

Review of SRF cavities developments towards FCC 800 MHz

CNRS/IN2P3/IJCLab Université Paris-Saclay

A. Miyazaki

Target gradient of SRF cavities for FCCee

12-May-23		Z W H		н	ttbar2				
	per beam	booster	per beam	booster	2 beams	booster	2 beams	2 beams	booster
RF Frequency [MHz]	400	800	400	800	400	800	400	800	800
RF voltage [MV]	120	140	1050	1050	2100	2100	2100	9200	11300
Eacc [MV/m]	5.72	6.23	10.61	20.01	10.61	20.76	10.61	20.12	20.10
# cell / cav	1	5	2	5	2	5	2	5	5
Vcavity [MV]	2.14	5.83	7.95	18.75	7.95	19.44	7.95	18.85	18.83
#cells	56	120	264	280	528	540	528	2440	3000
# cavities	56	24	132	56	264	108	264	488	600
# CM	<u>14</u>	6	33	14	66	27	<u>66</u>	122	150
+ #CM	14	6	33	8	0	13	0	122	123
- #CM			14						
T operation [K]	4.5	2	4.5	2	4.5	2	4.5	2	2
dyn losses/cav * [W]	19	0.3	129	3	129	4	129	23	3
stat losses/cav * [W]	8	8	8	8	8	8	8	8	8
Qext	5.8E+04	3.1E+05	9.2E+05	7.6E+06	9.1E+05	1.6E+07	4.5E+06	4.2E+06	8.1E+07
Detuning [kHz]	9.885	4.385	0.575	0.140	0.106	0.012	0.009	0.056	0.002
Pcav [kW]	901	210	378	89	382	47	78	163	8
energy loss / turn ** [MV]	39.40	39.40	370.00	370.00	1890.00	1890.00	10100	0.00	10100.00
cos phi	0.33	0.28	0.35	0.35	0.90	0.90	0.98	0.86	0.89
Beam current [A]	1.280	0.128	0.135	0.0135	0.0534	0.003	0.010	0.010	0.0005

^{*} Heat loads from power coupler and HOM couplers not included

Courtesy F. Peauger

^{**} Energy loss / turn from K. Oide table Jan. 19, 2023

Machine ≠ target in production

12-May-23			Operation in the machine		
	Eacc (MV/m)	Q0	Eacc (MV/m)	Q0	
1-cell 400 MHz	6.9	3.3E+09	5.7	2.7E+09	
2-cell 400 MHz	13.2	3.3E+09	10.8	2.7E+09	
5-cell 800 MHz	24.5	3.8E+10	20.0	3.0E+10	

Courtesy F. Peauger

- One needs safety margin in the acceptance test in vertical test stands (VT)
- Even the prototype does NOT fully meet the latest specification of VT
- Production yield in mass production (?)

Prototype cavity (800 MHz)

Performance limit:

- Quench at $E_{\rm acc,max}$ = 31 MV/m ($B_{\rm pk}$ ~ 130 mT) and Q_0 = 2e10

High-G/High-Q: prototype vs series production

Step	Amount		
Bulk BCP	200 um		
800C annealing	3 hours		
Final EP	30 um		
120C baking	12 hours		

The ESS specification is conservative

→ Electropolishing and baking were not mandatory

Step	Amount
Bulk BCP	90+110 um
600C annealing	10 hours
Final BCP	20 um

FCC: comparison to other projects

- Highest demands on gradient out of non-1.3
 GHz cavities
- Highest demands on Q₀

We need state-of-the-art

- Elecropolishing (EP)
- Baking/doping

in **industry**

→ What can we learn from the 1.3 GHz projects?

1.3 GHz 9-cell cavities for LCLS-II-HE (Sep 2022)

Baking magic

- N-doping xNyN-infusion
- · 2-step baking
- · Mid-Tbaking
- · Low-Tbaking

N-doping recipe

xNy doping

High temperature degassing 800 °C (~ 3hours) in UHV Nitrogen injection at the end of process (~ 25 mTorr) hold for 'x' mins Evacuate furnace and temperature hold for 'y' mins Furnace cooldown to room temperature in UHV Electropolishing (5-10 µm) High Pressure Rinse (HPR), clean

room asselbly and rf test

N-doping for lower frequency

- The characteristic *relative* increase of Q₀ (decrease in
 R_{BCS}) is usually not observed in
 cavities with below 1 GHz
- → Speculations on nonequilibrium physics as a function of frequency
- However, the absolute values on R_{BCS} and R_{res} may be improved by different baking/doping recipes even for low frequency cavities

List of the different recipes

xNy doping

High temperature degassing 800 °C (~ 3hours) in UHV

Nitrogen injection at the end of process (~ 25 mTorr) hold for 'x' mins

Evacuate furnace and temperature hold for 'y' mins

Furnace cooldown to room temperature in UHV

Electropolishing (5-10 µm)

High Pressure Rinse (HPR), clean room asselbly and rf test

N-infusion

HPR and Nb caps installed in clean room

High temperature degassing 800 °C (~ 3hours) in UHV

Furnace cooldown to (120-200 °C) in UHV

Nitrogen injection ~ 25 mTorr hold for 24-48 hours

High Pressure Rinse (HPR), clean room asselbly and rf test

2-step baking (1.3 GHz)

