

Ali Rajabi

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 951754

Contents

01 A brief introduction to VACI

02 Results and Benchmarks

03 FCC Results

04 Conclusion and Future plans

Introduction VACI

Simulation Codes

Electromagnetic Solvers

Free		Commercially available		
•	ImpedanceWake2D by Mounet	CST Microwave Studio		
•	BeamImpedance2D by Niedermayer **	• GDFIDL		
•	Yokoya's Code ***			
•	VACI Suite			
		į		

^{*} https://twiki.cern.ch/twiki/bin/view/ABPComputing/ImpedanceWake2D

^{**} Niedermayer, Uwe, Oliver Boine-Frankenheim, and Herbert De Gersem. "Space charge and resistive wall impedance computation in the frequency domain using the finite element method." Physical Review Special Topics-Accelerators and Beams 18.3 (2015): 032001.

^{***} Yokoya, Kaoru. "Resistive wall impedance of beam pipes of general cross section." Part. Accel. 41.KEK-Preprint-92-196 (1993): 221-248.

VACI suite a versatile tool to calculate RW impedance and Wakefield

Introduction

VACI (VAcuum Chamber Impedance) suite

Maxwell's Equations

$$\rho(r, z; \omega) = J_z(r, z; \omega)/v$$

$$J_n = \frac{Q_n}{A} \sigma(r; a, b) e^{in\theta} e^{-iks}$$

where:

 $\sigma(r; a, b)$ means particles are in a ring with a thicknes of (b-a)

A is the ring area

heta is the angle distribution of electrons around the ring

$$\vec{E} = -\vec{\nabla}\varphi - \frac{\partial}{\partial t}\vec{A}$$
 And $\vec{B} = \vec{\nabla} \times \vec{A}$

$$\vec{\nabla} \cdot \vec{A} = 0$$
 Coulomb gauge $\partial_t \Rightarrow -i\omega$ Fourier Transform $\partial_z \Rightarrow -i \omega/v$ Long pipe Appr.

$$\begin{cases} \vec{\nabla} \cdot (\varepsilon \vec{\nabla} \varphi) = \rho_m \\ \vec{\nabla} \times (^1/_{\mu} \vec{\nabla} \times \vec{A}) - \varepsilon \omega^2 \vec{A} = J_n \hat{e}_z - i\varepsilon \omega \vec{\nabla} \varphi \end{cases}$$

Single particle

Based on: Robert L. Gluckstern and Uwe Niedermayer

$$\underline{\vec{Z}}(\vec{r}_1^{\perp}, \vec{r}_2^{\perp}, \omega) = -\int_{-\infty}^{\infty} \vec{W}(\vec{r}_1^{\perp}, \vec{r}_2^{\perp}, s) e^{-i\omega s/v} \frac{\mathrm{d}s}{v}.$$

$$\underline{\vec{Z}}(\vec{r}_1^{\perp}, \vec{r}_2^{\perp}, \omega) = -\frac{1}{q_1 q_2} \int_{-\infty}^{\infty} \underline{\vec{F}}(\vec{r}_1^{\perp}, \vec{r}_2^{\perp}, z, \omega) e^{+i\omega z/v} \mathrm{d}z,$$

one should note that the integral is not a Fourier transform, but the wake integration in the frequency domain.

Integrating over the beam in FD Like Convolution in TD
$$\underline{\vec{Z}}(\omega, \vec{r}_2^\perp) = -\frac{1}{q_1 q_2} \int_{\text{beam}} \underline{\vec{F}}(\vec{r}_1^\perp, \vec{r}_2^\perp, z, \omega) e^{i\omega z/v} \sigma(\vec{r}_1^\perp) \mathrm{d}r_1^\perp \mathrm{d}z.$$

$$\underline{Z}_{\parallel}(\omega) = -\frac{1}{q^2} \int_{\text{beam}} \underline{\vec{E}} \cdot \underline{\vec{J}}_{s}^* dV.$$

Based on: Elias Métral

- Non axis-symmetric structures:
 - A current density with some azimuthal Fourier component may create an electromagnetic field with various different azimuthal Fourier components
 - ✓ A more general beam coupling impedance is REQUIRED to treat coupling of different azimuthal Fourier components

$$Z_{m,n}(\omega) = \int dv \, E_m * J_n^*$$
 over the beam area

$$J_{n} = \frac{Q}{2 \pi a^{|n|+1}} \delta(r-a) e^{jn\vartheta} e^{-jks} \quad \text{and } m, n = 0, \pm 1, \pm 2, \dots$$

Considering $\underline{m \geq 0}$ instead of $\underline{m = 0, \pm 1, \pm 2, ...}$:

$$\bar{J}_{m} = J_{m} + J_{-m}
\bar{E}_{m} = E_{m} + E_{-m}$$

$$\bar{Z}_{m}(\omega) = -\frac{1}{Q^{2}} \int dV (E_{m} + E_{-m}) (J_{m}^{*} + J_{-m}^{*})
\text{For } m = 0 : \quad \bar{Z}_{0} = Z_{0,0}
\text{For } m \ge 1 : \quad \bar{Z}_{m} = Z_{m,m} + Z_{m,-m} + Z_{-m,m} + Z_{-m,-m}$$

