

HTS Developments

A. Ballarino, CERN

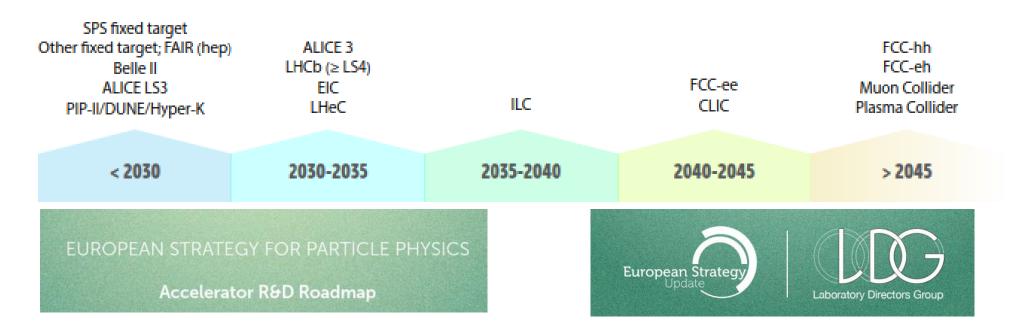
FCC Week 2023

June 5 - 9, 2023

Millennium Gloucester Hotel London Kensington

Outline

- Introduction
 - Potentials of HTS technology
- HTS Materials and cables
 - REBCO, BSCCO 2212, Iron Based Superconductors, MgB₂
- HTS magnet developments
- HTS in the High Field Magnet Program
- Test facilities for HTS technology
- HTS for fusion
- Conclusions


The physics landscape

	Dipoles	Quadrupoles	Undulators/Wigglers	Detectors	Field (T)
FCC-ee		IR Quad		×	< 3 T
CEPC		IR Quad		×	< 5 T
ILC	×	×	×	×	< 2 T
CLIC			×	×	< 2.5 T
FCC-pp	×	×			16 T -20 T
SppC	×	×			12 T- 24 T
Muon Colliders	×	×			Solenoids > 10 T-20 T

The physics landscape

	Dipoles	Quadrupoles	Undulators/Wigglers	Detectors	Field (T)
FCC-ee		IR Quad		×	< 3 T
CEPC		IR Quad		×	< 5 T
ILC	×	×	×	×	< 2 T
CLIC			×	×	< 2.5 T
FCC-pp	×	×			16 T -20 T
SppC	×	×			12 T- 24 T
Muon Colliders	×	HTS E	nabling Techno	ology	Solenoids > 10 T-20 T

LDG Report: HTS beyond the range of Nb₃Sn

- □ LDG Roadmap: "demonstrate the suitability of High-temperature superconductor (HTS) for accelerator magnet applications, providing a proof-of-principle of HTS magnet technology beyond the range of Nb₃Sn, with a target in excess of 20 T"
- ☐ LDG timeline driven by technical readiness

Advantages of HTS

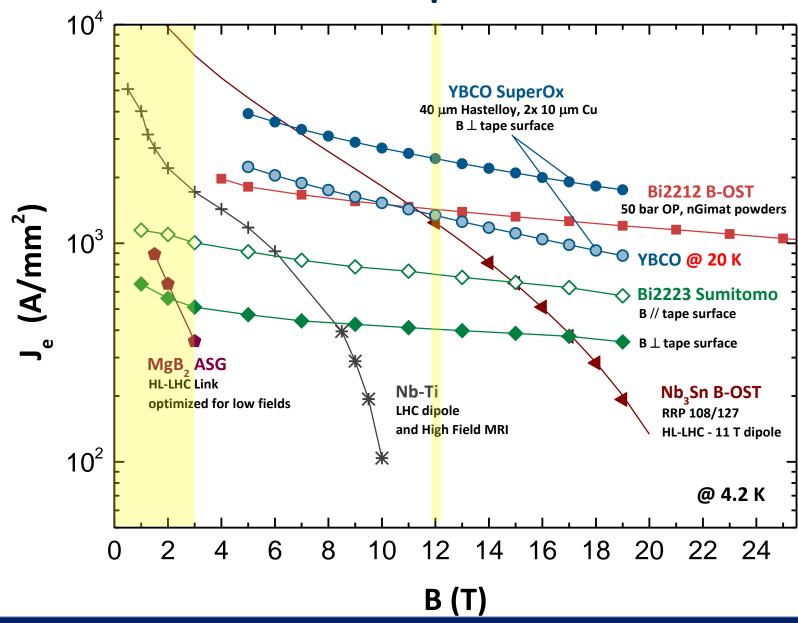
Very high in-field current density at low temperature

- Enabling technology for magnets with fields > 16 T
- No magneto thermal-thermal instability, e.g. no flux jump (an issue to be treated for future high-field Nb₃Sn accelerator magnets);
- **Higher temperature margin,** e.g. capability of tolerating a rise of temperature due, for instance, to decay particles

Operation at higher temperature

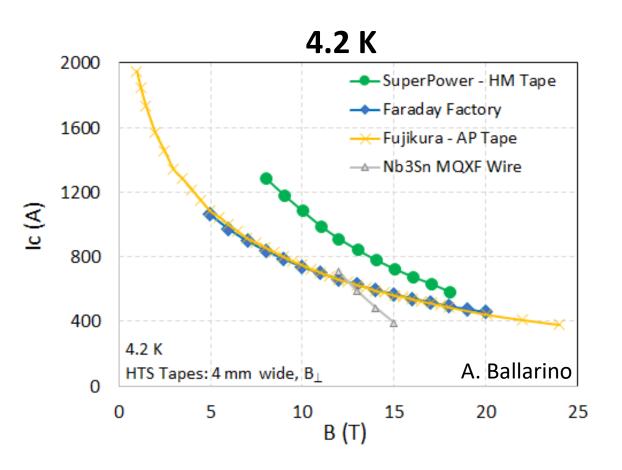
- Low(er) field magnets operated at temperatures higher than liquid helium (dry-cooling, He gas cooling, LH₂, LN₂): operational energy saving
- High specific heat, i.e. **high thermal stability** (MQE) the issue comes once the quench has generated (detection and protection)
- Higher temperature margin to the benefit of an easier cryogenic control

