

UPDATE OF THE POWER DEMAND ENERGY CONSUMPTION, GRID CONNECTION FOR FCC-ee

Jean-Paul Burnet (CERN)

Technical and Infrastructure Working Group Electricity & Energy Management Work Package FCC Week 2023 London

Abstract

The FCC-ee will be the largest accelerator ever built and it requires to be connected to the European grid for electricity supply. The power demand is a key parameter to define the grid connection. The identification of the main loads was performed and presented in 2022 as well as the energy consumption depending on the machine configurations. The studies for grid connection were launched based on these numbers and the results will be presented. Last changes and optimisation of the machine parameters will be presented with their impact on the grid connection.

Content

- Update of the power demand / main loads for FCC-ee
- Estimation of energy consumption per machine configurations
- Distribution of the power demand by points and by beam modes
- Grid connections

Radio-frequency systems

Energy loss from synchrotron radiation limited to 50MW per beam

Power demand for RF Storage ring Z, W, H

 $P_{RF} = 100MW$

 $P_{EL} = 100 / \eta klystron / \eta modulator / \eta distribution$

 $P_{FI} = 100 / 0.8 / 0.9 / 0.95 = 146MW$

Booster

 $P_{RF} = 15\% P_{RF} \text{ storage (1 beam)} = 7.5MW$

 $P_{EL} = 7.5 / \eta klystron / \eta modulator / \eta distribution$

 $P_{ELav} = P_{EL}$ * booster duty cycle = 1.7MW

Newcomers: Solid-State amplifiers for 800MHz cavities (low power <100kW per cavity).

Booster, from H to Ttbar at 100%.

Collider, TTbar only, at 20%. 80% still with klystron.

Solid-state amplifiers have lower efficiency (60%) but the impact is limited (only 20% of the load).

Electricity & Energy Management

Storage ring	Z, W, H
Beam Energy (GeV)	45.6
PRF (MW)	100
Klystron efficiency	8.0
PRF EL (MW)	146

Booster	Z, W
Beam Energy (GeV)	45.6
PRFb (MW)	7.5
Klystron efficiency	0.8
Booster duty cycle	0.15
PRFb EL (MW)	2

15-Feb-23		Z	V	V	ı	1		ttbar2	
	collider	booster	collider	booster	collider	booster	collider	collider	booster
RF source type	400 MHz - 1 MW klystron	800 MHz - 400 kW klystron	400 MHz - 1 MW klystron	800 MHz - 400 kW klystron	400 MHz - 1 MW klystron	800 MHz - 50 kW solid state amplifier	400 MHz - 50 kW solid state amplifier	800 MHz - 400 kW klyst ron	800 MHz - 50 kW solid state amplifier
Frequency [MHz]	400	800	400	800	400	800	400	800	800
Pcav [kW]	880	176	385	88	379	44	45	181	8
Prf conditioning [kW]	220	44	96	22	95	11	11	45	2
# cavities / RF sources	1	2	2	4	2	1	1	2	4
# RF sources	112	14	128	14	<u>130</u>	112	<u>260</u>	<u>244</u>	<u>150</u>

Cryogenic systems

Cryogenic systems needed for RF cavities

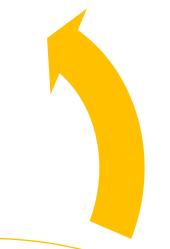
Storage ring
Cryo power demand varies Z, W, H, ttbar

Proposal for R&D on high Q0 800MHz cavities.

New baseline Q0=3.10¹⁰, 20MV/m, could reduce the cryogenics power by 27%.

Proposal for R&D on centrifugal compressors, from 230We/W to 170We/W could reduce the cryogenic power demand again by 25% (26MW for TTbar).

2022	Z	W	Н	TT
Beam Energy (GeV)	45.6	80	120	182.5
Pcryo (MW)	1,3	12,6	15,8	47,5


> Three scenarios are considered:

- Conservative: 230 Wel/W or 28.8 % of Carnot efficiency (LHC-like CDR values) the baseline!
- Intermediate: 210 Wel/W or 31.5 % of Carnot efficiency (With an optimized process) appears not achievable
- Optimistic: 170 Wel/W or 39 % of Carnot efficiency (With centrifugal compressors) strong R&D effort needed

PH [MW]	PL [MW]	Total [MW]
1.2 / 1.1 / 0.9	0.35 / 0.32 / 0.26	1.6 / 1.4 / 1.2
11.5 / 10.5 / 8.5	0.8 / 0.7 / 0.6	12.3 / 11.2 / 9.1
11.5 / 10.5 / 8.5	1.5 / 1.4 / 1.1	13 / 11.9 / 9.6
27.6 / 25.2 / 20.4	7.4 / 6.7 / 5.4	35 / 32 / 26
	1.2 / 1.1 / 0.9 11.5 / 10.5 / 8.5 11.5 / 10.5 / 8.5	1.2 / 1.1 / 0.9 0.35 / 0.32 / 0.26 11.5 / 10.5 / 8.5 0.8 / 0.7 / 0.6 11.5 / 10.5 / 8.5 1.5 / 1.4 / 1.1

Cryogenics only significative at Ttbar Last 4 years of operation

$$Q0 = 3.10^{10}$$
-27% for TTbar

2023	Z	W	Н	TT
Beam Energy (GeV)	45.6	80	120	182.5
Pcryo (MW)	1,5	12.2	12.9	35

Storage Ring Magnet systems

Energy loss in magnets

Magnet losses storage ring

P_{magnets} = 56MW from CDR

 $P_{cables} = 20MW$ (rough estimation)

 $P_{ELmagnets} = 76 / \eta conversion / \eta distribution$

 $P_{ELmagnets} = 76 / 0.9 / 0.95 = 89MW$

A lot of magnet families still unknown, inner triplet, single quadrupoles, octupoles, correctors...

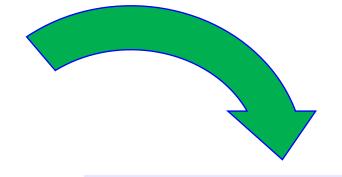
They should have a limited impact on the power demand <10%.

Change since 2022:

Power dissipated in DC cables is now calculated at 24MW. Optimization on-going.

