

Thin film SRF perspectives in UK

Oleg B. Malyshev
ASTeC/CI
On behalf of a TF SRF team at STFC Daresbury Laboratory

Introduction

Present state

Bulk Nb: monopoly since > 50 years

 Nb/Cu applications at low accelerating field only until recently

- Figures of merit:
 - $E_{acc} \propto B_{RF} \leq B_{SH}$ limitation = magnetic transition
 - $Q_0 \propto 1/R_S$ limitation = thermal transition
 - Duty cycle (=> 100%): *limitation* = *cryogenic power*
 - $\beta = \frac{v}{c}$ (particle speed /light speed): *influences design*
- At f < 3 GHz: cavities are mainly limited by $B_{RF}!!!$

Superconductors considered for SRF

Material	$T_{C}\left(K\right)$	B _{SH} (mT) @ 0 K
Pb	7.1	100
Nb	9.2	219,0
NbTi	9.2-10	
NbTiN	10.6-11.8	
V ₃ Si	17.0	
NbN	17.3	214,0
Nb₃Sn	18.3	425,0
Nb ₃ Al	18.5-19.1	
MgB_2	39.0	170,0
Pnictides: Ba _{0.6} K _{0.4} Fe ₂ As ₂	38.0	756,0
Cuprates: YBaCuO	93.0	1050,0

Courtesy of C. Antoine (CEA, France)

International collaborations

Technology **Facilities Council** **I.FAST WP9: Innovative superconducting** cavities (01/05/2021-30/04/2025)

15 partners from 9 countries The main emphasis is on applying the result of ARIES to RF cavity deposition

1.3 GHz cavity for STF deposition

Superconducting Thin Film Coating for Radio Frequency Cavities (TF-SRF) at STFC/DL/CI

Main goal:

To enable STFC for the superconducting thin film coated cavity production and testing

Main objectives:

- 1) Developing coating technology for superconducting thin films (STF)
 - Deposition of Nb, Nb₃Sn, NbTiN, V₃Si, Mg₂B, ... and SIS structures
 - Thin film characterisation
 - AC/DC superconductivity evaluation
- 2) Developing cavity deposition expertise
 - Copper cavity production (incl. EB welding)
 - Polishing and cleaning of copper cavities
 - Building deposition facilities
 - Developing deposition targets
 - Optimising deposition parameters
- 3) SRF testing at DL
 - 1.3 GHz (and 6 GHz) single cell cavity testing as a 1st step
 - Scaling up to a routine cavity coating and testing
 - Multicell cavities

A path towards the goal

(1) Superconducting thin film development

Copper surface preparation

- Mechanical polishing
- Fine mechanical polishing
 - diamond turning (for flat samples) at STFC
 - tumbling
- Chemical polishing:
 - SUBU5 solution
 - Electropolishing (EP)
- Laser polishing
 - not proved yet
- Combination of different techniques

In present, relying on IFAST partners: INFN/LNL and IJCLab

Needs to be developed at STFC

Thin Film Deposition in VISTA

Stablished and coordinated by R. Valizadeh (ASTeC)

CI collaborators: Prof J. Bradley and Dr V. Danak (Liverpool University)

Participants: : J. Conlon, C. Benjamin, S. Simon

Chemical Vapour Deposition (CVD)

PVD deposition

Thin film development

Techniques:

- PVD: DC, pulsed, HIPIMS...
- (PE)CVD, (PE)ALD under development
- Combined: PCVD under development

• Materials:

- Nb
- Nb₃Sn, NbTiN, V₃Si, NbN, MgB₂, etc.
- SIS structures

Deposition facilities

- For planar samples
- For QPR samples

A sample during the Nb deposition Courtesy of R. Valizadeh (STFC)

A QPR sample during and after the Nb TF deposition

Courtesy of R. Valizadeh (STFC)

Thin Film Characterisation in VISTA

Stablished and coordinated by R. Valizadeh (ASTeC)

CI collaborators: Prof J. Bradley and Dr V. Danak (Liverpool University)

Participants: J. Conlon, C. Benjamin, S. Simon, A. Hannah, G. Stenning

Auger

More characterisation facilities are available through collaborations with

- The Materials Characterisation Laboratory at ISIS (RAL)
- Cl universities
- Other UK universities
- International collaborations