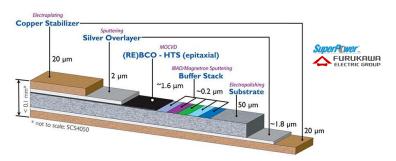
The physics landscape

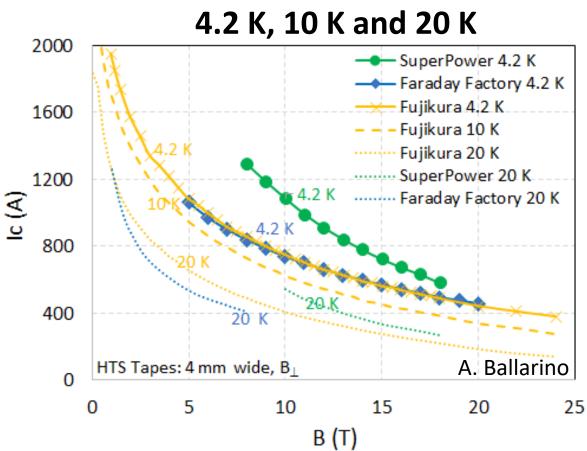

	Dipoles	Quadrupoles	Undulators/Wigglers	Detectors	Field (T)
FCC-ee		IR Quad		×	< 3 T
CEPC		IR Quad	oficial Tack and	×	< 5 T
ILC	×	× Ben	eficial Technolo	ogy ×	< 2 T
CLIC			×	×	< 2.5 T
FCC-pp	×	×		×	16 T -20 T
SppC	×	×		×	12 T- 24 T
Muon Colliders	×	HTS E	nabling Techno	ology ×	Solenoids > 10 T-20 T

HTS for Sustainability: operation at higher temperatures (> LHe) to minimize power consumption

Outline


- Introduction
 - Potentials of HTS technology
- HTS Materials and cables
 - REBCO, BSCCO 2212, Iron Based Superconductors, MgB₂
- HTS magnet developments
- HTS in the High Field Magnet Program
- Test facilities for HTS technology
- HTS for fusion
- Conclusions


The present HTS landscape



REBCO – Tape

High current capability

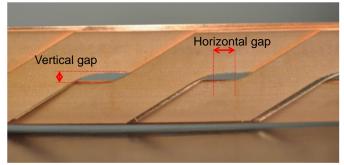
Data presented by tape manufacturers at the HiTAT Workshop, CERN, March 2023

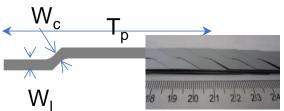
REBCO

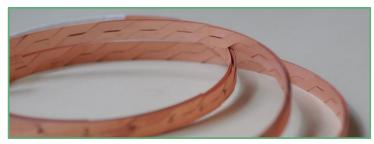
- Very high current capability
- React & Wind technology
- Several manufacturers word-wide (unit lengths ~ 300 m)

Development to be done on:

- QA of conductor
- Longer (> 1 km) conductor unit lengths
- Field quality issues (effect of persistent currents in wide tapes)
- Effect of screening currents on stress/strain distribution
- High current cables (twisted and transposed ?)
- Modelling
- Quench detection, quench protection
- Impregnation and insulation techniques (no insulation, metal insulation, high voltage insulation)
- High current splices
- Magnet geometry/design taking into account also tape anisotropy


•

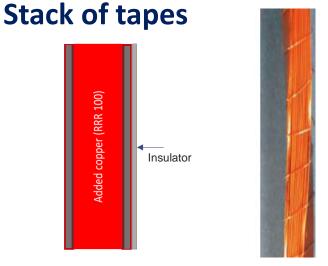

Development on magnets requires having


solved all issues on superconductors!

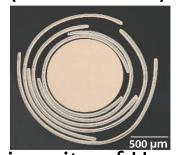
REBCO – Cables (1/2)

Roebel flat cables for EU Eucard 2

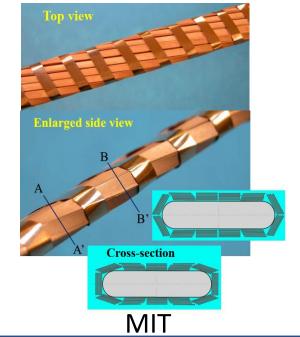
Unit length ~ 54 m KIT



Advanced Conductor Technologies



Twisted + insulated, CERN MI, IFAST, CEA Twisted, MIT


Staked tapes on a flat former

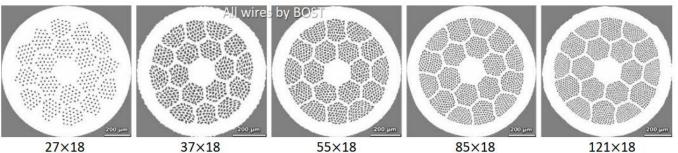
STAR® REBCO Wire

 $(\Phi \sim 0.8 \text{ mm})$


REBCO Cables for HL-LHC (2/2)

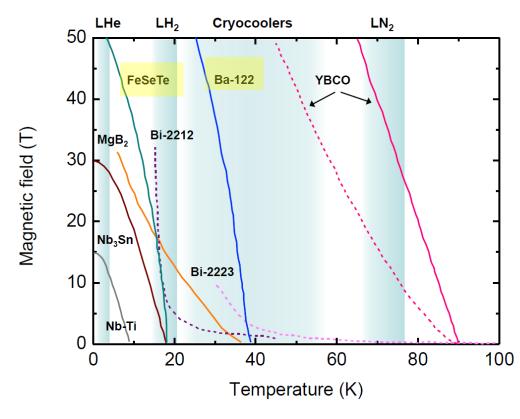
- Round, flexible, electrically insulated REBCO cables
- No measurable critical current degradation of tapes after cabling
- Current rating of REBCO cables: 600 A, 3000 A,
 7000 A and 18000 A @ 60 K (~ 0.7 T)
- Cabling machine designed and constructed at CERN
- Two layers of tape
- On-line Polyimide insulation

3 kA @ 60 K (B = 0.7 T)



BSCCO 2212 Wire

- Bi-2212 has become a magnet conductor after more than 10 years of coordinated university-lab-industry support through DOE-OHEP and the CDRP
 - It has great advantages genuinely multifilament with low AC loss, macroscopically isotropic, round and available in single pieces now > 1 km length in multiple architectures and variable diameters
 - It has major disadvantages too it requires a Wind and React route for HEP and lab magnets at almost 900 C and now optimized Jc requires \sim 50 bar overpressure (1 bar O₂ and balance Ar)
 - Wires have a breaking strength of ~170 MPa, well below the stresses foreseen for many magnets

