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at the turn of the century...
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Magnet technology drives the cost and reach of a future collider
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Figure 2: Higgs production cross sections versus
collision energies normalized to the 14 TeV rates.
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Collider and injector complex
13'600 MCHF
80%

Technical
Infrastructure
2'800 MCHF
16%

Civil Engineering
600 MCHF
4%

Figure 7: FCC-hh capital cost per project domain as a combined project, if FCC-hh 1s built after FCC-ce.

Note: The magnets are estimated to be
~70% of the Collider & Injector complex cost )

2040 2050

Source: Future Circular Collider
- European Strategy Update Documents,

Physics reach is driven by magnet technology

2019, CERN-ACC-2019-0005

Dominant cost drivers for energy frontier colliders: Magnets and tunnel
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U.S. MAGNET

rrocran - The US Magnet Development Program (MDP) Vision and Goals

 Maintain and strengthen US Leadership in high-field accelerator magnet

technology for future colliders ,\‘ A
fFrrrrnrnrrs lll‘

* Focus on the four primary goals identified in the the original MDP Plan BERKELEY LAB
o Explore the performance limits of Nb3;Snh accelerator magnets, with a focus on minimizing the
required operating margin and significantly reducing or eliminating training =, :
o Develop and demonstrate an HTS accelerator magnet with a self-field of 5T or greater, N Brookhaven
compatible with operation in a hybrid HTS/LTS magnet for fields beyond 16T National Laboratory

o Investigate fundamental aspects of magnet desigh and technology that can lead to substantial
performance improvements and magnet cost reduction

o Pursue NbsSn and HTS conductor R&D with clear targets to increase performance and reduce
the cost of accelerator magnets

* Further develop and integrate the teams across the partner laboratories and
Universities for maximum value and effectiveness to the program

* Identify and nurture cross-cutting / synergistic activities with other programs
to more rapidly advance progress towards our goals

H,;\"‘i@'ﬁ% U.S. DEPARTMENT OF Office of " | :
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U.S. MAGNET

PROGRAM | A look at the timeline from the LHC itself

—

‘The path to next generation magnet 1984; ECFA  24Y€arS 995 TAP reaches 8.3T at 1.9K
technology for a collider is complex: o  ousanne | 2008: installation
= I 1995: first 10m prototype completed
O Need R&D to probe concepts, develop and = 1988: Ansaldo single _ |
understand potential P aperture model 1998:first 15 m prototype
_ _ _ Q (Perin,Leroy) reaches . - - -
Need robust industrial suppliers of conductor = 03T at 1.6k oo+ LHC Pink Booktwin aperture design
O .
Need to ready a given technology for a project | 5 1993: MTA reaches 9T at 1.9K ‘
: : 2000-2005: series
Need to develop industrial partners for 5000 . ‘ 2'010
maghnet production

O And finally need to produce reliable, cost-
effective magnets for the next collider ’

Requires a strong ecosystem of laboratory,
University, and industrial partners

¥ oo .

Courtesy Luca Bottura
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U.S. MAGNET

PROGRAM MIDP is highly relevant to the FCC-hh

HTS cable driven
Ring magnets
Tunable permanent magnets

FCCee Interaction region magnets
Booster magnets
4 Nb3Sn 2:layer Highly relevant
FCC magnet needs 16+T dipoles Hybrid HTS/LTS
Ring, dipoles P ‘ ARTS /
,.__Costreduction i within scope, but lack resources
ECC-hh Industrialization

Nb3Sn magnets
Interaction region quads Hybrid HTS/LTS

Cost reduction

Mw"ii“’% U.S. DEPARTMENT OF Office of 6 07/2023
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U.S. MAGNET Both the FCC and the muon collider depend on advances in

DEVELOPMENT

PROGRAM

accelerator magnet technology

Q O RLA/FFA
Acceleration |

B xwJy — agocJoBfrO

Q Synergies with Fusion Technology developments

“ ey 7 _ Muon 6D Cooling Demonstrators
Tradltlonal Cos thEta Synergies with ABP Roadmap Muon Collider magnets = | |
- Midplane stress due to O O Ring Dipoles
azimuthal force accumulation Synergies with NSF / High Field Collider ring Interaction region quadrupoles
Magnets
O O Target & Capture Solenoid =
C R