Storage Ring	Z	W	Н	TT
Beam Energy (GeV)	45.6	80	120	182.5
Magnet current	25%	44%	66%	100%
Power ratio	6%	19%	43%	100%
Dipoles (MW)	8.0	2.6	5.8	13.3
Quadrupoles (MW)	1.4	4.3	9.8	22.6
Sextupoles (MW)	1.3	3.9	8.9	20.5
Power cables (MW)	1.2	3.8	8.6	20
Total magnet losses	4.8	14.7	33.0	76.4
Power demand (MW)	5.6	17.2	38.6	89
·				

Magnet losses only significative at TTbar Last 4 years of operation


Cooling and Ventilation systems

Power demand for cooling and ventilation systems

Power demand is constant for RF loads It varies for cryogenics and magnets depending on the machine configuration Z, W, H, ttbar.

Electrical consumption (MW)	Cooling	Chillers	Ventilation	Total
POINT				
A	1.7	1.1	1.3	4.1
В	0.3	1	1.3	2.6
D	1.7	1.1	1.3	4.1
F	0.3	1	1.3	2.6
G	1.7	1.1	1.3	4.1
Н	4	2.3	2.2	8.5
J	1.7	1.1	1.3	4.1
L	0.5	1.1	1.5	3.1
Total	11.9	9.8	11.5	33.2

2022		Z	W	Н	TT
Beam energy (GeV)		45.6	80	120	182.5
Pcv (MW)	all	33	34	36	40.2

-17% for TTbar

2023		Z	W	Н	TT
Beam energy (GeV)		45.6	80	120	182.5
Pcv (MW)	all	25	26	29	33.2

Estimation uncertainties

Power demand uncertainties

The main loads RF and Magnets didn't change, but cryogenics and cooling&ventilation made strong improvement. Update with 4 experiments (2 big, 2 small experiments), estimated at 2 * 3MW + 2 * 2MW = 10MW, was previously 8MW for 2 experiments.

Small data-centers for ee machine, 4 * 1MW, instead of 2*2MW

General services reduced to 26MW, instead of 36.

Thes change gives between -10 to 30MW compared to 2022 numbers, the global uncertainty remains < 10%.

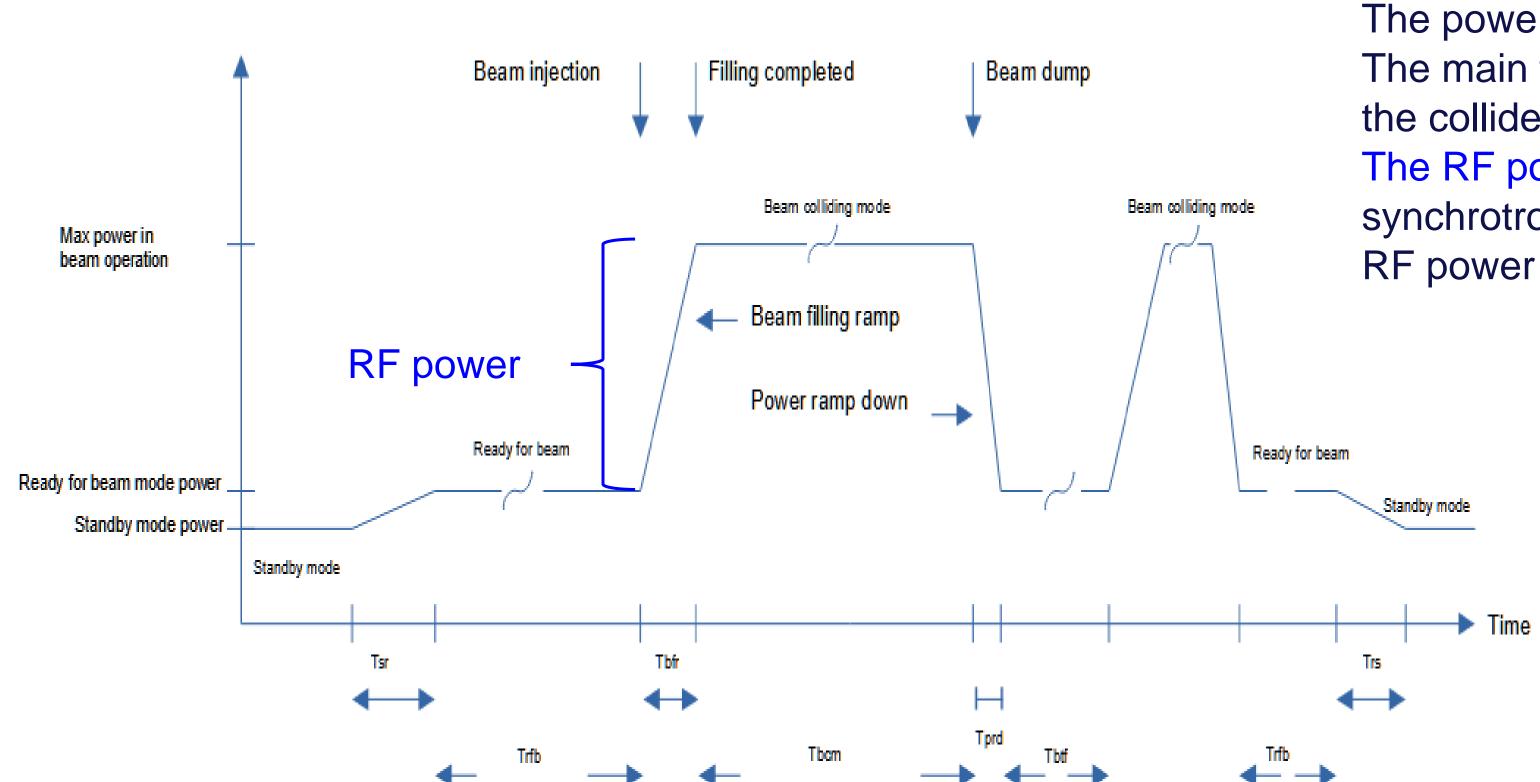
2023		Z	W	Н	TT
Beam energy (GeV)		45.6	80	120	182.5
Experiments (MW)	Pt A, D, G, J	+2	+2	+2	+2
Data centers (MW)	Pt A, D, G, J	0	0	0	0
General services (MW)		-10	-10	-10	-10
Cooling & ventilation		-7	-7	-7	-7
Cryogenics		+0.5	+5	-4	-15
Compared to 2022 numbers		-15	-10	-20	-30
Power during beam operation (MW)	2023	222	247	273	357