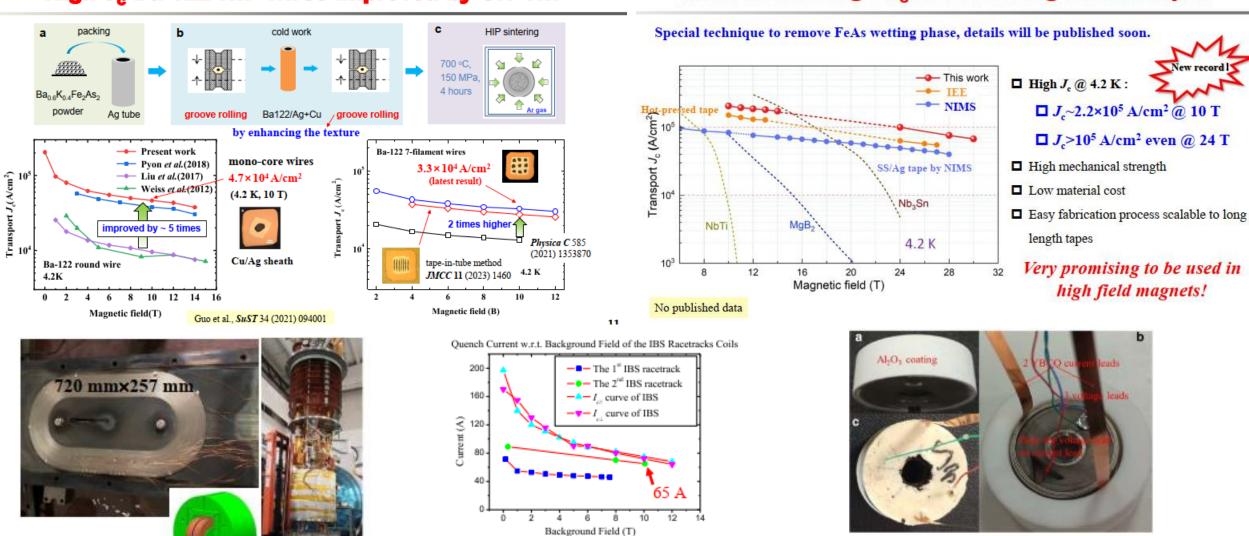


D. Larbalestrier, HiTAT Workshop, CERN, March 2023

Iron Based Superconductors

- High upper critical field (H_{c2})
- Hirr close to H_{c2}
- Small anisotropy
- Transition to weak link: $\theta c \sim 9^{\circ}$
 - \rightarrow suitable for wires
- Wires can be produced with the known scalable Powder In Tube process at potentially low cost

Ba-122: Tc ~ 38 K Hc2(20 K) > 70 T

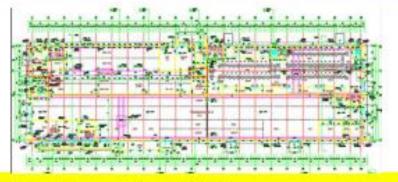


- A Gurevich, Ann. Rev. Cond. Matt. Phys 5 (2014) 35
- C Yao and Y Ma, iScience 24 (2021) 102541

Iron Based Superconductors in China

High- J_c Ba-122 HIP wires improved by GR+HIP

New record high J_c in PIT SS/Ag Ba122 tapes


D. Wang and Y. Ma, HiTAT Workshop, March 2023, CERN

Platform for kilometer-scale IBS wire

D. Wang and Y. Ma, HiTAT Workshop, March 2023, CERN

Plant layout, ~3000 square meters

Currently, a platform for the preparation of kilometerscale long IBS wire is constructing in China.

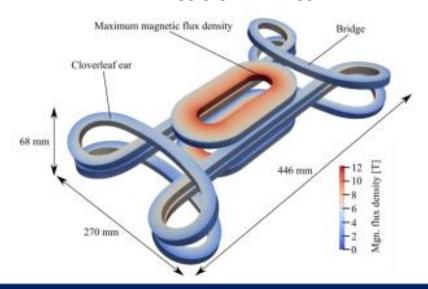
Equipment in place

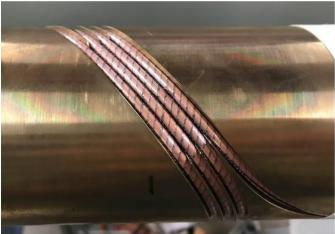
Wire drawing machine

Tape rolling machine



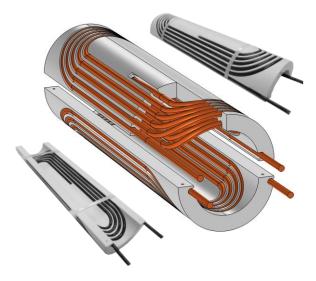
HIP furnace

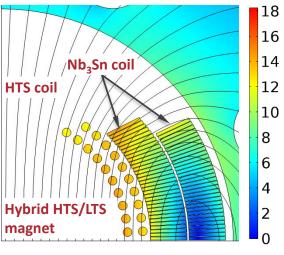

Outline


- Introduction
 - Potentials of HTS technology
- HTS Materials and cables
 - REBCO, BSCCO 2212, Iron Based Superconductors, MgB₂
- HTS magnet developments
- HTS in the High Field Magnet Program
- Test facilities for HTS technology
- HTS for fusion
- Conclusions

Recent magnet developments

REBCO Cloverleaf, CERN and KIT PhD Thesis of Th. Nes

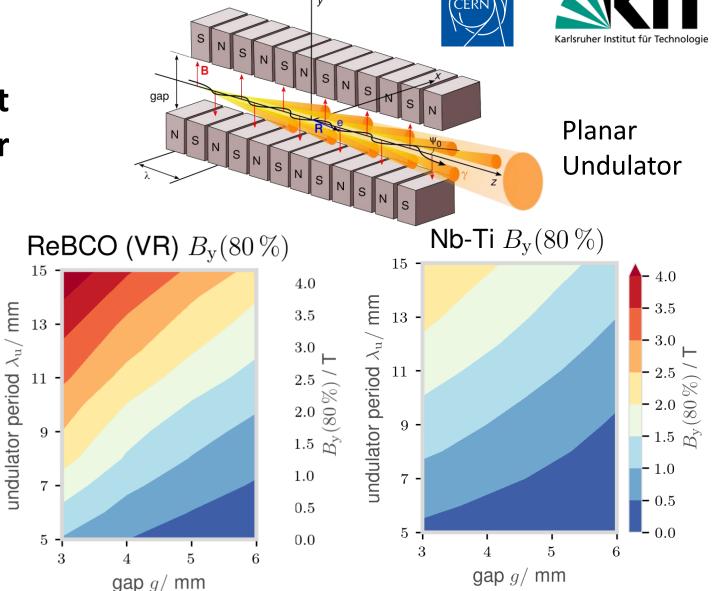



REBCO CORC® CCT, LBNL

BSCCO 2212 CCT, LBNL and ASC Rutherford cable

REBCO Conductor On Molded
Barrel (COMB)
Fermilab, STAR Wires

HTS Undulators


HTS undulators

High field, short-period, compact undulators operated at higher temperatures

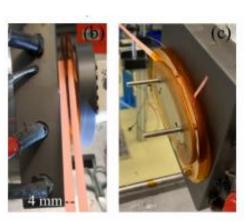
Vertical (VR) and Helical (HL) prototype coils manufactured and tested