The magnhet development scope described in the Snowmass whitepapers addresses FCC-hh and Muon collider needs

= Will require significant investments to advance to the level needed to build the next machine! )

Serves as good candidate for
muon collider ring dipole

MDP stress-managed hybrid
magnets under development
- Critical for strain sensitive
Nb,Sn and HTS conductors

o X JoB ~ F
0,5M 0 e Nb,Sn outsert

“Stress-managed” Cos-theta

- Groups of turns, azimuthal
forces intercepted by support

\_

HTS insert

w,»‘ y U.S. DEPARTMENT OF Office of 6/07/2023
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* HTS materials outperform LTS at higher field, but under-perform at low field

=> hybrid magnets are most efficient

MDP seeks to address questions such as:

What Is the nature of accelerator magnet training? Can
we reduce or eliminate it?

What are the drivers and required operation margin
for Nb,Sn and HTS accelerator magnets?

What are the mechanical limits and possible stress
management approaches for Nb,Sn and 20 T
LTS/HTS magnets?

What are the limitations on means to safely protect
Nb,Sn and HTS magnets?

U.S. DEPARTMENT OF

Office of
Science

)

o
faf +) ‘ (
= 1

<5

D4

Whoelle WireCriticallCurrentDensity (A/mm?, 4,2 K))

:u_(o_ | |

April2018
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S
e

HTS vs LTS superconductors & magnets - some key distinctions
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A priority now is to build the Nb,Sn outserts

Canted Cosine theta:
O 4 layers

 Borefieldof 12T/ 13 T for
standalone operation

* Bore diameter: 120 mm
*Stress-managed Cosine Theta:
O 2 layers
 Bore field of 11T
* Bore diameter: 120mm

SMCT

 SMCT Is a more efficient design

These are two variants on stress-management
* CCT 1s a “limiting case” of maximal SM

T OF Office of

A5%,  U.S. DEPARTMEN

I’-f:‘:?' Lassis \F)

\?\‘ @ ,F-.g: E N E RG l
e Y | science
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CCT
4 a
W30+ % current margin at target
el of12T,4.2 @33 T, 1.9K
72;., 8 : f: ,
e i
1o0m

6/07/2023




C) oEVELoPENT Design efforts now leading to hardware and first testing

i FNAL mirror
j test of SMCT
8l imminent

Practice
winding of
CCT6
underway
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HTS superconducting magnets behave differently

magnet can survive guenches
Motivation:

precursor, not controllable

after quenching

" Traditional superconducting magnet design ensures

* spontaneous quenches => lack of reliable

* Training => potential for improved performance

-
Can we contemplate a new paradigm for HTS?

* Higher MQE => not (?) susceptible to spontaneous
quenches => no “random’ behavior

 So far no Indication that HTS magnets exhibit training
=> no performance enhancement

Design to eliminate run-away quenching !?

. J /
T. Shen et al., PHYS. REV. ACCEL. BEAMS 25, 122401 (2022)
15t Nb,Sn CCT coil impregnated with wax ' f BN @
BOUU - ~ . - T 3 . . = | S 0 e e e e e e e - - - —-—--
’._/|=> no quench of inner wax coil! | _
cgse t P ] . < 4000
< 8000 o RN, \r ] | - All quenches were in outer coil E (®eesedtcseee
I 7' \J VYRAY £ 3000
3 7500 | S s
'E f ‘a.,»’r' Y 3 = : 3R(:|:1/p rate test
= od 8 1 | == Theoretical short-sample limit
G 7000 | 4~ Tl . P ., 1000 -
sl Motivated by “Box .
® SUBSL2
. =—===] results: Daly et al 2022 b
PP 5 10 15 20 25 30 / ¢ 2z 4 &6 8 10 12

Quench Number

o Office of

457%%. U.S. DEPARTMENT OF

rllgr“ Lassis \)%'J

\?‘\. F:q E N E RG .