Based on: Robert L. Gluckstern, Elias Métral, and Uwe Niedermayer

Applying Panofksy-Wenzel theorem:

$$kZ_m^{\perp} = \nabla_{\!\!w}^{\perp} Z_m^{\parallel}$$

$$k Z_{x} = (Z_{0,1} + Z_{0,-1}) + (x_{1})\overline{Z}_{x} + j y_{1} (-Z_{1,-1} - Z_{1,1} + Z_{-1,-1} + Z_{-1,1})$$

$$+ 2 (Z_{0,2} + Z_{0,-2})(x_{2}) + 2 (Z_{0,2} - Z_{0,-2}) j y_{2}$$

$$k Z_{y} = j (Z_{0,1} - Z_{0,-1}) + (y_{1})\overline{Z}_{y} + j x_{1} (-Z_{1,-1} + Z_{1,1} - Z_{-1,-1} + Z_{-1,1})$$

$$- 2 (Z_{0,2} + Z_{0,-2})(y_{2}) + 2 (Z_{0,2} - Z_{0,-2}) j x_{2}$$

$$\begin{split} k \; Z_y &= j \left(Z_{0,1} - Z_{0,-1} \right) + \underbrace{y_1} \overline{Z}_y + j \; x_1 \left(- \; Z_{1,-1} + Z_{1,1} - Z_{-1,-1} + Z_{-1,1} \right) \\ &- 2 \left(Z_{0,2} + Z_{0,-2} \right) \underbrace{y_2} + 2 \left(Z_{0,2} - Z_{0,-2} \right) j \; x_2 \end{split}$$

$$Z_x^{\text{driving}} = \overline{Z}_x / k \qquad \qquad Z_y^{\text{driving}} = \overline{Z}_y / k \qquad \qquad Z^{\text{detuning}} = -2 \left(Z_{0,2} + Z_{0,-2} \right) / k$$

VACI Results

VACI results for Space-Charge

Round pipe

VACI results for Round pipe

Impedance calculation

Energy: 15 GeV, Round Pipe: r = 35 mm Length = 1 m

VACI results for Multi-Layer vacuum chamber

Impedance calculation of Round pipe With NEG coating

Wakefield and Wake-potential

iFFT method:

uneven sampling and a piecewise polynomial interpolation (cubic Hermite interpolation) {Based on *Nicolas Mounet* Ph.D. thesis + some small upgrades}

Wakefield and Wake-potential (NEG)

VACI results for Elliptical pipe

Impedance calculation

Energy: 15 GeV,

Ellipese pipe: r1 =35 mm- r2=20

mm,

Dipole

Round Pipe: r = 20 mm Yokoya's Form Factors:

R [mm]	Long	X dip	Y dip	X quad	Y quad
20	1.0	0.46323	0.84038	-0.37701	0.38219

Monopole

(b)

[O] ZC

→ Imag Longitudinal (IW2D)

Imag Longitudinal (VACI)

---- Imag Longitudinal (Analytical formula Cu)

f[Hz]

f[Hz]

Detuning

VACI also > Wakefields with and without NEG

FCC Vacuum Chamber

FCC booster and main rings Geometries

Impedance sources

- I. Resistive Wall Impedance
- II. RF Cavities and RF Cavity Tapers
- III. Synchrotron Radiation (SR) absorbers
- IV. Collimators
- V. Beam Position Monitors
- VI. Bellows

Longitudinal impedance and wake potential of a 0.4 mm Gaussian bunch used as Green function in beam dynamics simulations

Main ring

Courtesy to Mauro Migliorati

VACI results for FCC main ring

Copper Vacuum chamber

Length: 1m

NEG : 150 nm. $\sigma = 1.098e6$ s/m

RW impedance

VACI results for FCC main ring

RW Wakefield

Copper Vacuum chamber

Length: 1m

NEG : 150 nm. $\sigma = 1.098e6$ s/m

DESY. | VACI Suite | Ali Rajabi, FCC week, London, 2023

VACI results for FCC main ring

RW WakePotential

Copper Vacuum chamber

Length: 1m

NEG : 150 nm. $\sigma = 1.098e6$ s/m

Possibility of reducing the radius of the FCC main ring chamber

$35 \text{ mm} \rightarrow 30 \text{ mm}$

- As a reference, IW2D simulations were conducted for a pipe with an R of 35 mm in both cases.
- Yokoya's code result is for a single layer round pipe with R=35 mm.

Conclusion

- I. The VACI suite, a 2D simulation code based on FEM for resistive wall impedance, has undergone significant updates and improvements.
- II. The updates have resulted in increased simulation accuracy and reduced calculation time.
- III. A wake potential solver has been added to the code, expanding its capabilities in studying beam dynamics.
- IV. The results obtained from the VACI suite demonstrate excellent agreement with analytical formulas and established simulation codes like IW2D.
- V. The VACI suite's enhanced accuracy and efficiency make it a valuable tool for investigating instabilities and threshold phenomena in beam dynamics.

Acknowledgements

Thank you

Rainer Wanzenberg

Thank you for your Attention

Your insights and perspectives are highly valued in further enhancing the code's functionality and efficiency. Please feel free to share it.

Contact

Deutsches Elektronen- Ali Rajabi

Synchrotron DESY Ali.Rajabi@desy.de

www.desy.de