

Future Circular Collider Technical Infrastructure

Cooling and Ventilation in the FCC Tunnel

G. Peon and I. Martin Melero (EN/CV)

Outline

- Introduction;
- A reminder: Tunnel ventilation figures and concept;
- Ventilation: thermal aspects in an FCC sector;
 - Normal Operation;
 - Flushing;
- High Pressure losses for the Supply units;
- Simplifying regulation of the air supply dampers;
- Emergency extraction;
- Demi Water cooling in the FCC tunnel;
- Raw water distribution and firefighting water in the tunnel;
- Chilled water in the FCC tunnel;
- Next steps

Introduction

European Strategy for Particle Physics 2020 update document

Core paragraph and main request "order of the further FCC study":

"Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage.

Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update." (Feasibility study to be delivered end 2025 as input for ESPP Update expected for 2026/2027,)

20

FCC

Ventilation in FCC week 2022

FCC 2 June 2022 / FCC week 202 Guillermo Peon (CERN/EN/CV) 21

Tunnel Ventilation

General Input data	
Cross section area	15.2 m ²
Sector length	11,396 m
Max. Temperature (running conditions)	32°C (to be confirmed)
Max. dew point Temperature	12°C (to be confirmed

Compartment In		
Number of Compartments	26	28 + 1/2
Compartment /	440 m →	400
Volume Compartment	6,688 m³	6080

Ventilation parameters	
Normal operation air flow per sector	2 x 27,000 m ³ /h
Flushing air flow (longitudinal) per sector	100,000 m ³ /h
Air supply points per compartment	4
Air flow per supply point (normal operation)	520 474
Time to complete air renewal (flushing)	1.7 h
Maximum air speed (normal operation – flushing)	0.5 m/s – 1.8 m/s
Cooling capacity in normal operation for $\Delta T = 15$ K per	
sector	271 kW

Tunnel Ventilation (Users' requirements)

Guillermo Peon (CERN/EN/CV)

- ☐ USER'S REQUIREMENTS (INPUT FOR CV)
 - ☐ Modes: Run, Flushing, Access;

2 June 2022 / FCC week 202

lacktriangle Thermal loads to air from magnets, synchrotron radiation, electrical

racks, cables, etc.; (Run)

Location and value;

☐ Air temperature constraints : maximum and minimum values (Run,

Flushing, Access);

- ☐ Maximum air speed (vibration) (Flushing);
- ☐ Flushing mode:
 - ☐ Radiation rate at exhaust air and in the tunnel (HSE);
 - Delay between accelerator stop and access to the tunnel;
- ☐ Air renewal rate, air quality requirements (Access);

FCC 2 June 2022 / FCC week 202 Guillermo Peon (CERN/EN/CV)

Ventilation principle

- ☐ Air handling units configuration
- ☐Back up units
 - ☐ Working strategy in case of breakdown

Ventilation: thermal aspects in an FCC sector

Heat loads on air (kW)

- For the sectors, we keep on having the 602 kW coming from Magnets and SR absorbers;
- The cables is still an issue but electrical people are working to reduce drastically the cable power dissipation:
 - Water cooled cables is an option?;
 - Water cooled cable trays?;
- Heat loss or gain from the walls not considered, temperature of the tunnel wall is unknown and depends on the location but there shouldn't be a big difference with the target air temperature;

Ventilation: thermal aspects in an FCC sector

- Local cooling for the remaining 331 kW per sector is needed;
- An example: Technibel TWN CH 06, 5 kW, max. depth 271 mm, 66 per sector
- Chilled Water: Isolated DN100 pipes from both sides of each sector
- CFD calculations to be done for detailed design to optimize the location of the fan coils

					TWN			
TAILLES		02	03	04	05	06	08	- 11
▼ Puissances frigorifiques en kW (1)								
	(GV)	2,09	2,93	4,33	4,77	6,71	8,71	10,95
Puissance totale 7/12°C	(MV)	1,81	2,38	3,27	3,87	5,27	6,78	8,77
	(PV)	1,45	1,76	2,51	3,17	3,97	4,49	6,97
	(GV)	1,51	2,11	3,15	3,65	4,91	6,38	8,07
Puissance sensible 7/12°C	(MV)	1,31	1,70	2,45	2,92	3,83	4,94	6,46
	(PV)	1,05	1,26	1,8	2,32	2,84	3,25	5,12
▼ Caractéristiques aérauliques (3)								
Débit d'air (m3/h) (PV/MV/GV)		211/271/344	241 / 341 / 442	361 / 497 / 706	470 / 605 / 785	570/771/1011	642/1022/1393	1010/1317/1850
Pression statique disponible maximum (MV	//GV)	40/6	60 Pa			40/60 Pa		
▼ Caractéristiques hydrauliques & racco	ordements							
Débit d'eau à puissance maxi en froid (m3/		0,36	0.50	0,74	0,82	1,15	1,49	1,88