NO¥ ' Science

SUST 35 055014
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U.S. MAGNET

PROGRAM ' Bi2212 shows strong promise - being readied for hybrids

(a) Kapton/epoxy glass bag /
""""""" Bi 'zéfz'begt';;e;far'm'ahaa I,
i . LHC ° f‘fff \
1600\ BINocT wire ¢ uzod 4 o CCT6-BiI-CCT1 iy, ;;,g?,
| \PMM170725 £ . f f s % ),
1400 - Sﬂ "1 eiNsctwirs ’ ID 40mm
E 1200' N 400 * OD 95mm
= o e SSL5T
ﬁu.l Y 02 46 8 '1|0'1l2'1B}1'(‘I;-6)'1'8'2'0'2'2-2'4'2l6'2'8'3'0'32 ) 17_st ra n d
o 800- reduction .
§ . " e 0.8mm diameter
600 -
. o i % BIN5c1, CCT dipole, 2021 g
N 400- m BIN5aOL, CCT single coil, 2019 .
< . ® RC7n8, common coil dipole, 2018 QCO’IS at FSU, ready
200 - ® RCG, single racetrack coil, 2017
y SC coils, before 2015
0 v T v ! v I v 1 v I v 1 v | o
0 2 4 6 8 10 12 14 CCT6-BI-CCT2
B (T) * ID40mm
S e * OD115mm
® B . o
First demonstration of high current SSL6.8T R,enegade
canted-cosine-theta coils with Bi-2212 * 23-strand >
Rutherford cables * 1.0mm diameter %///%/Z |\ L\ \\ \
. | }/UJ\:_;,,L\/\\ )
L Garcia Fa;uardo' . T.IShen- ; X }Nang " - Myers , D Arbelaez' ), E B"czsque“‘, ) k / / / l ' \ /
L Brouwer-©, S Caspi’, L English™, S Gourlay A Hafalla M Martchevsklr , | Pong-
and S Prestemon'
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U.S. MAGNET

pROGRAM T REBCO makes steady progress - focus on CORC® & STAR®

C3 — next deliverable

NN
o

Test CORC in-field at BNL  before winding - befors vinding
- Generate 5T o erwidng: o ey
. : S > sl
* 6-layer CCT using CORC® wires £ g
* Tapes in-hand, cable underway 161 15/
, : s Layer1 s Layer2 .
3-turn practice 5t 51
windings are done ° ° +
50 200 400 600 800 1000 1200 1400 160 "0 200 400 600 800 1000 1200 1400 1600 180
for each layer Current (A) current (A1
_ “COMB” design advancing as a test platform
3 “Early” CORC Improved CORC
:i 600.-Ra;mp'ratel=2'00'/;\/s' == 10 F I-l Sltraligr;tl S
500 |+ 191221 55 Cove gL+ SSCOMB
400t g' 5|
E 300 | E |
> 00l w
2 |
100 | i
0- . O-I-l-l-l-l-l-l-
(') ' 5(')0 = 10'00 : 15'00 : 20'00 ' 76 K 0 200 400 600 800 1000 1200
\_ / 200 Als I[A]

| [A]
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PROGRAM Diagnostics are central to advance magnet technology

S 4th Superconducting Magnet Test

Faciil(itiﬁs Workshop & 2nd 7

i | Workshop on Instrumentation an ST

Mo Baldlr”, So Krave ,_ Diagnostics for Superconducting _ Voltage lntggratedvoltége
Magnets

abs_max 0.101
=== time_20
—— Voltage

0.08 -

0.06

0.04

Rayleigh backscatter fiber optics
area-level strain monitoring

0.02 A

0.00
- |ntegrated voltage

—0.02 A abs_max

Integrated voltage [uV*s]

0.047 0.048 0.049 0.050 0.051 0.052 0.047 0.048 0.049 0.050 0.051 0.052
Time [s] +1.8130000000e2 Time [s] +1.8130000000e2