-10% compared to 2022

Total power demand by machine configuration

Update of FCC-ee power demand

2023		Z	W	Н	TT
Beam energy (GeV)		45.6	80	120	182.5
Magnet current		25%	44%	66%	100%
Power ratio		6%	19%	43%	100%
PRF EL (MW)	Storage	146	146	146	146
PRFb EL (MW)	Booster	2	2	2	2
Pcryo (MW)	Storage	1.2	11.5	11.5	27.6
Pcryo (MW)	Booster	0.35	0.80	1.50	7.40
Pcv (MW)	all	25	26	28	33
PEL magnets (MW)	Stroage	6	17	39	89
PEL magnets (MW)	Booster	1	3	5	11
Experiments (MW)	Pt A & G	10	10	10	10
Data centers (MW)	Pt A & G	4	4	4	4
General services (MW)		26	26	26	26
Power during beam operation (MW)		222	247	273	357
Average power / year (MW)		122	138	152	202


Power cycle during beam operation

Beam operation

Power demand

The collider will operate 24h 7 days a week during the beam operation (185 days).

The beam operation can be stopped for a technical stop or by fault.

The power demand varies during the beam operation.

The main factors are the beam presence and beam current in the collider.

The RF power compensates for the losses due to the synchrotron radiations. When the machine is fully charged, the RF power is maximum.

- Standby mode: All infrastructure systems ON, Booster, and Collider OFF.
- Ready for Beam: All infrastructure systems ON, Booster ON, and magnet Collider ON.
- Beam Colliding mode: All infrastructure systems ON, Booster ON, Collider ON (Magnet and RF systems).

Power demand during the year, consumption

Power demand based on machine schedule

It is possible to calculate the power demand for each period of the schedule. It depends on which systems are powered during each period.

Power during, in MW	Z	W	Н	TT
shutdown	30	33	34	41
Technical stop	67	78	81	108
Downtime	67	78	81	108
Commissioning	144	163	177	233
Machine Development	96	121	147	231
Beam operation	222	247	273	357

- Shutdown: reduced power of all infrastructure systems, cryogenics at 20%, cooling at 50%, accelerators OFF.
- Commissioning: All infrastructure systems, and cryogenics at nominal. Start of accelerator systems, Booster ON, Collider at 50% load.
- Physics operation: all systems are ON. The electricity grid is loaded at 100%.
- Downtime: All infrastructure systems, and cryogenics at nominal. Booster and Collider systems are OFF.
- Technical stops: All infrastructure systems, and cryogenics at nominal. Booster and Collider systems are OFF.
- Machine development: all systems are ON. Reduced RF power to 15%, no physics.

Power and consumption for Z mode operation

Z machine schedule

The machine's schedule defines different periods during the year.

The table below presents the power demand during the year for the Z mode.

Z operation mode			Beam Operation	Commissioning	Machine Development	Technical Stop	Winter Shutdown			
Beam operation	139	3336	222					740530	MWh	69%
Downtime with machine acces	16	384	67					25542	MWh	2%
Downtime between cycle	16	384	74					28256	MWh	3%
Downtime long stop	14	336	67					22350	MWh	2%
Hardware + Beam commissioning	30	720		144				103859	MWh	10%
MD	20	480			96			46005	MWh	4%
technical stop	10	240				67		15964	MWh	1%
Shutdown	120	2880					30	86410	MWh	8%
	365	8760						1.07	TWh	

92% of the energy is consumed during Beam period.

Power and consumption for TT mode operation

TT machine schedule

The machine's schedule defines different periods during the year.

The table below presents the power demand during the year for the TT machine.

TT operation mode			Beam Operation	Commissioning	Machine Development	Technical Stop	Winter Shutdown			
Beam operation	139	3336	357					1192437	MWh	67%
Downtime with machine acces	16	384	108					41623	MWh	2%
Downtime between cycle	16	384	209					80274	MWh	5%
Downtime long stop	14	336	108					36420	MWh	2%
Hardware + Beam commissioning	30	720		233				167702	MWh	9%
MD	20	480			231			111028	MWh	6%
technical stop	10	240				108		26015	MWh	1%
Shutdown	120	2880					41	117443	MWh	7%
	365	8760						1.77	TWh	

93% of the energy is consumed during Beam period.

FCC-ee new location for SRF

SRF layout change in October 22

At FCC week 2022, Booster SRF systems were in point L, as 400MHz collider SRF . 800MHz collider SRF systems for TTbar were split between L and H.

After the review of SRF systems layout (3-4 October 22), the SRF location changed:

All collider SRF systems are placed in point L

All Booster SRF systems are placed in point H

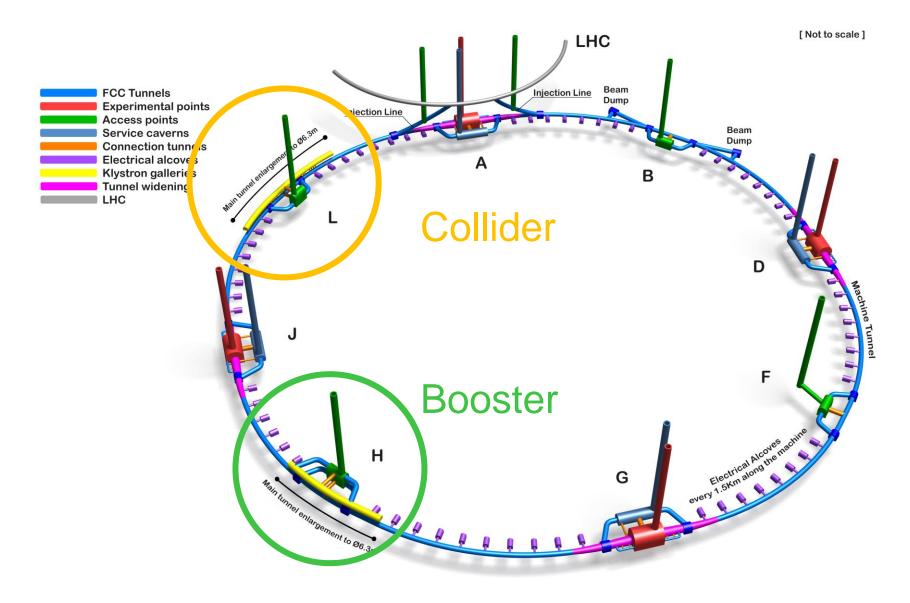
Link to the review https://indico.cern.ch/event/1184683/