Ventilation: thermal aspects in an FCC

sector

	RUN	FLUSHING	ACCESS
D-1	Modulating	Fully Open	Modulating
D-2	Modulating	Fully Closed	Modulating
D-3	Fully Open	Fully Open	Fully Open
D-4	Fully Open	Fully Open	Fully Open
D-5	Modulating	Fully Open	Modulating

Ventilation: thermal aspects in an FCC sector, Flushing

Ventilation: thermal aspects in an FCC sector, Flushing

- The power of the Heating Coil is dictated by the Flushing needs:
 - 50,000 m³/h, DT=15K, 262 kW;
 - But in case of extremely low outside temperature, air flow rate decreases and time for flushing increases to keep T=15°C
- During Emergency mode, no recycle → all fresh air needed, max DT=20K
- In Normal mode (run or access):
 - Free cooling,
 - Minimum fresh air required will be determined based on the readings from the air quality sensors

Cryogenics

Mode	Variable	T (°C)
Run	Max. return T	32
	Min. Supply T	17
Access	Max. T in summer	26
	Min. T in winter	18
Flushing	Min. supply T in winter	15
	Max. supply T in summer	26
Emergency	Min. supply T in winter	15
	Max. supply T in summer	26
All modes	Max dew point T	12

RUN

Modulating

Modulating

FLUSHING

Fully Open

Fully Closed

Fully Open

Fully Open

Fully Open

ACCESS

Modulating

Modulating

Fully Open

Fully Open

Modulating

High Pressure losses for the Supply units

Gesamtdruck / Total pressure 5000 Pa						
Volumen-	Ventilator-	Drein-	Wellen-	Motor-	Schall-	
strom	größe	zahl	leistung	leistung	druck	
Volume flow rate	Fan size			Motor power	Sound pressure	
m³/h	DN	min ⁻¹	kW	kW	dB(A)	
400	HRZ 125	2827	1,1	1,5	79-1 m	
500	HRZ 125	2838	1,2	1,5	79-1 m	
630	HRZ 125	2838	1,4	2,2	79-1 m	
800	HRZ 125	2842	1,6	2,2	75-1 m	
1000	MRZ 180	2863	2,3	3,0	79-1 m	
1250	MRZ 180	2863	2,6	3,0	79-1 m	
1600	MRZ 180	2871	3,0	4,0	76-1 m	
2000	PRZ 250	2892	4,3	5,5	84-1 m	
2500	PRZ 250	2900	4,9	7,5	84-1 m	
3150	PRZ 250	2900	5,6	7,5	84-1 m	
4000	PRZ 250	2921	7,7	11,0	79-1 m	
5000	LRZ 355	2927	9,1	11,0	84-1 m	
6300	LRZ 355	2927	11,0	15,0	80-1 m	
8000	RNN 450	2931	15,3	18,5	89-1 m	
10000	RNN 450	2948	17,9	22,0	Inlet dieme	
12500	RNN 500	2948	22,7	30,0	Inlet diame	

27,3

37,1

42,3

50,7

71,0

81,1

112,1

131,9

170,4

37,0

45,0

55,0

75.0

90,0

110,0

132,0

160.0

200,0

16000 PRZ 560

20000 LRZ 710

25000 LRZ 710

31500 LRZ 800

40000 LRZ 900

50000 LRZ 1000

63000 LRZ 1120

80000 LRZ 1250

100000 PRZ 1000

1480

https://www.wittfan.de/

	AIR FLOW RATE & PRESSURE DROP					
		Su	Ex	traction		
	Air flow rate	DP Ducts	DP In AHU elements	Ducts	In AHU elements	
	(m³/h)	(Pa)	(Pa)	(Pa)	(Pa)	
Run or Access	27,000	1520	- 03	570	Around 800-1200 Pa	
Flush	2 x 50,000	1800	Around 1800-2100 Pa	1620	800-1200 70	
Emergency	36,708	3140	Around	NA	NA	
Emergency						
Duct	2 x 13,500	NA	NA	430	NA	