0.0003514 1.0
0.0003012

- 0.8
| 0.0002510 5
<~ Apr24 = 28, 2023 Q ( 0.0002008 3 0.6
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0.0000503 0.2+
— . - 0.0000001 ] . . [ . :
é 0.047 0.048 0.049 0.050 0.051 0 2000 4000 6000 8000 10000
Introduction | nt rOd u Ct | O n Time [s] +1.8130000000e2 Frequency [Hz]
Optical Fiber = . R Scientific Program
. A Following difficult years of pandemics, the Superconducting Magnet Test Facility Workshop (SMTF) is back! 1
Venue and Booking would like to announce that the next workshop is being organised and proposed for spring 2023. P l e b a n i E B a r z I'
. . - . .
i il . Tourism and sightseen For this new edition, we would like to propose a joint event with the Instrumentation and Diagnostics for 4 4
* Gage pitch < 1 mm in the area Superconducting Magnets Workshop (IDSM), which had been initiated in 2019 by M. Marchevsky and G. b
Tiretable Willering. The two workshops will be held close to INFN, Univers'ity of Salerno (IT). Te y e r
Strain in fiber - 400 — 1 . 1 . ) 1 . 1 . ] A . SN —
500
- | Towards real-
400 3007 .
400 g .
| 3 3 time quench
300 200 08 -
B 4 300 - [ ] [ ]
i . NI signal analysis .
£ 200 - = | y- 9% 7
> 02 | ggm % ol - S1 S4 \
- i oo | HEDR = — 52 S5
o 100 bs_ma. e o " TB 4 1 3 S3 i 56 i
1 T ‘
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us.macner - Superconductor advances are heavily driven by OHEP magnet
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developments, needs, and focused and consistent investments

Performance
(transport, Tc, Bc2,...) HL-LHC Nb_Sn strand

( N N I

4500

4000 - :
OST RRP® (from parameterizat

g 3500 OST MJR & RRP® | ¢ \, 2017 Bi-2212 strand
N\
= OST MJR
5 3000 - IGCITL A\ e - i
: SMI PIT Ternary o L R '
- 2500 OST MIR' 1 AT 0 R AY
& IGCIT 9o AICK »\
: 2000 - LMIIT! — — 2 ~—§_\ ‘ 2015 B|'2212 Strand -
- IGC IT upercc . A
= ECN PIT A SMI PIT ='q L] Tern: |b'T' strand \g
¢ Bl ECNPIT[— 4 ® [ MELCOIT 4 I C 3
= - A e © R
Q A 1 -t ) e N -
g 1000 - ECN PIT TWCAMIR| g supercon PIT Binary A==~ g
L " \_J‘\-’d,§f % —
z IGC IT B IGC IT s : N - e A
500 - N = . 2005 Bi-2212 strand
ECN PIT Dn, .
0 A

1975 1980 1985 1990 1995 2000
Time [Year]

-
6 8 10 12 14 16 18 20 22 24 26 28 30 32
B (T)

I. Pong, Handbook of Supercon

Fajardo, Instruments, 2020
Chapter E3.8

\ /

A longstanding history of Quality Cost Bi2212 as a magnet-ready

public/private partnershi (uniformity, reproducibility,...) (P-factor, scalability) .rgtyre superconductor

performance of superconductors
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U.S. MAGNET The maghet community was strongly engaged in the
Snowmass process, and is highly organized

PROGRAM

L L Submitted to the Procecdings of the US Community Study Communitv discussed broarammatic
* The MDP has been very effective in organizing on the Futue of Particle Physics (Snovnass 2021 , Y prog
evolution to meet HEP needs

and focusing a multi-lab team on accelerator
magn et R&D A Strategic Approach to Advance Magnet Technology for Next - 60 LOI S

. ] _ Generation Colliders nowm as _ . - .
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us.macNer  There are synergies in magnet technology that can be exploited across the

DEVELOPMENT

oS FCC, muon collider, as well as other offices - FES, ARDAP

%5 O H PR
4 A i Synergies with other end users Synergies with programs |
Conductor developments: perfromance, quality, cost 'Muon collider system Future HEP Facilities  Fusion  |NSF (High DC Fields)| | US-MDP  ARDAP/Industry |
'Radiation environment & radiation tolerance of materials and systems i Collider Dipoles _ i
i IR Quads i
4 N N N ( colider ) (- ) | Target Solenoid |
Production Acceleration Cooling : Detector IR i _ _ I
> < > - < > < > ng < > < . Cooling Channel Solenoids i
High field | ngh Ramp Rate for RCS Ji
solﬁnmd, Fasft FFA/n_on- High field Large bore La_rge _bore
igh ramping ramping solenoids dipoles high field . . . .
radiation dipoles solutions quads Synergies with other end users Synergies with programs
L L env. N A ) L )L N ) ) FCC-ee Future Colliders Fusion  NSF (High DC Fields) US-MDP ARDAP/Industry

