments

<table>
<thead>
<tr>
<th>Tool</th>
<th>MAD-X</th>
<th>Sixtrack</th>
<th>Sixtracklib</th>
<th>PyHEADTAIL</th>
<th>COMBI</th>
<th>Xsuite</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PyAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MADX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tapering</td>
<td>F. Carrier</td>
<td>L. van Riesen-Haft, G. Simon, S. White</td>
<td>F. Schmidt, A. Faus-Golfe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Kicsiny, X. Buffat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X. Buffat, G. Iadarola</td>
<td></td>
<td>L. Sabato, L. Mether</td>
<td>P. Kicsiny, X. Buffat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Sabato, L. Mether</td>
<td></td>
<td>P. Kicsiny, X. Buffat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Kicsiny, X. Buffat</td>
<td></td>
<td>D. Schulte</td>
<td>D. Di Croce, G. Iadarola, F. Vanderweken, T. Pieloni, SDSC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y. Wu, F. Carrier, T. Pieloni</td>
<td></td>
<td>EFOL team</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Introduction

1.

Table:

- | Tool | MAD-X | Sixtrack | Sixtracklib | PyHEADTAIL | COMBI | Xsuite |
- | | | | | | | |
- | SAD | | | | | | |
- | BMAD | | | | | | |
- | PyAT | | | | | | |
- | MADX | | | | | | |
- | Tapering | F. Carrier | L. van Riesen-Haft, G. Simon, S. White | F. Schmidt, A. Faus-Golfe |
- | P. Kicsiny, X. Buffat | | | |
- | X. Buffat, G. Iadarola | | L. Sabato, L. Mether | P. Kicsiny, X. Buffat |
- | L. Sabato, L. Mether | | P. Kicsiny, X. Buffat | |
- | P. Kicsiny, X. Buffat | | D. Schulte | D. Di Croce, G. Iadarola, F. Vanderweken, T. Pieloni, SDSC |
- | Y. Wu, F. Carrier, T. Pieloni | | EFOL team | |

Diagram:

- Chart showing tools and their interconnections.
- Key: CHART, CERN, SDSC, FCC.
Simplified tracking simulations with Xsuite

- Exploit superperiodicity of machine (2 IP baseline from CDR)

- In code:
 - 1 IP + tracking over half arc with linear transfer matrix
 - Arc split into 3 segments
 - 2 crab sextupoles between arc segments ($\beta_x=3$ m, $\beta_y=500$ m)

- A «turn» begins in front of the right sextupole:
 - Observation point for coordinates

- Effective radiation (damping+noise) in arc, beamstrahlung in beam-beam element
Outline

1. Introduction

2. Performance of the Xsuite beam-beam model

3. Scan of x-z instability

4. 3D flip-flop instability

5. Bhabha scattering

6. Summary
Performance of the Xsuite beam-beam models

Time 1 collision on CPU (AMD EPYC 3 GHz, single core)

<table>
<thead>
<tr>
<th>Model</th>
<th>WS</th>
<th>QSS</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runtime [s]</td>
<td>~40</td>
<td>~90</td>
<td>~110</td>
</tr>
</tbody>
</table>

Number of calls to the 3 main operations over a single collision

<table>
<thead>
<tr>
<th>Beam-beam with N_s slices</th>
<th>WS</th>
<th>QSS</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign slices</td>
<td>0</td>
<td>1</td>
<td>$2N_s - 1$</td>
</tr>
<tr>
<td>Compute stat. moments</td>
<td>0</td>
<td>1</td>
<td>$2N_s - 1$</td>
</tr>
<tr>
<td>Synchrobeam kick</td>
<td>1</td>
<td>$2N_s - 1$</td>
<td>$2N_s - 1$</td>
</tr>
</tbody>
</table>

FCC-ee Z

$N_{\text{particles}} = 1 \times 10^6$

$N_{\text{slices}} = 100$

Scaling on GPU

- Before: typical setup with single CPU (~ 1 week)
- GPU significantly reduces computational cost (< 1 day)
1. Introduction

2. Performance of the Xsuite beam-beam model

3. Scan of x-z instability

4. 3D flip-flop instability

5. Bhabha scattering

6. Summary
x-z instability

- x-z instability regions reproduced in QSS simulation

Figure 7: Growth of ξ_x due to coherent X-Z instability, as a function of ν_x. Red line corresponds to $U_{RF} = 250$ MV, $N_p = 7 \cdot 10^{10}$, green and blue lines – $U_{RF} = 100$ MV, $N_p = 1.1 \cdot 10^{11}$ and $1.7 \cdot 10^{11}$.