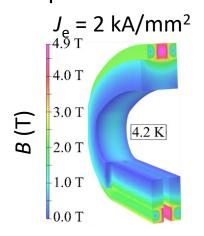
Challenges

- Bending radius < 5 mm
- Quench protection
- Field quality (during ramping)

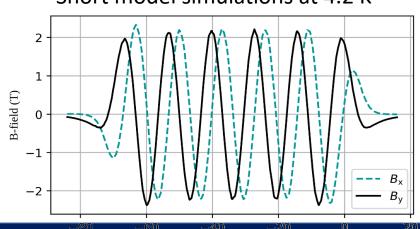
S. Richter, PhD Dissertation at KIT in May 2023

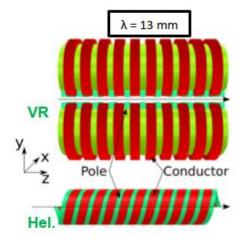
HTS Undulators


No-insulated coils for quench protection


Cu-stabilized for transverse current bypassing

4 mm wide REBCO tape





Helical

Short model simulations at 4.2 K

One-period coil

 $\lambda_{\rm u}$ = 13 mm Tested at **4.2 K**: B ≈ 1.5 T, Je=2.3 kA/mm² B ≈ 2 T, Je=3.6 kA/mm²

Very compact design!

12 turns, 2-tape stack Goal:

λu = 13 mm Gap 5 mm, 2 T @ 4.2 K 120 turns

The HFM programme

HFM R&D consortium (present main contributors)

OBJECTIVE 3:

Explore the capabilities and limitations of state-of-the-art HTS and magnet technology based on these superconductors. Demonstrate the suitability of HTS

A. Siemko

HFM Program – KIT/CERN collaboration agreement (1/2)

HTS Coated Conductor synthesis Laboratory

- Scope: laboratory for testing at a small scale new scientific ideas, both on REBCO tape and REBCO cables
- Phase 1: installation of machine, setting-up the laboratory
 Commissioning by end 2023
- Phase 2 / Phase 3: production of coated conductor lengths of up to 100 m

HFM Program – KIT/CERN collaboration agreement (2/2)

To be transferred to KIT....

Tape processing equipment with different substrate handling concepts (batch and reel-toreel R2R processes) including stabilization

ABAD vacuum coater

PLD600 substrate drum

B. Holzapfel HiTAT Workshop

R2R electroplating

PLD

HFM Program - CERN/SPIN collaboration agreement

Iron Based Superconductors Laboratory

- R&D on Iron Based 122 PIT wires
- Critical current density (J_c) through reliable, simple and scalable techniques that could enable industrialization
- Target $Jc \ge 10^3 \text{ A/mm}^2$ at 16 T
- From mono to multi-filamentary wire
- Target unit length ~ 100 m

HFM HTS CERN programme

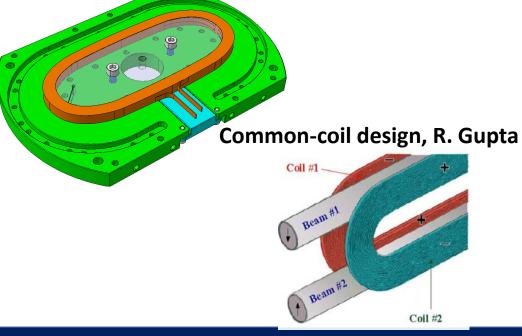
☐ Objective: demonstrator of 5 T in a background field of 15 T

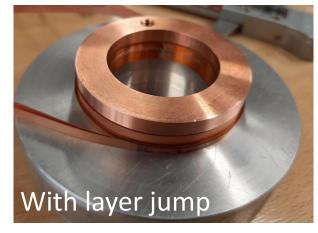
Development of electrically insulated cables. Target: 10 kA @ 20 T, 5 kV

Model racetrack coils

☐ Common coil design

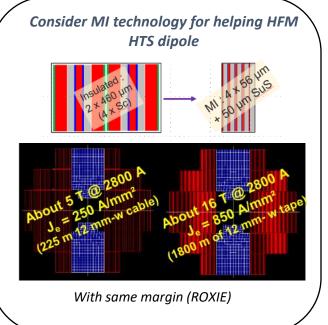
Winding machine - up to 14 tapes

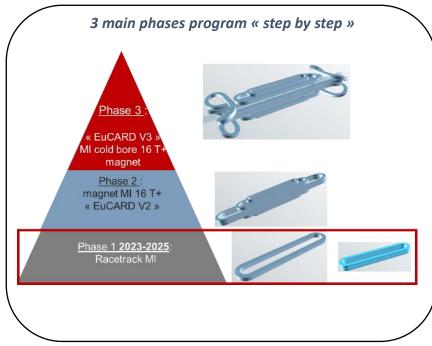




Electrically insulated stacks of REBCO tapes

Ø int 37 mm

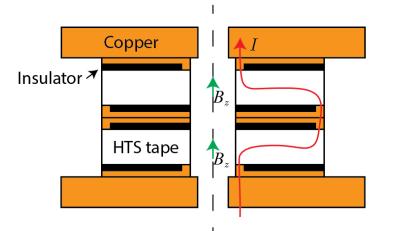

Ø ext 57 mm



HFM HTS CEA Programme –CERN/CEA Collaboration Agreement

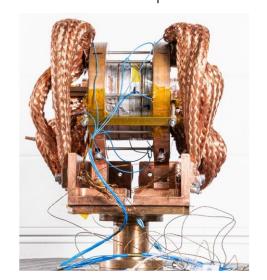
Phase 1: HFM KE 5647/TE CERN/CEA Agreement