IR quadrupoles
Collider dipoles

Booster magnets
Andustrial applications\ FCC-hh
Collider Dipoles
‘ IR Quads
M \_ /

4 )

Legend

\ Strong synergy
Some synergy

An enhanced magnet research portfolio, focusing on the most critical magnet development
needs for a Hadron collider and a Muon collider, and fully leveraging synergies with other DOE Current focus

. . - . Synergistic
and NSF programs, will be the most effective way to aggressively prepare for the next collider Potentially supportive
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us.macver — \We are actively engaged in identifying and leveraging synergistic

DEVELOPMENT
PROGRAM

activities to the benefit of HEP

Fusion Magnet Community Work... Home - Registration - Agenda - Presentations - Workshop Materials - Participants -

*Active participation in FUSION MAGNET COMMUNITY

| ' ffort
planning efforts WORKSHOP
o for HEP, but also i

across many
synergistic
agencies

March 14th — 15th 2023

s of plenary sessions and discussions hosted by
Princeton Plasma Physics Laboratory

*Strong participation in
public-private
partherships

eeds, develop the rationale and content for a public program in
broadly the deployment of affordable and reliable fusion energ
e-risk promising configurations on a timeline consistent with

new!

.

The National Academies of Sciences, Engineering, and Medicine is undertaking a forward-looking study to examine

(1) the status of domestic and international high magnetic field science and technology;

(2) current and future science disciplines that have critical needs for new capabilities that could only be enabled by high magnetic fields;
(3) gaps in current high magnetic field science, technology, and infrastructure that could help address critical needs.
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U.S. MAGNET

PROGRAM Summary

* The High Energy Physics community has clearly indicated the science potential associated with a future
colliders that probe significantly higher energies

* There Is a concerted effort around the world to integrate teams of specialists and facilities to most
efficiently, effectively, and rapidly advance magnet technology — for HEP, but also for FES!

 There Is also strong Interest in collaborating internationally, where strengths and capabilities are deemed
complementary and can more rapidly advance the technology

 To aggressively prepare magnet technology for a hadron or muon collider, a significant increase In the
magnet R&D effort is needed, fully leveraging synergistic activities, e.g. from FES and NSF

4 )

We are at a critical period, where innovation and progress in magnet technology Is essential to enable

the next generation of colliders — and the opportunity iIs shared with FES and other applications!
\_ J
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U.S. MAGNET

PROGRAM ' Physics motivation and strategic planning

From 2020 ESPP:

*The physics drivers for a future hadron collider have been discussed ‘Innovative accelerator technology underpins the physics
_ _ reach of high-energy and high-intensity colliders. It is also a
and documented by community planning, e.g. powerful driver for many accelerator-based fields of
science and industry”
0 2014 P5 & 2022 US “Snowmass” processes “The particle physics community should ramp up its efforts
focused on advanced accelerator technologies, in
0 2020 Update of the European Strategy for Particle Physics particular that for high-field superconducting magnets,

including high-temperature superconductors.”
“The technologies under consideration include high-field

“ ” " magnetls, high-temperature superconductors, plasma
Last US "P5" re PO rt ~2014 wakefield acceleration and other high-gradient accelerating
structures, bright muon beams, energy revovery linacs.”

P5 recommendation 24: HEPAP Accelerator R&D Subpanel recommendations .
“Farticipate in global conceptual design studies and critical g Recommendation 5b. Form a focused U.S. high-field magnet R&D collaboration F a bl 0, l a GI ano ttl ( C E R N ) ) L H C P ), 7 .I une 2 02 1

. ) that is coordinated with global design studies for a very high-ene roton-proton
R&D for future very high-energy proton-proton colliders. d g ry hig gy p P

Continue to play a leadership role in sup?rcﬂndtfﬂﬁng magne collider. The over-arching goal is a large improvement in cost-performance. " 0 CERN's implementation 1
technology focused on the dual goals of increasing performal Recommendation 5¢c. Aggressively pursue the development of Nb,Sn magnets

and decreasing costs.” suitable for use in a very high-energy proton-proton collider. Full exploitation of the physics potential of LHC and high-luminosity LHC (including HI, flavour, ...)
= CERN'’s highest priority in the short/medium term (= see M. Lamont's talk)

Recommendation 5d. Establish and execute a high-temperature super-
conducting (HTS) material and magnet development plan with appropriate Highest-priority next collider: e*e- Higgs factory

milestones to demonstrate the feasibility of cost-effective accelerator magnets > continued development of FCC-ee and CLIC technologies: support to ILC
using HTS.
Increased R&D on accelerator technologies: high-field superconducting magnets,
high-gradient accelerating structures, plasma wakefield, muon colliders, ERL, etc.