HPR and Nb caps installed in clean room

High temperature degassing 800 °C (~ 3hours) in UHV

75C for a few hours in UHV

120C for 48 hours in UHV

Furnace cooldown to room temperature in UHV

High Pressure Rinse (HPR), clean room asselbly and rf test

Mid-T baking

HPR and Nb caps installed in clean room

High temperature degassing 800 °C (~ 3hours) in UHV

Exposed to air for oxidation on purpose

250-400 C for a few hours in UHV

Furnace cooldown to room temperature in UHV

High Pressure Rinse (HPR), clean room asselbly and rf test

10

1-cell 704 MHz / 650 MHz with different recipes

- So far...120C for high-G, 300C for high-Q
- The technique seems not matured enough in 650/704 MHz cavities compared to 1.3 GHz
- → Research opportunity for FCC 800 MHz that aims at highest field and Q in this frequency range

Principle of SRF surface resistance and Q at low field

$$R_S \propto P \propto \hbar\omega \int\limits_{\Delta}^{\infty} dE \ [f(E) - f(E + \hbar\omega)] \times N(E) N(E + \hbar\omega)$$

$$E + \hbar\omega \int\limits_{E}^{\infty} \hbar\omega \int\limits_{\Delta < E < \infty}^{\infty} \hbar\omega \int\limits_{\Delta < E < \infty}^{\infty} dE \ [f(E) - f(E + \hbar\omega)] \times N(E) N(E + \hbar\omega)$$

$$S = \frac{1.5}{4} \int\limits_{\Delta < E < \infty}^{\infty} \hbar\omega \int\limits_{\Delta < E < \infty}^{\infty} dE \ [f(E) - f(E + \hbar\omega)] \times N(E) N(E + \hbar\omega)$$

$$S = \frac{1.5}{4} \int\limits_{\Delta < E < \infty}^{\infty} dE \ [f(E) - f(E + \hbar\omega)] \times N(E) N(E + \hbar\omega)$$

$$S = \frac{1.5}{4} \int\limits_{\Delta < E < \infty}^{\infty} dE \ [f(E) - f(E + \hbar\omega)] \times N(E) N(E + \hbar\omega)$$

$$S = \frac{1.5}{4} \int\limits_{\Delta < E < \infty}^{\infty} dE \ [f(E) - f(E + \hbar\omega)] \times N(E) N(E + \hbar\omega)$$

$$S = \frac{1.5}{4} \int\limits_{\Delta < E < \infty}^{\infty} dE \ [f(E) - f(E + \hbar\omega)] \times N(E) N(E + \hbar\omega)$$

$$S = \frac{1.5}{4} \int\limits_{\Delta < E < \infty}^{\infty} dE \ [f(E) - f(E + \hbar\omega)] \times N(E) N(E + \hbar\omega)$$

$$S = \frac{1.5}{4} \int\limits_{\Delta < E < \infty}^{\infty} dE \ [f(E) - f(E + \hbar\omega)] \times N(E) N(E + \hbar\omega)$$

$$S = \frac{1.5}{4} \int\limits_{\Delta < E < \infty}^{\infty} dE \ [f(E) - f(E + \hbar\omega)] \times N(E) N(E + \hbar\omega)$$

$$S = \frac{1.5}{4} \int\limits_{\Delta < E < \infty}^{\infty} dE \ [f(E) - f(E + \hbar\omega)] \times N(E) N(E + \hbar\omega)$$

$$S = \frac{1.5}{4} \int\limits_{\Delta < E < \infty}^{\infty} dE \ [f(E) - f(E + \hbar\omega)] \times N(E) N(E + \hbar\omega)$$

$$S = \frac{1.5}{4} \int\limits_{\Delta < E < \infty}^{\infty} dE \ [f(E) - f(E + \hbar\omega)] \times N(E) N(E + \hbar\omega)$$

The overlap between f(E) and N(E) causes the resistance

- The pole of N(E) at Δ cause R_{BCS}
- The state below Δ causes R_{res}

 \rightarrow Smearing of N(E) decreases R_{BCS} and increases R_{res}

Optimize Q (*low field*) by two material parameters

Combination of pair-breaking scattering (Γ , Dynes parameter) and quasiparticle scattering ($\gamma = v_F/l$) can give a minimum of $R_{BCS} + R_{res} \rightarrow$ maximum Q (mid-T bake?)

 γ is conventional impurity scattering (mean free path) but Γ is not fully understood (magnetic impurity? Oxygen?)