Impeller diameter

Pressure range

92-1 m

86-1 m

88-1 m

93-1 m

90-1 m

Simplifying regulation of the air supply dampers Integration of FCC-ee machine elements 1770

- Large number of dampers in a sector for:
 - Air supply Run and Access Modes
 - Air supply for extra fresh air in case of Smoke Detection
 - For Emergency Extraction
- Powered by compressed air and cabled (rad hard) or wifi signal is a plausible option

	Total per sector	Controlled from each extreme end of a sector	Controlled per each of the 7 Alcoves
Dampers for fresh air normal ventilation	4*28.5 + 7 * 2 = 128	8	14+2
Dampers for extra fresh air in case of emergency	128	8	14+2
Dampers for emergency extraction duct	128	8	14+2
TOTAL number of Dampers	384	24	48

Simplifying regulation of the air supply dampers

lindab | dampers and measure units

UltraLink® Controller

Pressure drop graphs with noise data to ducts for

The solid curves show the pressure drop, Δp_t , over the damper as a function of flow q, and setting angle α . The dashed curves give the A-weighted sound power data, L_{WA}, in dB to the duct. These curvs are intended for brief comparision. For more accurate calculation, please use the

- To maintain the same flow rate as in Normal mode. during an Emergency Situation in the non-affected compartments:
 - Regulating dampers with prefixed positions according to the smoke-affected compartments imply more than 40 prefixed positions per damper -> big complexity for the control system or
 - Flow measurements for each damper \rightarrow big complexity, risk of unstable systems
 - Pressure independent Variable Air Volume (VAV), autonomous system that can maintain a constant flow rate -> risk of instability

$\alpha = 0^{\circ}$ = open blade $\alpha = 90^{\circ} = closed blade$ Setting angel %

Setting angle

Technical data

$\alpha = 100\% = open blade$ $\alpha = 0\% = closed blade$

• Other options:

- A parallel passage in the slab for emergency air supply only → Civil Engineering additional cost to be quantified;
- Change the aperture of the dampers to a so-called *emergency position*, independent from the affected compartment(s):
 - Easy solution (only two prefixed positions);
 - But the air flow rate different for each situation. Nevertheless it can be estimated to assess this proposal;
- Eliminate ventilation of the unaffected compartments

Ø125

Emergency Extraction Duct

- Smoke management limited by the fresh air supply to:
 - 2 compartments, 10,000 m³/h.
 - 2 adjacent compartments 3,500 m³/h
- Smoke / He extraction foreseen for Helium leak management (22,000 m³/h per side)

Demi Water cooling in the FCC tunnel

- Decreasing diameter; DN550, 5km DN400, 4km DN200, 2km
- Manifolds every ~ 50 m for Collider, Booster and SR absorbers for modularity, prefabrication, easy isolation of elements. In the example, girder with one sextupole.

Demi Water cooling in the FCC tunnel

FCC-ee COOLING POWER NEEDS FOR A SECTOR (MW)

	Magnets	Alcoves	Synchrotron Radiation Absorbers	TOTAL
Heat Load per Sector	6.6 7.1	0.9	12.5	20 20.5

Including Booster

For a DT of 20 K -> 887 m^3/h

Magnets	No. Magnets/sector	Heat load/sector (MW)
Collider Dipoles	710	1.256
Collider Quadrupoles	362	1.256
Collider Sextupoles	584	3.875
Booster Dipoles	736	0.0332
Booster Quadrupoles	368	0.3921
Booster Sextupoles	396	0.2963
TOTAL	3156	7.11

Raw water distribution and firefighting water in the tunnel

Chilled water in the FCC tunnel

- Two half sectors served from each Point;
- A heat exchanger at the CV zone at the bottom of each technical shaft;
- Around 33 Fan Coil Units supplied per each sector endpoint (165 kW), 28 m³/h, Isolated DN100 pipes.

Chilled Water

Conclusions and next steps

- The cooling and ventilation strategy for the FCC tunnel has been validated by two Engineering Consulting Firms;
- Thermal loads and geometry are evolving but at a slow pace now;
- Air supply to the tunnel needs high pressure fans but off-the-shelf industrial fans can cope with our requirements;
- Power consumption optimised by heat recovery and recycling;
- Search for further optimisation in terms of energy savings, space occupancy, costs and reliability;
- Prepare documentation for ESPP.

Thank you for your attention.