- see next slide

Recommendation 5e. Engage industry and manufacturing engineering
disciplines to explore techniques to both decrease the touch labor and increase
the overall reliability of next-generation superconducting accelerator magnets.

Recommendation 5f. Significantly increase funding for superconducting Investigation of the technical and financial feasibility of a future 2 100 TeV hadron collider
accelerator magnet R&D in order to support aggressive development of new at CERN, with e*e" Higgs and electroweak factory as a possible first stage.
conductor and magnet technologies. - see next slide
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rverorvent  R&D efforts for accelerator magnet technology are becoming more

PROGRAM

structured

*DOE created the US Magnet Development Program (MDP) in ~2016  https://arxiv.org/abs/2011.09539
-Europe has initiated the High Field Magnet Program (HFM) http://arxiv.org/abs/2201.07895

These are significant programs, derived from ~decadal community planning processes
=> Strive to coordinate efforts to more rapidly advance technology development

We are poised to break new ground with hybrid LTS/HTS magnets in the coming years
Bottura, Prestemon, Rossi, & Zlobin, Front. Phys., 12 October 2022
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U.S. MAGNET Nb3Sn accelerator magnet technology is - for the 1t time - being installed

PROGRAM

In a collider

2003

Subscale Quadrupole 4 ‘ ‘ Subscale Magne L H C / H L' LH C P'an | ‘ | H |m

S | A SN LARGE HADRON COLLIDER
0.3 m ,mz < > ’ Technology Development ' L

0.3 m long

110 mm bore ° No bore
Coil design selectlon ‘ TQ Mirror l , s T AL-LHC :
Technology Quadrupoles Long Racetrack . = Shove
TQS, TQC | LRS
L1008\ o1 ione LS EYETS LS2 EYETS
‘ - iy ., o 13107y R W
Diodes Consolidation
Lessons learne 8 TeV S e cryokimk LIU Inataliation o HL-LHC
3 Structure Selectlon & 7 TeV bu ":25 ;"L;: :o =~ et;‘oaéno Civil Eng. P1-P5 rr;Z?atwplomt installation
High Fikd Quadrapl __ oy ---- A SR EA
3.7m Iong ATLAS - CMS S X nomina L‘_ﬂ']‘le
12m '0“1~ '..’ 90 mm bore NP experiment upgrade phase 1 ATLAS - CMS r/—
AN é % O e nominal Lumi ool ALICE - LHCb psroome o ~ S

2015 Long quadrupoles 75% nominal Lumi | W .

.‘ integrated RAYUURE
e m luminosity EEIIVR {8

Large aperture quadrupoles

PROTOTYPES == CONSTRUCTION INSTALLATION & COMM.|||| PHYSICS

HiLumi magnet production is arguably “boutique production”

* First implementation of Nb;Sn superconductor in a collider

* What are the risks and benefits of full-scale industrial production of Nb;Sn magnets?

 What elements of the design are “robust”, and what elements generate
risk/performance limitations?

= There is significant value-engineering that can be performed
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U.S. MAGNET
DEVELOPMENT
PROGRAM

Maghet and Conductor Plans & Roadmaps are well-advanced globally

*US MDP - well established

*European HFM - recently established

eJapan efforts at KEK - coordinated with CERN and MDP
*China efforts led by IHEP - progressing well

U.S. MAGNET
DEVELOPM:
PROGRAM

2020 Updated Roadmaps

The 2020 Updated Roadmaps for the
US Magnet Development Program
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Updated US MDP Roadmaps have been published https://arxiv.org/abs/2011.09539

_ _ Institute of High Energy
Institute of Electrical

: . Physics, CAS
Engineering, CAS
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