Higher/lower gradient by low-T baking

Inhomogeneous dislocations impacts H_{sh}

Parameter of inhomogeneity $\exp(-z/\zeta)$

→ Higher superheating fields can be achieved if surface impurity has inhomogeneous distribution

Higher/lower gradient by low-T baking

Technical synergy to PERLE at Orsay

Standard CM based on

Target Parameter	Unit	Value	
Injection energy	MeV	7	
Electron beam energy	MeV	500	
Normalised	mm 6		
Emittance $\gamma \epsilon_{x,y}$	mrad	U	
Average beam	mA	20	
current	ША		
Bunch charge	рC	500	
Bunch length	mm	3	
Bunch spacing	ns	25	
RF frequency	MHz	801.58	
Nominal gradient	MV/m	20.4	
Target quality factor		10^{10}	
Duty factor		CW	

- FCC and PERLE share the similar R&D goals in 800 MHz cavity performances
- iSAS proposal (European funding: HORIZON-INFRA-2023-TECH-01)
 - Standardize CM for 700-800 MHz cavities (PERLE, FCC, ESS upgrade, SPL for MuCol, etc)
 - Industrialisation of this standard CM and its components, but R&D is the first step

Technical synergy to PERLE at Orsay

- FCC and PERLE share the similar R&D goals in 800 MHz cavity performances
- iSAS proposal (European funding: HORIZON-INFRA-2023-TECH-01)
 - Standardize CM for 700-800 MHz cavities (PERLE, FCC, ESS upgrade, SPL for MuCol, etc)
 - Industrialisation of this standard CM and its components, but R&D is the first step

Conclusion

- FCC 800 MHz option demands highest field and Q out of non-1.3 GHz cavities
 - EP is mandatory and excellent baking/doping must be applied as well
 - The performance has been achieved in R&D and prototyping with 120C baking
 - Production yield in series cavities may be a challenge \rightarrow industrialization of surface treatment
- N-doping has been successfully industrialized for LCLS-II and LCLS-II-HE
 - Systematic studies have focused on 1.3 GHz cavities
- Various baking and doping recipes have been tried for 650 / 704 MHz cavities
 - Encouraging results have been obtained
 - So far the standard 120C baking for 650/704 MHz 1-cell cavity showed the highest gradient
 - 300C baking showed the highest Q
 - More systematic studies need to be performed
- Microscopic theoretical understandings and doping/baking recipes show a gap
 - The most fundamental theory and phenomenological models have been proposed
 - Experimental evidences have been reported but it seems not sufficient to identify the root cause of the improvement by baking
- 800 MHz technology may define a standard CM in various future projects
 - FCC at CERN, PERLE at Orsay, proton drivers (ESS upgrade, SPL for MuCol, etc)
 - IJCLab is initiating this research direction by the iSAS project proposal for EU funding

backup

Mass production: 5-/6-cell 704 MHz for ESS (March 2022)

Step	Amount			
Bulk BCP	90+110 um			
600C annealing	10 hours			
Final BCP	20 um			

- $Q_0 > 10^{10}$ at $E_{acc} = 20$ MV/m has been statistically achieved
- No EP in the standard recipe
 - A couple of mid- β cavities were disqualified with steep Q-slope without field emission and (to be) treated by EP
- No low-T baking ← No need for very high gradient > 25 MV/m

Temperature vs time

Systematic studies to select xNy and temperature

Cavity	Heat Treatment	Doping Recipe	EP Post Doping	Prepared at	Quench	Q ₀ at 16 MV/m
	Temperature [°C]		$[\mu \mathbf{m}]$	_	[MV/m]	(21 MV/m)
CAV357	925	2/6	7	EZ/RI	17.2	3×10^{10}
CAV358 ¹	925	2/6	7	EZ/RI	20.8	2.7×10^{10}
CAV360 ¹	925	2/6	7	EZ/RI	20.2	3×10^{10}
CAV361	925	2/6	7	EZ/RI	19.1	2.8×10^{10}
CAV349	975	2/0	7	EZ/RI	15	2.4×10^{10}
CAV350	975	2/0	7	EZ/RI	20.6	3.5×10^{10}
CAV363	925	2/0	7	EZ/RI	21.6	$3.5 \times 10^{10} (2.9)$
CAV364	925	2/0	7	EZ/RI	22.5	2.4×10^{10}
CAV363	925	2/0	10	EZ/RI	24.5	$3 \times 10^{10} (2.9)$
CAV350	975	2/0	10	EZ/RI	22.8	3×10^{10} (2.9)
CAV355	925	3/60	11	EZ/RI	18.1	3.1×10^{10}
CAV356	925	3/60	11	EZ/RI		
CAV359	925	3/60	11	EZ/RI	17.2	3.8×10^{10}
CAV362	925	3/60	11	EZ/RI	18.3	3.8×10^{10}
CAV351	975	3/60	11	EZ/RI		
CAV352	975	3/60	11	EZ/RI	15.5	2.3×10^{10}
CAV353	975	3/60	11	EZ/RI	16.9	3.1×10^{10}
CAV354	975	3/60	11	EZ/RI		
CAV353 ¹	975	3/60	15	EZ/RI	17	3.5×10^{10}
CAV0017	900	2/0	7	FNAL	20	3×10^{10}
CAV0017	900	2/0	7	FNAL	25.5	3×10^{10}
CAV0018	900	2/0	7	FNAL	20	3×10^{10}
TB9RI022	800	2/0	7	FNAL	32	2.5×10^{10}

D. Gonnella et al SRF2019 doi:10.18429/JACoW-SRF2019-MOP045