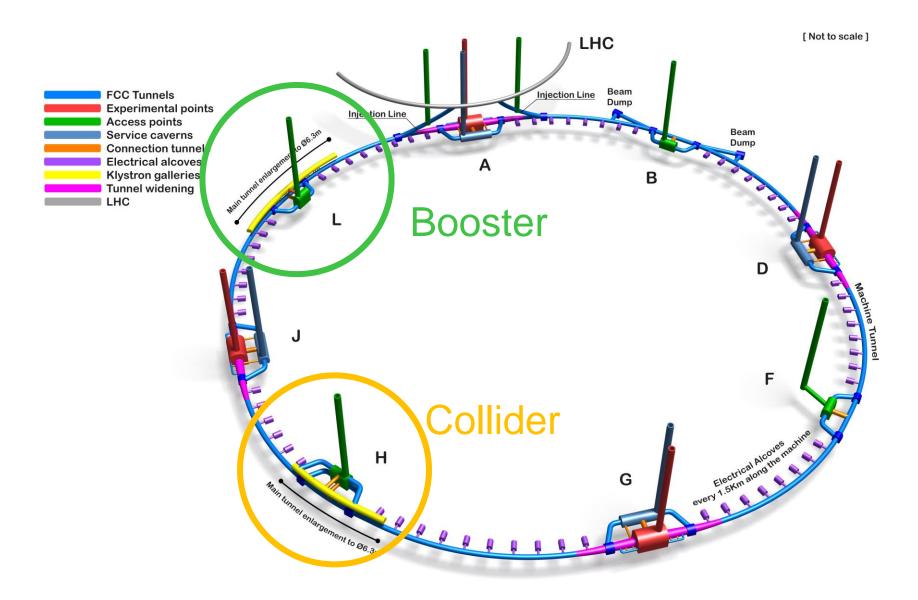
Conclusions presented here https://indico.cern.ch/event/1203850/#6-summary-and-follow-ups-from

SRF layout change in March 23

With the surface layout is challenging in point L. The proposal was to exchange RF systems between L and H.

All collider SRF systems are placed in point H

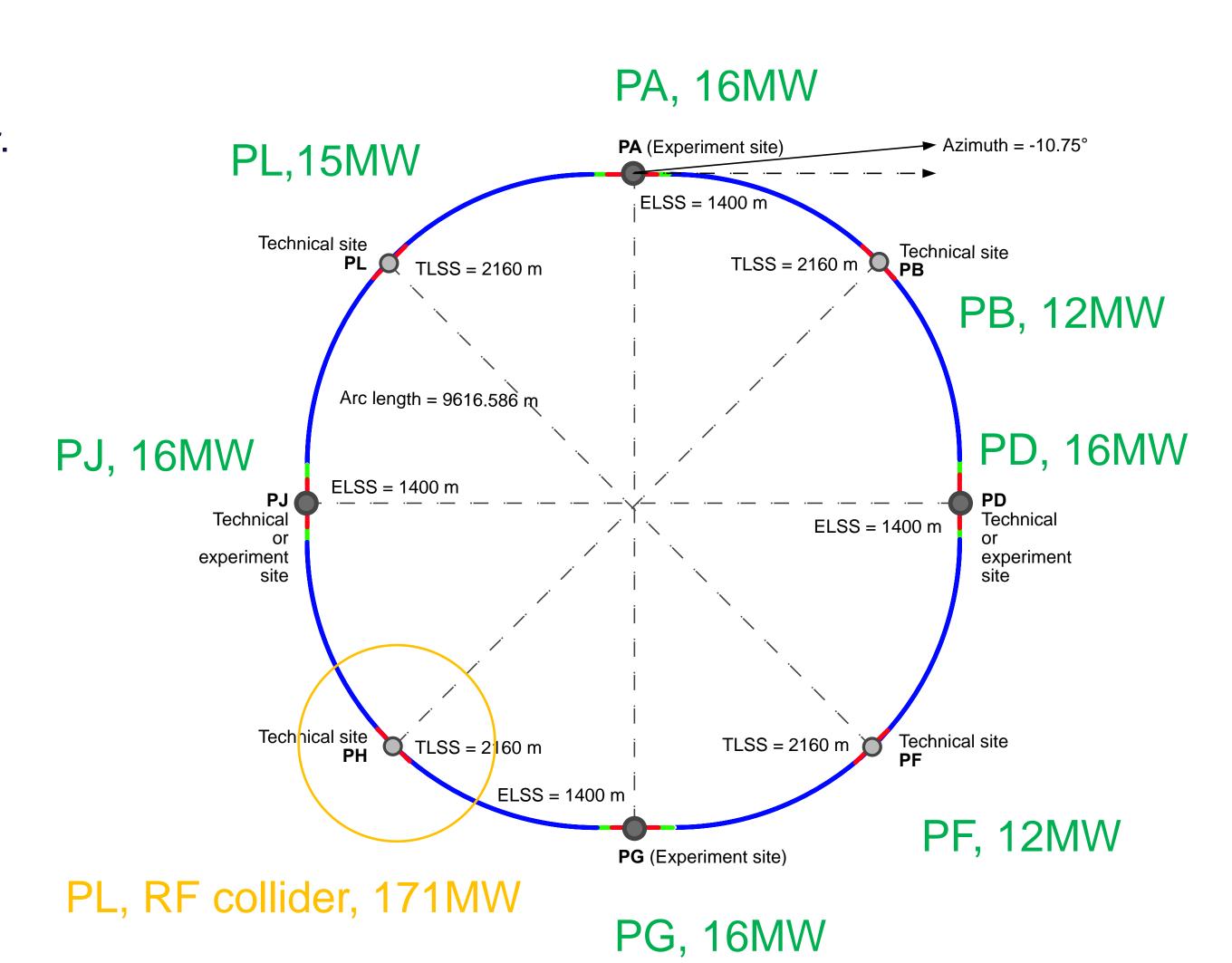

All Booster SRF systems are placed in point L


Proposal presented here:

https://indico.cern.ch/event/1249818/

Approval here:

https://indico.cern.ch/event/1235646/

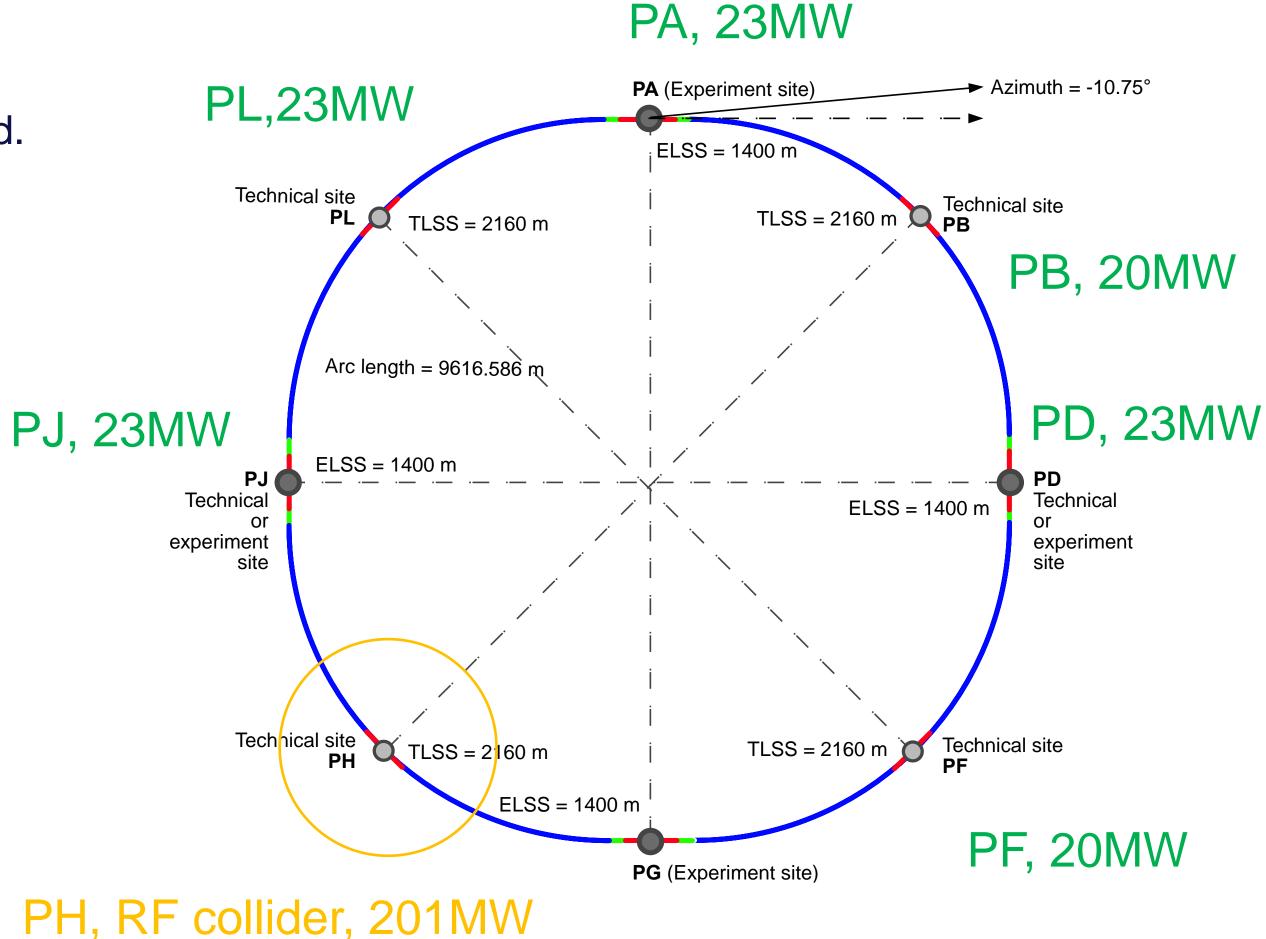

Power demand per points, configuration Z, W, H

Infrastructure needed for FCC-ee Z, W,H

Very high power demand on point L, 175MW for RF collider.

4 experiments, point A,D, G and J.

		Max power (MW)
Point A	Experiment	16
Point B		12
Point D	Experiment	16
Point F		12
Point G	Experiment	16
Point H	RF collider	171
Point J	Experiment	16
Point L	RF booster	15



Power demand per points, configuration TTbar

Infrastructure needed for FCC-ee TTbar

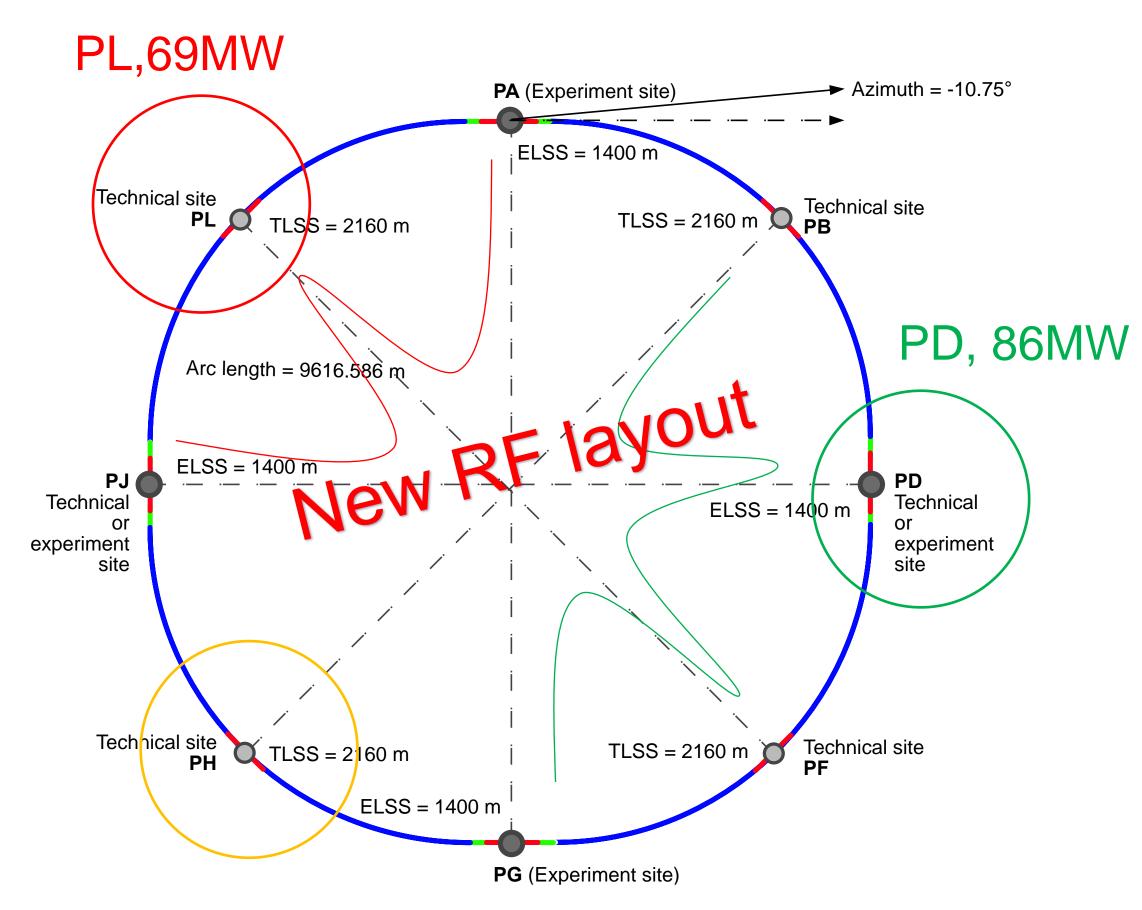
Only one point with high power demands. Increased by cryogenics loads and associated cooling demand.