- Use «Metal-insulated (MI)» winding:
 - No need for insulation nor Cu stabilizer
 - Considerable increase of the current density in the coil to reach very high fields
- **▶** Concepts:
 - 20 T @ 4.2K
 - Or 16 T @ 20 K → opportunity to lower exploitation costs or simplify cryogenics
- Use reduced model coils:
 - Lower risks and costs
 - Lower development times
 - Possibility to change the central coil to add aperture

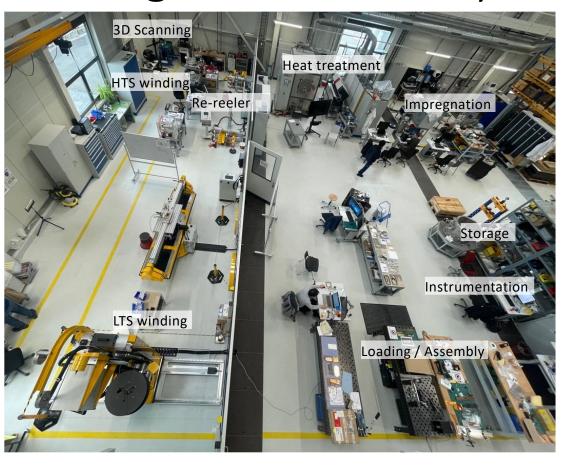

Th. Lecrevisse

HFM programme at PSI

Swiss Accelerator


NI coil technology license agreement with Tokamak Energy

Tokamak Energy

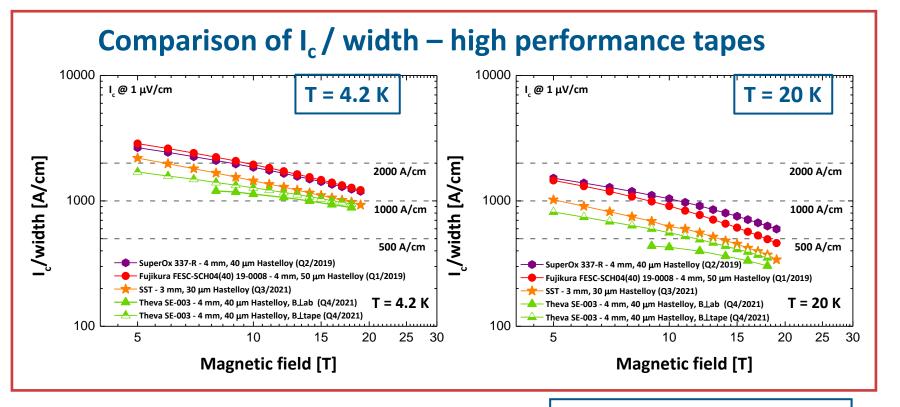


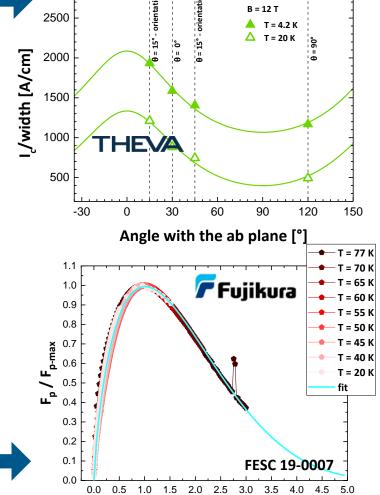
Greg Brittles

REBCO, 2 tapes
18.2 T in the center,
20.3 T on the conductor
2 kA and 12 K
Aperture: 50 mm

MagDev Laboratory

B. Auchmann, HiTAT Workshop at CERN, March 2023

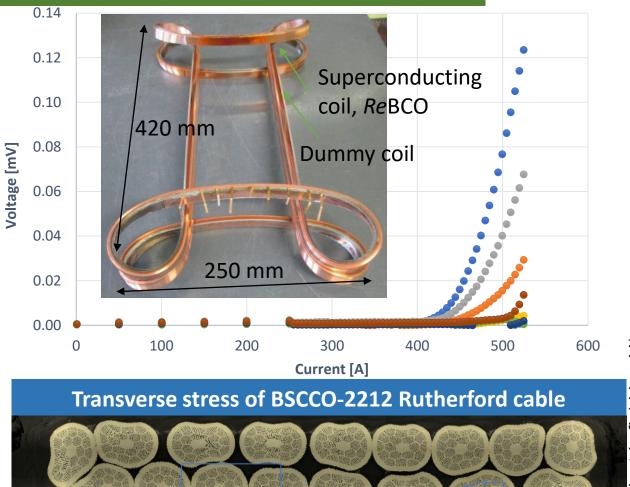

HFM HTS UNIGE Programme –UNIGE



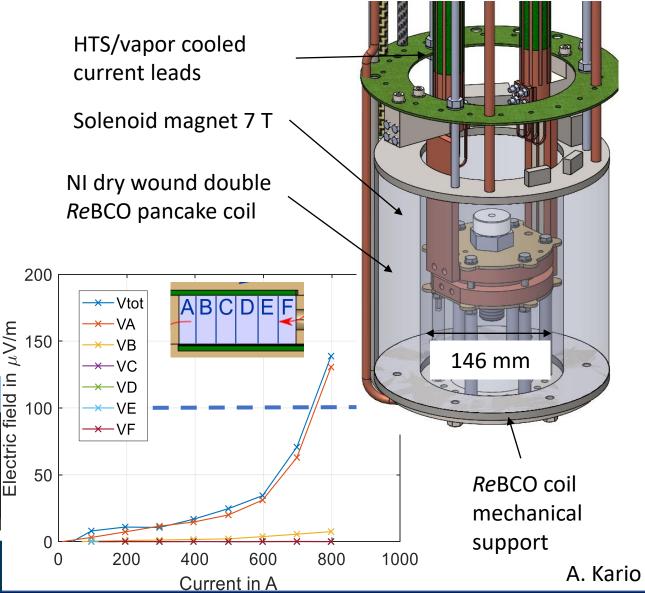
I @ 1 μV/cm

Transport critical current tests up to 2 kA
Various orientations in magnetic fields up to 19 T/21 T and variable temperatures

