

X-RAY BEAM PROFILE MONITOR

gratefully acknowledging:

B. Paroli, M. A. C. Potenza (Università degli Studi di Milano)

U. Iriso, A. A. Nosych, J. Nunez, É. Solano, L. Torino (ALBA-CELLS)

D. Butti, T. Lefevre, S. Mazzoni, G. Trad (CERN)

FCC-ee from a BI perspective

(M. Wendt, eeFACT22)

Parameter [4 IPs, 91.2 km]	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
horizontal beta* [m]	0.1	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98
horizontal rms IP spot size [μm]	8	21	14	39
vertical rms IP spot size [nm]	34	66	36	69

In the arcs (Zh): $\sigma_x \sim 100 \ \mu \text{m}$, $\sigma_v \sim 7 \ \mu \text{m}$

Vertical FCC-ee beam size in the IPs Vertical FCC-ee beam size in the arcs Horizontal FCC-ee beam size in the IPs Horizontal FCC-ee beam size in the arcs

current beam sizes in LS **~**

current beam sizes in LS

current beam sizes in LS

current beam sizes in LS

FCC-ee from a BI perspective

(M. Wendt, eeFACT22)

Parameter [4 IPs, 91.2 km]	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
horizontal beta* [m]	0.1	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98
horizontal rms IP spot size [μm]	8	21	14	39
vertical rms IP spot size [nm]	34	66	36	69

In the arcs (Zh): $\sigma_x \sim 100 \ \mu \text{m}$, $\sigma_v \sim 7 \ \mu \text{m}$

One of the most convenient ways to measure the beam size in LS is to analyze the emitted Synchrotron Radiation (SR). The high energy of the FCC-ee beams calls for the utilization of **X-ray interferometry**.

- 1. Interferometric beam size measurements
- 2. The X-ray Heterodyne Near Field Speckles (X-HNFS) technique
- 3. Results at ALBA
- 4. Ongoing R&D activities
- 5. Conclusions

SR transverse coherence

The average size and shape of the coherence areas are described by the Complex Coherence Factor (CCF):

$$\mu(\Delta \vec{x}) = \frac{\langle e(\vec{x})e^*(\vec{x} + \Delta \vec{x}) \rangle}{\sqrt{\langle |e(\vec{x})|^2 \rangle \langle |e(\vec{x} + \Delta \vec{x})|^2 \rangle}}$$

Example: Gaussian CCF

J. W. Goodman, Statistical Optics

The Van Cittert and Zernike theorem

The CCF of SR is the Fourier transform of the transverse profile of the source (e- beam)

Average size of SR coherence areas from e⁻ beams:

$$\sigma_{coh} \sim \frac{\lambda}{\theta} \sim \frac{\lambda R}{\sigma_{beam}}$$

Interferometric beam size measurements

The visibility of interference fringes provides a direct measurement of the transverse coherence of the emitted SR, from which the beam size/profile is retrieved by means of the VCZ theorem

Light through a disordered ensemble of nanospheres forms random speckles

- Fully 2D, high-resolution
- Suitable for X-rays

M. D. Alaimo et al., PRL 103, 194805 (2009) M. Siano et al., APX 6, 1891001 (2021)

X-HNFS: single particle

heterodyne conditions $|e_s| \ll |e_0|$

$$I = |e_0 + e_s|^2 = |e_0|^2 + 2\Re\{e_0 e_s^*\} + |e_s|^2$$

High-frequency fringes are localized away from the center: spatial scaling

heterodyne conditions

X-HNFS: many particles

X-HNFS setup at NCD-SWEET (ALBA)

FCC Week 2023 - London, United Kingdom

5-9 June 2023

The probe: silica (SiO₂) spheres, 500 nm, in water

Optical setup: YAG + mirror + optics + CMOS

Results at NCD-SWEET (ALBA)

Coupling scan: by changing the machine coupling κ , we vary the vertical beam size at NCD

Minumum beam size measured with current setup: 4.5 µm

- Design of a dedicated X-HNFS dipole beamline for beam diagnostics @ ALBA
- First studies on monochromator material (W/B4C)

- Design of a dedicated X-HNFS beamline
- Dipole source

First tests in 2024

- Energy range: 20 30 keV
- Peak energy: 24 keV

Bandwidth: 1% - 5%

- Preliminary heat load evaluation on monochromator
- Air / water cooling

Ongoing R&D activities

- Numerical studies to optimize bandwidth, sample material and detected signal
- Development of a beam profile monitor based on X-HNFS and advanced solid targets

- **Full SRW simulations**
- Fourier-optics-based simulations
- Evaluate temporal coherence
- Optimize beamline parameters

- Numerical simulations of X-ray scattered signal
- Compare and validate different approaches (Mie theory, ADA, ...)
- Identify best materials for targets

- Development of X-HNFS instrument
- Solid targets for continuous on-line operations at FCC-ee
- New screens to maximize light yield and detected signal

Summary and outlook

Current status:

- Development of a novel 2D beam profile monitor based on X-HNFS
- Validated at the NCD-SWEET undulator beamline at ALBA with hard X-rays
- X-HNFS can resolve few-μm beam sizes (down to 4.5 μm with current setup)

Many **ongoing R&D activities** for applications to FCC-ee, including (but not limited to):

- Design of a dedicated X-HNFS dipole beamline at ALBA for beam diagnostics
- First studies on monochromator bandwidth and materials
- Numerical studies on wavefront propagation to optimize beamline parameters
- Investigations on different materials and advanced solid targets to improve SNR
- Development and optimization of an X-HNFS instrument with higher resolution

Thank you for your attention.