		Max power (MW)
Point A	Experiment	23
Point B		20
Point D	Experiment	23
Point F		20
Point G	Experiment	23
Point H	RF collider	201
Point J	Experiment	23
Point L	RF booster	23

PG, 23MW

Electrical sub-stations, FCC-ee

Max power load by sub-stations, FCC-ee


The loads could be charged on the three sub-stations as follows:

Point H with a dedicated sub-station for RF collider

Point L, with a sub-station covering PJ – PL – PA

Point D, with a sub-station covering PB – PD – PF – PG

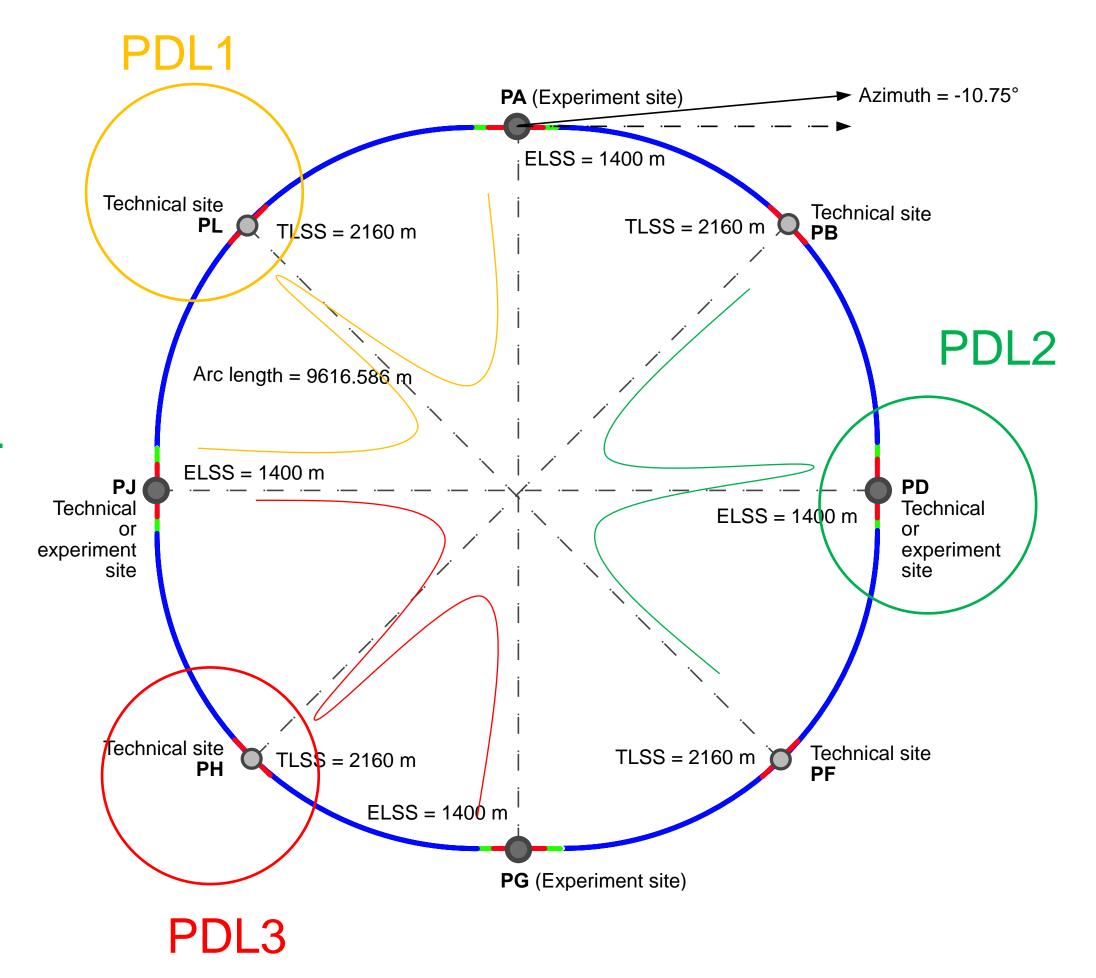
		Max power (MW)
PDL1	PL	69
PDL2	PD	90
PDL3	PH	215

PH, 201MW

Request made for delivery points

Infrastructure needed to cover all FCC configurations

The goal is to built an electrical infrastructure which will cover all the configuration of the FCC machine without need to built new substations.