Angular dependence of I_c

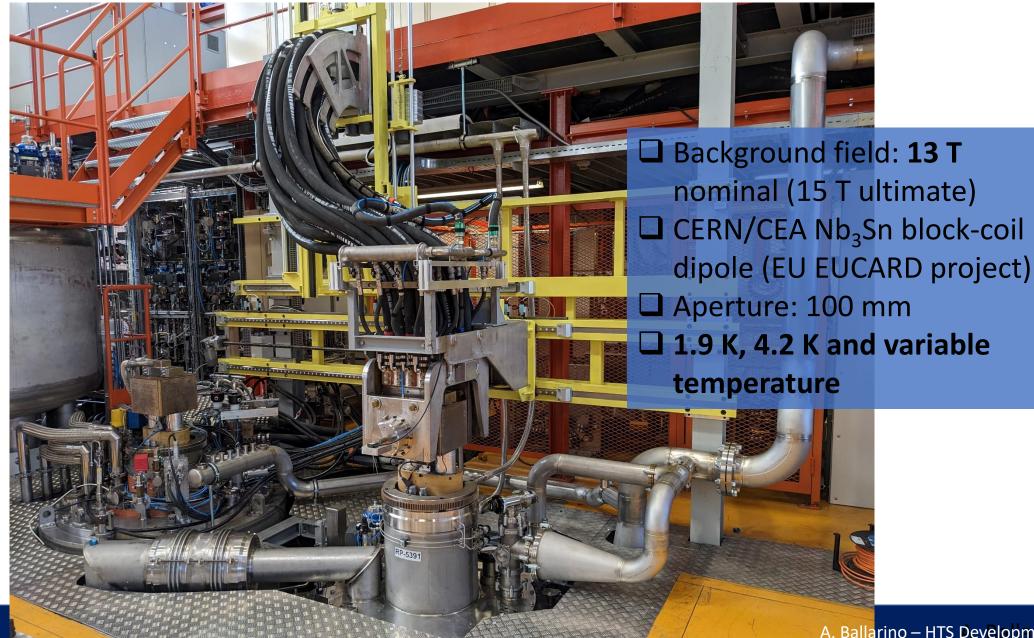


 B/B_{neak}

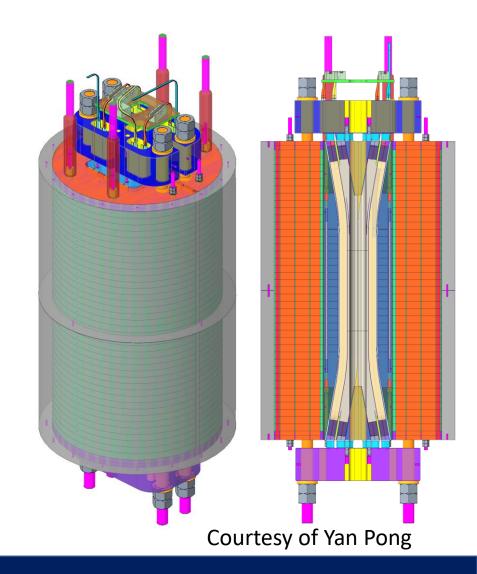

Pinning force scaling

Twente University

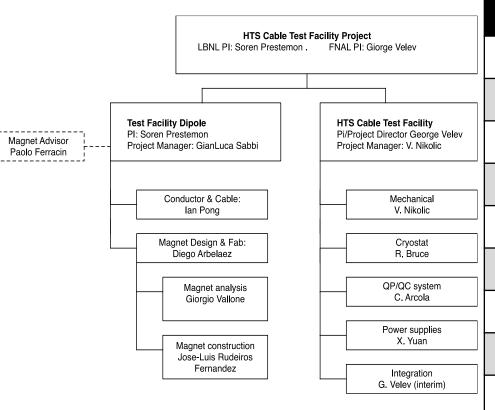
Cloverleaf measurement in 77 K and self-field


Measurement of ReBCO pancake in background field

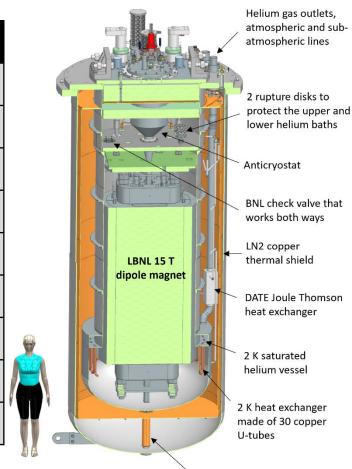
Outline


- Introduction
 - Potentials of HTS technology
- HTS Materials and cables
 - REBCO, BSCCO 2212, Iron Based Superconductors, MgB₂
- HTS magnet developments
- HTS in the High Field Magnet Program
- Test facilities for HTS technology
- HTS for fusion
- Conclusions

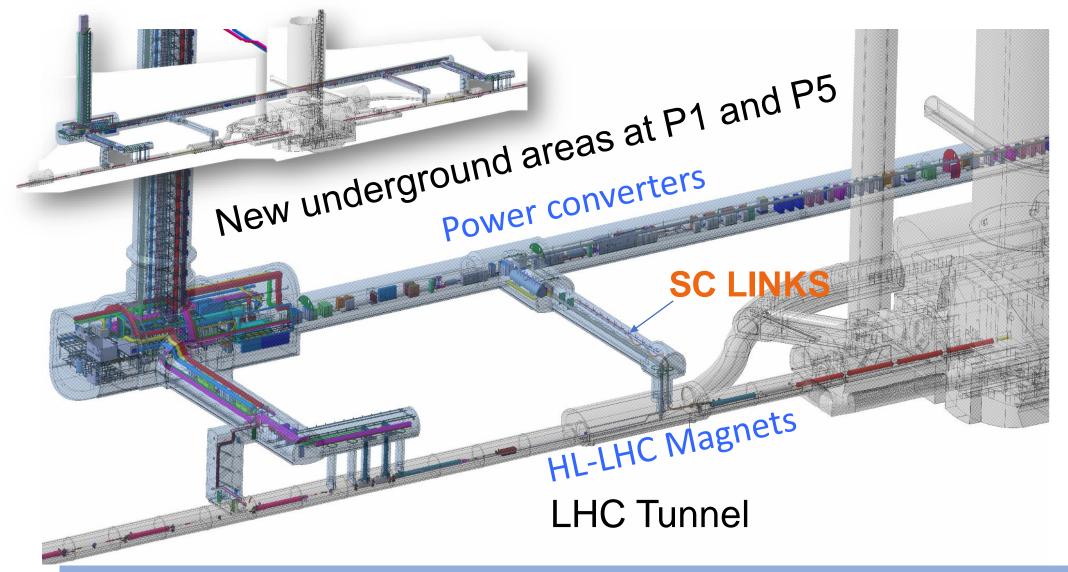
Fresca 2 at CERN – The superconductors laboratory