Courtesy of R. Valizadeh

Thin film characterisation - 1

X-section SEM of Nb₃Sn deposited on Cu

Band Contrast
12 [0...255] 135

IPF Coloring || Z0
Nb
Cu
001

Grain Boundaries
2...5° 24.0%
5...10° 11.2%
−>10° 64.9%

Film crystal structure
with EBSD analysis of
planar Nb on copper

XRD analysis of NbTiN deposited on copper

Courtesy of R. Valizadeh (STFC)

X-section SEM of

Nb₃Sn with a Nb

structure on Cu

underlayer as double

Thin film characterisation - 2

(a) High resolution SEM of ion milled X-section of SIS multilayer structure (Nb/AIN/Nb₃Sn) deposited on Ta.

(b) EDX chemical mapping of the X-section.

Courtesy of R. Valizadeh (STFC)

Thin film characterisation – 3

XPS: Composition and chemical analysis

XPS analysis of NbTiN representing Nb and Ti chemical state)

800um 5 kev 260 nA_run 1 010623 135223 data

SIMS depth profile of Nb on copper

Superconducting Properties Evaluation

Coordinated by O.B. Malyshev (ASTeC)

CI collaborators: Prof G. Burt (Liverpool University)

Participants: D. Seal, L. Smith, T. Sian, D. Turner, N. Leicester, K. Marks, J. Conlon,

S. Pattalwar, A. May, K. Dumbel, J. Wilson, G. Stenning

CryoLab

RRR/T_c + 3 other experiments

Magnetic field penetration facility

CrabLab

R_S measurements with a 7.8 GHz choked cavity and a 6 GHz split cavity

Thin film DC superconducting properties - 1

RRR and T_c measurements: (a) Cryostat, (b) insert, (c) sample holder

Resistance measurements for a V_3Si on sapphire sample indicating the 10, 50 and 90 % transition points

Courtesy of L. Smith (STFC)

Thin film DC superconducting properties - 2

PPMS (Physical Property Measurement System)

- Virgin DC magnetisation curve: B_{en}(~B_{c1 perp}), [B_p, B_{c2}]
- The Materials Characterisation Laboratory at ISIS (RAL)
- IEE-SAS (Bratislava, Slovakia)

-0.02 -0.03 -0.04 -0.05 -0.06 0 5 10 15 20 25 30 H [mT]

Determination of the characteristic field H_{en} from the virgin magnetization curves

Thin film DC superconducting properties - 3

- Magnetic field penetration facility for the planar samples
 - TF samples can be compared in conditions similar to ones in the cavity
 - DC magnetic field parallel to the surface
 - Magnetic field applied from one side of the sample (similar to an SRF cavity)
 - Applied and penetrated field measured by Hall probe sensors
 - $R = 1 \frac{B_2}{B_1}$
 - i.e. SC is in Meissen state when R=1

Thin film RF superconducting properties

- A radiofrequency (RF) cavity and cryostat dedicated to the measurement of superconducting coatings at 7.8 GHz (CrabLab/DL/STFC)
 - Operation with a closed-cycle refrigerator:
 - $T_{cavity} = 4.0 \text{ K} \text{ and } T_{sample} = 4.0 \text{ K}$
 - Low power (≤1.0 W) measurements with an emphasis on fast turn-around time (~2 days for each sample).
 - Flat Sample a disk diam. 90 130 mm

An example of $R_s(T_s)$ measurements for Nb and Nb₃Sn TF planar samples with the choked cavity.

Courtesy of D. Seal (STFC/LancU)

A path towards the goal

(2) Superconducting thin film coated RF cavity

Development of 6 and 1.3 GHz cavity coating

- Cylindrical Magnetron has been built
- Nb thin film depositions on cylindrical and cavity shaped surfaces are ongoing

Cylindrical magnetron in low power (DC) sputtering mode
Plasma dominated by argon emission

Cylindrical magnetron in high power (HIPIMS) sputtering mode Plasma dominated by *niobium* emission

6 GHz split cavity

- An idea suggested by G. Burt (CI)
- The cavity cut is along the electric field lines, i.e. electric current is not crossing the cut
- Easy to coat with either conventional planar magnetron or in tubular geometry used for RF cavities
- Easy to inspect
- Two 6 GHz cavities were Nb coated and tested at 4.2 K ≤ T ≤ 11 K