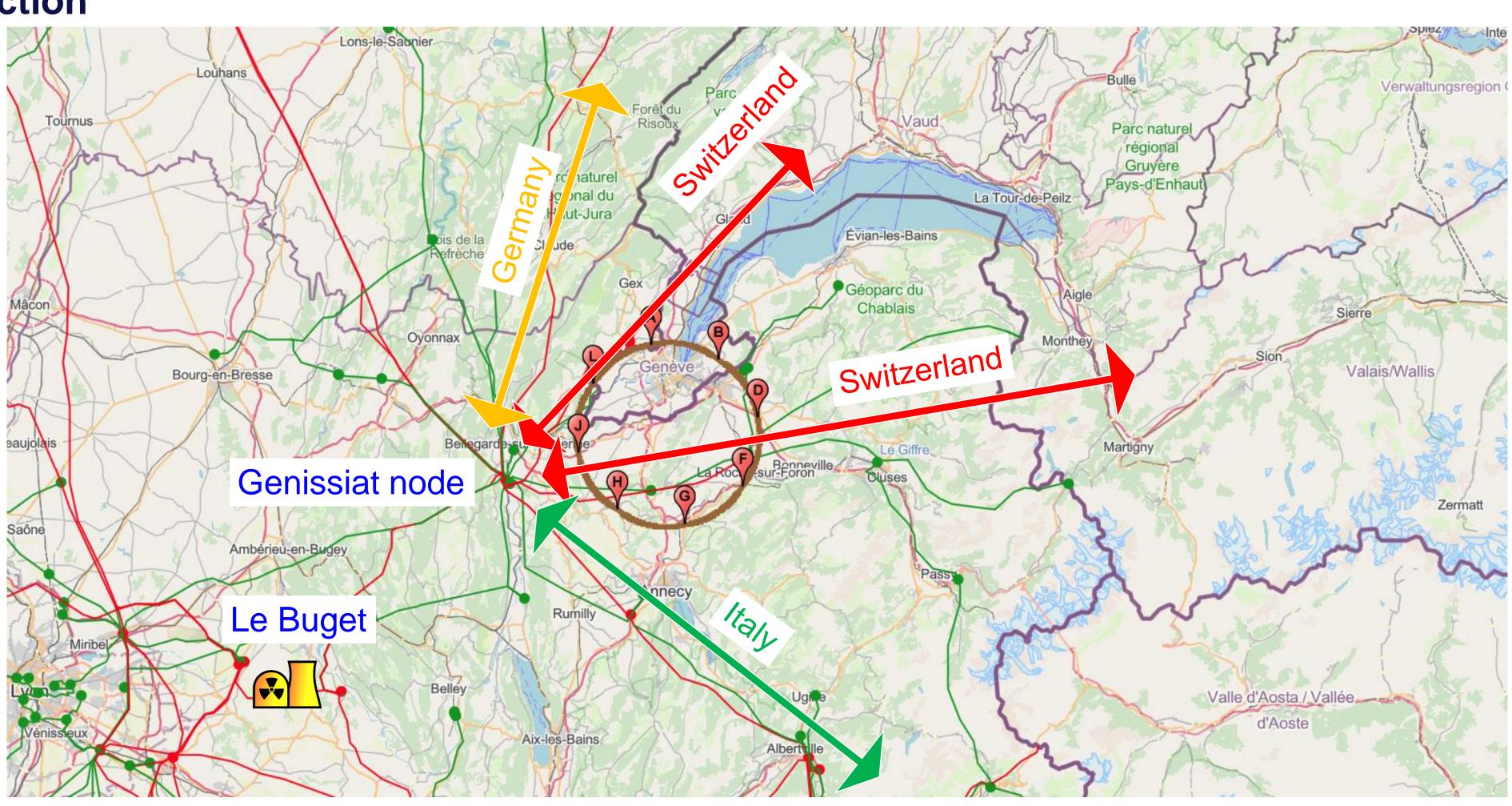

This proposal includes also the possibility to operation the machine without one sub-station, which will ease the maintenance and repairs.

The proposal is to have 3 PDL rated at 200MW.

This proposal is under study by French Transmission Operation, RTE.