HTS Cable Test Facility – a DOE sponsored FES + HEP Effort, FNAL + LBNL Collaboration


- Leveraging work by the HEPDipo collaboration and experience from the FRESCA-II team
- Nb₃Sn Magnet with an operation target of
 15 T at 1.9 K (design target 16 T at 1.9 K)
- Bladder-and-key + Al shell, block coil design
- Straight section (<1% variation) >750 mm
- 150 x 102 mm rectangular aperture with superimposed 114 mm diameter
- Conductor: Ti-doped Nb₃Sn RRP[®] 162/169 at 1.1 mm diameter, 44-strand Rutherford cable
- Started in 2019, expected operation in 2026

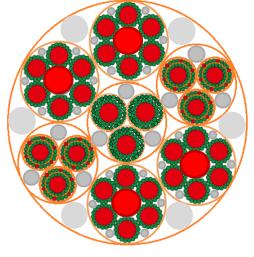
Dipole Magnet Design in USA, Fabrication & Test – LBNL Facility Host & Operator – FNAL


Parameter	Value
Background Dipole Field	15 T
Minimum Operational Temperature	1.9 K
Maximum Magnet Diameter	1.3 m
Maximum Magnet Length	3.0 m
Maximum Stored Energy	20 MJ
Maximum Weight	20 t
Test Sample Temperature	4.5-50.0 K
Max. Test Sample Current (direct)	16 kA
Max. Test Sample Current (transformer)	100 kA

G. Velev et al., "Status of the High Field Cable Test Facility at Fermilab", ASC 2022

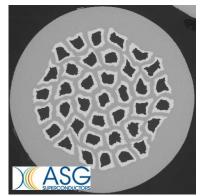
Shipping support

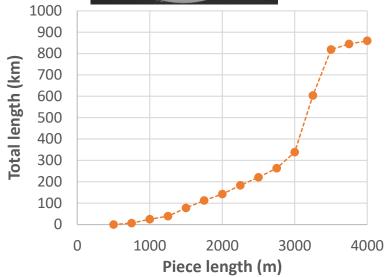
HTS for accelerators – Electrical transmission for HL-LHC



Ten Systems for HL-LHC: 5 for the Triplets and 5 for the Matching Sections

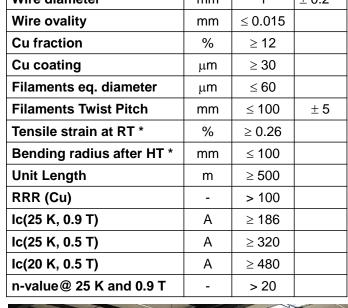
HTS for accelerators – Electrical transmission for HL-LHC


- Procured in total 1430 km of MgB₂ wire (Φ = 1 mm).
 Delivered by ASG in unit lengths of up to ~ 4 km
- Industrialized cabling: 70 % of the production completed



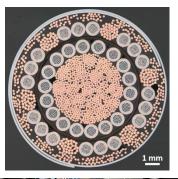
120 kA @ 25 K and 1 T Φ~90 mm

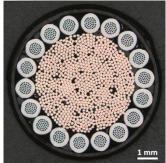
HTS for accelerators – Electrical transmission for HL-LHC


 MgB_2 wire, $\Phi = 1$ mm

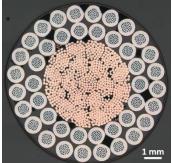
Distribution of piece lengths (by length)

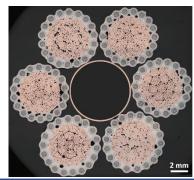
Wire diameter ± 0.2 mm Wire ovality ≤ 0.015 mm **Cu fraction** ≥ 12 ≥ 30 Cu coating μm Filaments eq. diameter ≤ 60 μm ≤ 100 **Filaments Twist Pitch** mm Tensile strain at RT * ≥ 0.26 ≤ 100 Bending radius after HT * mm **Unit Length** ≥ 500 m RRR (Cu) > 100




Cabling made with reacted wire

Series cabling at TRATOS/ICAS


3 kA coaxial @ 25 K



7 kA @ 25 K

18 kA @ 25 K

Outline

- Introduction
 - Potentials of HTS technology
- HTS Materials and cables
 - REBCO, BSCCO 2212, Iron Based Superconductors, MgB₂
- HTS magnet developments
- HTS in the High Field Magnet Program
- Test facilities for HTS technology
- HTS for fusion
- Conclusions

HTS for fusion (1/2)**Tókamak Energy**

Development Roadmap

2015

ST25 Achievements

ST Concept

Plasma heating and current . drive development

ST25-HTS **ST25-HTS Achievements**

First HTS TF coils

H plasma held for 29 hours

2016 - on-going

ST40

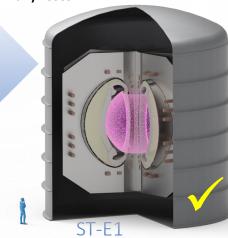
Highest field ST worldwide at 2.1 T on-axis.

100M °C D-H plasma temperature

On-going development programme

o TF and PF **REBCO Coils** Stacks of tapes

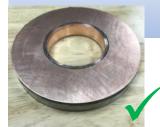
Build completion 2026


ST80-HTS

ST80-HTS Objectives

- Demonstrate long pulse operation
- Control and protection of mid-scale HTS

Up to 20 T in the TF coils ($\sim 30 \text{ kA}$):


Early 2030s

ST-E1 Objectives

- Up to 200MW of net electrical power
- Prototype energy generating ST
- Full scale HTS magnets
- Demonstrate plasma control and fault condition recovery at scale

2018

QA NI coils

QA NI Coils Achievements

- Tape QA
- Defect tolerant coils
- Robust jointing & ETI plates
- Modular magnet build

2019

Demo3

Demo3 Achievements

First, conduction-cooled all REBCO magnet to exceed 22T (field on tape) at 20K

2020

ST40 Achievements

Demo2

Demo2 Achievements

- PI development
- Validation of bespoke transient modelling tools (Racoon)
- Quench resistant
- Magnet dynamics very closely correlated to model . predictions