FCC-ee Z

Quasi strong-strong ($f=1$)

- $N_{coll} = 1e4$
- $N_{particles} = 1e6$
- $N_{slices} = 300$
Outline

1. Introduction
2. Performance of the Xsuite beam-beam model
3. Scan of x-z instability
4. 3D flip-flop instability
5. Bhabha scattering
6. Summary
Flip-flop

- Flip-flop instability (1D) observed in other collides (VEPP-2000) \[3\]

- For FCC-ee: 3D flip-flop - direct consequence of beamstrahlung, triggered by an initial asymmetry in bunch intensity \[4\]

 - Inflation of one bunch → beam loss
 - Above a threshold \(\xi_0\) longitudinal blowup drives transverse diffusion → 3D flip-flop
 - Relevant for FCC-ee top-up injection
3D flip-flop

- Scanned asymmetry in bunch intensity: \(N_{w,s} = N_0 \cdot (1 \pm \Delta N) \) (\(\Delta N \in [0,1] \))

- Observed expected blowup of weak bunch

FCC-ee Z
Quasi strong-strong (f=100)

- \(N_{\text{coll}} = 5e4 \)
- \(N_{\text{particles}} = 1e7 \)
- \(N_{\text{slices}} = 300 \)
3D flip-flop – comparison to a 1D model

- Analytical model (Khoi’s model) to estimate blowup
- Khoi’s 1D model [5] does not take into account nonlinear diffusion at high asymmetries
- Khoi’s 3D [5] model includes diffusion in a phenomenological way

FCC-ee Z
Quasi strong-strong (f=100)
$N_{\text{coll}} = 5e4$
$N_{\text{particles}} = 1e7$
$N_{\text{slices}} = 300$

$$N_{w,s} = N_0 \cdot (1 \pm \Delta N)$$
3D flip-flop – comparison to a 3D model

Parameters to be found from simulations

- Model validates tracking
- Good predictions at small ΔN
- Allows fast parameter scan for first estimates of blowup
Outline

1. Introduction
2. Performance of the Xsuite beam-beam model
3. Scan of x-z instability
4. 3D flip-flop instability
5. Bhabha scattering
6. Summary
Bhabha scattering

- Coulomb scattering of relativistic charges of opposite sign

 ocasional bremsstrahlung (radiative Bhabha) photons
Small angle Bhabha scattering [6]

- Dominated by t-channel (scattering) process

$E'_{\gamma} \sim E_{\text{beam}}$

luminosity in lepton colliders

primary particles lost within a turn

- Main limitation of FCC-ee beam lifetime (alongside beamstrahlung)
Bhabha scattering event generator in Xsuite

- Modeled with the method of equivalent photons [7]
- Successful benchmark of event generator against GUINEA-PIG [8]
- Ready to simulate beam lifetime
1. Introduction

2. Performance of the Xsuite beam-beam model

3. Scan of x-z instability

4. 3D flip-flop instability

5. Bhabha scattering

6. Summary
Summary

Progress so far
➢ Development progress in the Xsuite beam-beam model (https://github.com/xsuite)
 ➢ Beamstrahlung, Bhabha scattering, luminosity (soft-Gaussian)
➢ Successful benchmark of all approximations (WS, QSS, SS)
 ➢ FMA, x-z instability, 3D flip-flop (including validation of Khoi’s model)

Ongoing work
➢ Combination of beam-beam + full lattice
➢ Beam lifetime studies

Next steps
➢ Simulations with updated FCC-ee parameters (4 IPs)
➢ Impact of lattice imperfections (misalignment, orbit and optics corrections)
➢ Top-up injection
➢ Benchmark at SuperKEKB

Thank you!
References

[1] G. Iadarola, Xsuite update
https://indico.cern.ch/event/1263239/contributions/5314669/attachments/2612972/4515112/000_Xsuite_fcc.pdf

https://cds.cern.ch/record/2816655

[3] D. Shwartz et al., Recent Beam-Beam Effects at VEPP-2000 and VEPP-4M
arXiv:1409.5590

https://doi.org/10.18429/JACoW-eeFACT2018-TUYBA02

https://indico.cern.ch/event/1193165/contributions/5015797

doi:10.1016/S0920-5632(96)90021-3

[7] C. Weizsäcker, E. Williams

[8] D. Schulte, GUINEA-PIG
https://gitlab.cern.ch/clic-software/guinea-pig
3D flip-flop

Driven by asymmetry in bunch intensity: $N_{w,s} = N_0 \cdot (1 \pm \Delta N)$

- **Strong bunch** shrinks
- 1D variant previously observed in VEPP-2000 [3]
- FCCee: 3D flipflop [4] – interplay of longitudinal and transversal beam sizes

FCC-ee Z
Quasi strong-strong ($f=100$)
- $N_{\text{coll}} = 5e4$
- $N_{\text{particles}} = 1e7$
- $N_{\text{slices}} = 300$
FMA – FCC-ee Z footprint

\[D = \log_{10} \left[\sqrt{\sigma_{Q_x,i}^2 + \sigma_{Q_y,i}^2} \right] \]

- Validation of Xsuite weak-strong model

\[Q_x \max \approx 0.573806 \]

\[Q_x \min \approx 0.57335 \]

xsuite

LIFETRAC [8]
FMA – Footprint of other FCCee energies

- **WW**: 80 GeV
- **ZH**: 120 GeV
- **TTbar**: 175 GeV
- **TTbar**: 182.5 GeV
x-z instability

Stable $Q_x = 0.57$

Unstable $Q_x = 0.575$
x-z instability

Stable $Q_x = 0.57$

- Flip-flop driven by numerical noise
 - Irrelevant as it happens only in unstable configurations

Unstable $Q_x = 0.575$

- Successful benchmark of (quasi-)strong-strong model