1.3 GHz cavity testing

- Aiming a high power test
 - Required fully operational by end of 2023
 - Main Delivery for IFAST WP9: a non-Nb SC coated prototype testing (by March 2025)
 - Cryostat and insert:
 - Cryostat is available
 - New insert is designed, parts manufactured, assembling in process
 - Copper cavity:
 - will be provided by I.FAST partners: Piccoli and LNL/INFN
 - looking for UK industry as well
 - Coating with STF at STFC/DL
 - Clean room for assembling the cavity TBD
 - RF amplifier under development
 - Bunker and cryogenics:
 - SuRF lab infrastructure is available

Superconducting Cavity Evaluation in SuRF lab

This STFC/DL infrastructure

- is being used for the full power SRF testing of >160 cavity modules for ESS and
- will be used for SRF testing of PEP-II cavities

SRF bunker

He liquefier and LHe storage Dewar

This infrastructure can be used in future for the full power SRF testing of superconducting thin film coated RF cavities

Clean room and assembly area

Courtesy of T. Sian

Future for TF-SRF cavities in UK

Development

- Single layer coating:
 - Nb
 - Nb₃Sn, NbTiN, V₃Si, Mg₂B
- Multilayer coatings
 - SS, SIS, SISIS...
- Multicell cavity coating
- Split cavity development
- Low and high power RF testing at STFC/DL

Possible applications

- RF loaded test in CLARA
 - Multicell cavities
 - Split cavity
 - LHe-free cryo-cooling
- UK-XFEL
- ISIS-II
- ...
- Possible involvement in international projects (e.g. ILC, FCC...)

Conclusions

A significant progress since the programme started in 2014

- Developing coating technology for superconducting thin films: an ongoing systematic study of correlation between deposition parameters and superconducting properties:
 - Mastering Nb deposition

Ongoing

Development in non-Nb films: Nb₃Sn, NbTiN, V₃Si, Mg₂B...

Ongoing

Developing deposition targets for non-Nb films

Ongoing

Deposition of SIS structures (e.g. Nb₃Sn/AlN/Nb/Cu)

Ongoing

Thin film characterisation: SEM, FIB, XPS, XRD, AFM, RBS...

Ongoing

 DC/AC superconductivity evaluation with in-house built and commercially available facilities

Ongoing

 RF superconductivity evaluation with 7.8 GHz choked cavity test for planar samples

Ongoing

2) Developing **cavity deposition** expertise

Copper cavity production (incl. EB welding)

Looking for industry partners

Polishing and cleaning of copper cavities

In plans (industry or in-house)

Building and commissioning deposition facilities

Ongoing

Optimising deposition parameters for 1.3 and 6 GHz cavities

Ongoing

Plasma characterisation

In progress

Developing deposition targets

In progress

3) SRF testing at DL

6 GHz split cavity low power testing

Ongoing

Full power testing facility for 1.3 GHz cavity

Nov. 2023

Scaling up to a routine cavity coating and testing

In plans - 2025

Multicell cavities

In plans - 2028

4) Applying TF-SRF cavities

UK projects: UK-XFEL and ISIS-II

In plans - 2025

International projects, for example: FCC

In plans – 20??

Acknowledgments

STFC/ASTeC:

 R. Valizadeh, C. Benjamin, L. Smith, A. Hannah, T. Sean, J. Conlon, F. Goudket, S. Wilde, S. Pattalwar, N. Pattalwar, A. May, P. Smith, J. Wilson, K. Dumbel, ...

STFC/ISIS:

- G. Stenning
- Liverpool University:
 - J. Bradley, V. Danak, S. Simon, F. Lockwood Estrin, F. Walk
- Lancaster University:
 - G. Burt, H. Marks, D. Turner, D. Seal, N. Leicester

- CEA:
 - C. Antoine, ...
- CERN:
 - A. Sublet, W. Venturini, G. Vandoni, M. Taborelli, ...
- IEE:
 - E. Seiler, R. Ries and F. Gömöry
- IJClab:
 - D. Longuevergne and O. Hryhorenko
- INFN
 - C. Pira, E. Chyhyrynets, ...
- HZB:
 - O. Kugeler, S. Keckert, D. Tikhonov, ...
- RTU
 - A. Medvids, P. Onufriev ...
- Siegen University
 - M. Vogel, A. Zubtsovskii ...