2020 - 2022

AMR WP4

AMR Achievements

- Demonstrated cryogenic PSU technology
- Developed EFC coil design code
- Coil scale-up study
- Coil Cryogenic Compression System designed and built
 - Quench modelling code developed and validated

2019 - 2023

Demo4

Demo4 Objectives

- Demonstrate PI for TF coils
- Operation of balanced set of TF coils
- Explore transient control and losses in PF coils
- Explore PF field shine on TF
- Quench protection and energy

2023

Gamma

Gamma Objectives

- Irradiate small test coils wound from selected REBCO tapes
- Co60 irradiation up to 10MGy
- Coils are cooled to 20K and energised to Ic
- Ic degradation measured in real

2022 - 2026

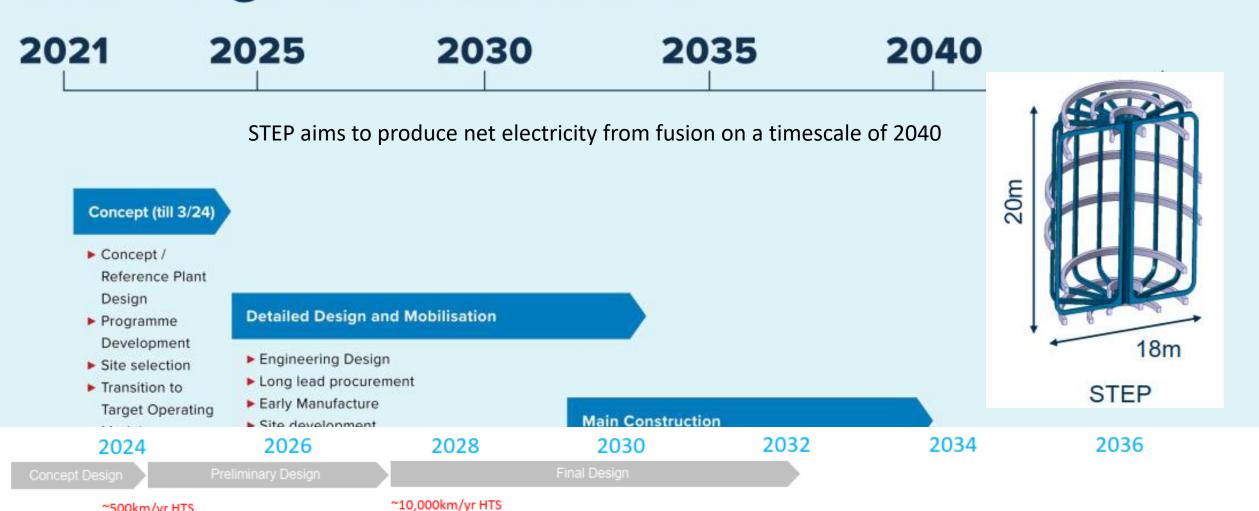
BB01

BB01 Objectives

- Developing prototype coils for
- Developing coil manufacturing processes and tooling
- Developing magnet assembly processes and tooling

HTS for fusion (2/2)

~500km/yr HTS


Procurement Commences

HTS Supply Scale-Up

STEP high-level schedule

Procurement Commences

UK Atomic Energy Authority

Conclusions

- HTS is the enabling technology for high field magnets. It also offers solutions for magnets operated at lower fields and higher temperature
- A vigorous and focused R&D is needed in order to make of HTS a robust technology for future accelerator magnets. A major re-thinking of the existing technology and mode of operation is required
- Cost of today industrially available HTS conductor is a challenge. A large application is required to boost production and reduce the cost

Thank you for your attention!

HiTAT Workshop at CERN

https://indico.cern.ch/event/1220254/

1st High Temperature superconductors for Accelerator Technology (HiTAT) workshop

Mar 9-10, 2023 CERN

Europe/Zurich timezone

Enter your search term

Q.

Timetable

Registration

Accommodation

CERN map

How to reach CERN

Social event - Dinner

CERN Shuttle

Internet Access at CERN

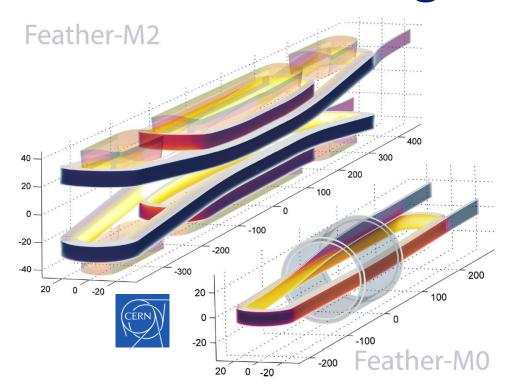
How to upload a presentation

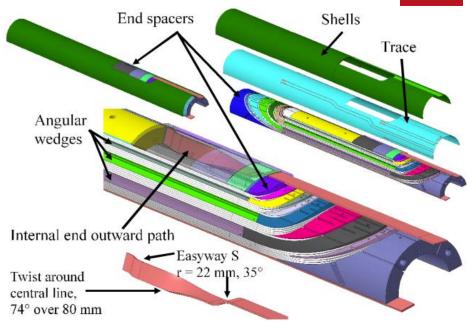
Contact

We are pleased to announce the 1st High Temperature superconductor Accelerator Technology (HITAT) workshop. HiTAT, on this occasion organised in the framework of the H2020-I.FAST project – WP8: Innovative Magnets, follows the WAMHTS-5 event, organised in the framework of the H2020-Aries project, WAMHTS-5 (Budapest, 11-April 13, 2019)).

HITAT will be held on 9-10 March 2023 at CERN in Building 30/7-018

The focus of the program is on REBCO coated conductor for use in Hadron Therapy accelerator magnets, including post HL-LHC high energy colliders and beam lines.


A preliminary draft programme, along with practical information regarding venue and accommodation (hotels and booking form), is available at the workshop website. The main topics that will be discussed are: conductor progress and availability (with the presence of producers); characterisation of tapes and cables; magnet technology and R&D in the on-going main R&D programs. A more refined program will be communicated by the beginning of 2023 with the second announcement of the workshop.


Participation in the workshop is by invitation only and is free of charge. Participants should cover the cost of their travel and accommodation.

We look forward to meeting you at CERN.

EuCARD2 HTS magnets

Feather M2			Probably stress in the Roebel cable, or caused by the induction copper rings
Cos-theta	3 kA - ~1.5 T (4.5-6 K)	Yes, but stable and distributed	Known: overheating during manufacturing