RTE: Reseau de Transport d'électricité= French transmission operator

PDL: Point de livraison = Delivery point


Request made to RTE for delivery points

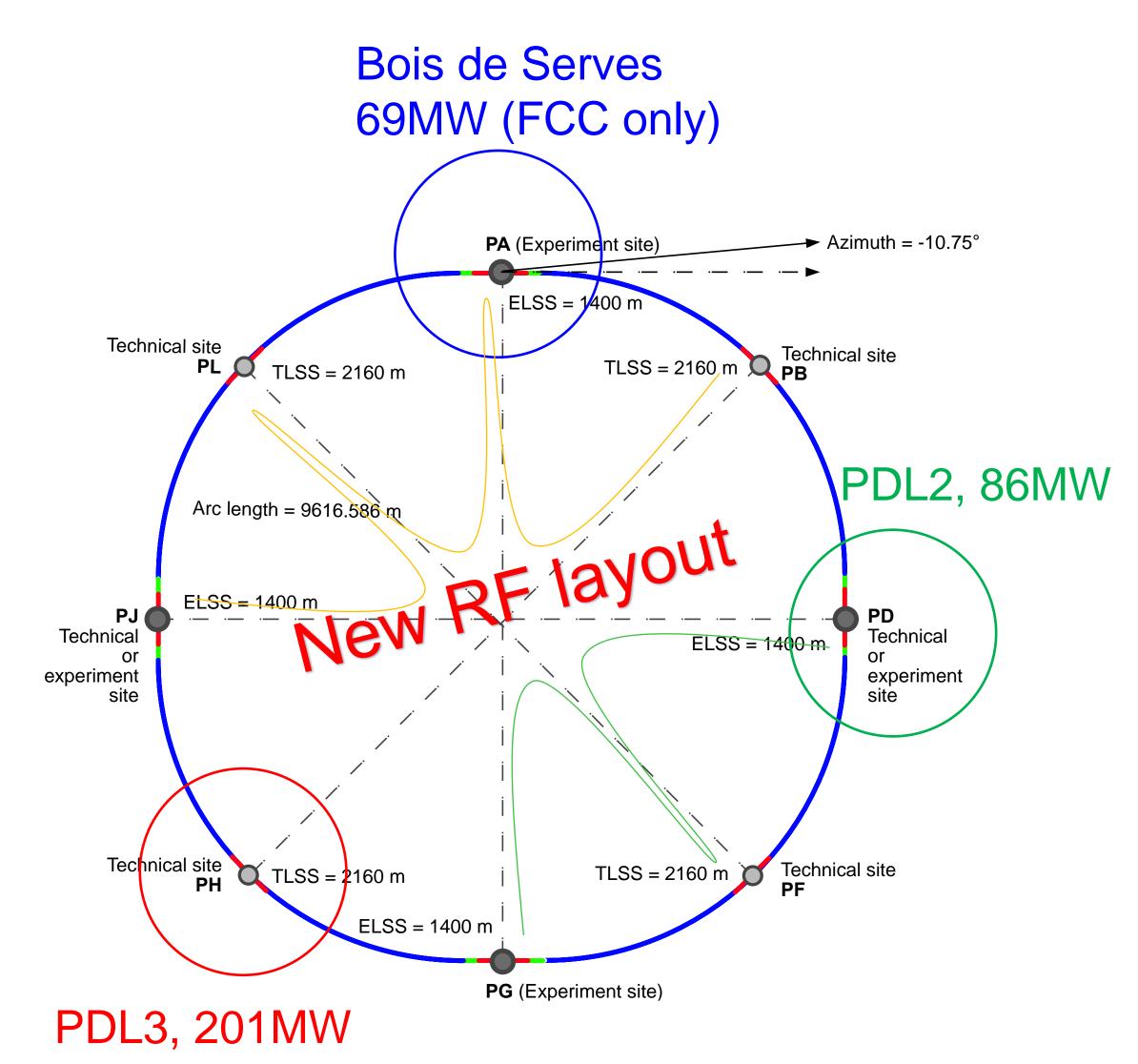
Strong network connection

FCC well situated on a strong electricity node.

but priority of these 400 – 225 kV lines are for energy exchange between countries.

Red lines: 400kV Green lines: 225kV

Alternative with present CERN connection


Point L with low charge

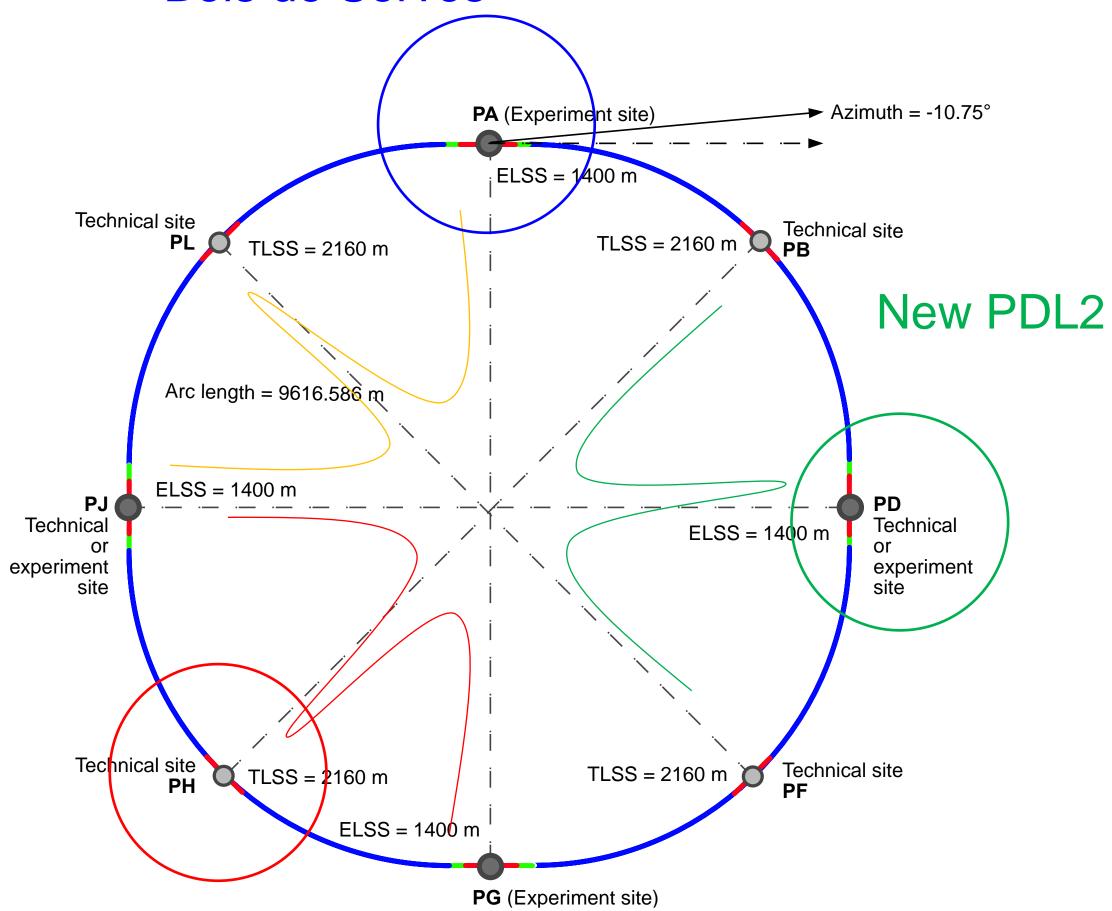
Point L has not enough charge to justify a new delivery point. An alternative would be to reuse present connection (Prevessin) to Bois de Serves (installed power 220MW), and to built a new sub-station at point A.

A new line between Prevessin site and point A is needed (through the road or better through the beam transfer tunnel).

Bois de Serves, with a sub-station covering PJ – PL – PA - PB Point D, with a sub-station covering PD – PF – PG Point H with a dedicated sub-station for RF collider

		Max power (MW)
PDL1	Bois de Serves	69
PDL2	PD	86
PDL3	PH	201

New proposal for delivery points


Infrastructure needed to cover all FCC configurations

This configuration will require only 2 new delivery points for RTE.

No new 400kV sub-station in Challex, which should be welcomed.

The proposal is to have 3 PDL rated at 220MW with the possibility to operate with only 2 sub-stations (redundancy).

New PDL3

Summary

- > The RF systems location changed the distribution of the power demand.
- > Only point H has now a very high power demand level.
- > A new scheme, for the delivery points, is been proposed with only two new delivery points.
- > The energy consumption during the shutdown was reduced taking account of the reduced power demand from the experiments and general services. This leads to a reduction of the energy consumption of 5%.
- > The new estimate for cooling and ventilation, plus the reduction of cryogenics power, thanks to high Q0 cavities, gives another reduction of 5% of the energy consumption.

The next steps are:

- Validation of the delivery points with RTE.
- > Validation of the delivery points on the local 20kV for the civil engineering phase.
- Pursuit the effort on the reduction of energy consumption.

Thank you for your attention