FINE TUNING OF FCC CIRCUMFERENCE AND MULTI-BUNCH STABILITY ANALYSIS

Alice Vanel, Rama Calaga, Ivan Karpov, Heiko Damerau, Linhao Zhang

Outline

FCC

RF synchronization for FCC-hh and choice of circumference

FCC-ee: Offset phase optimisation for double RF

Coupled bunch instabilities (CBI) excited by high-order modes (HOMs) at calibration energy

RF synchronisation and circumference

Synchronisation principles for hadron synchrotrons

- Last update given by Linhao Z. during FCC week 2022 [talk]
- FCC-hh should be compatible with potential injectors (LHC/SPS)
- FCC-ee and FCC-hh will share the same tunnel
- For a given frequency, the circumference determines the harmonic number:

$$\frac{C_2}{C_1} = \frac{n_1}{n_2} = \frac{vT_{rev,1}}{vT_{rev,2}} = \frac{h_2}{h_1}$$

- Beam transfer is possible with a periodicity of $n_1 T_{rev,1} = n_2 T_{rev,2}$

	LHC	SPS	PS
<i>C</i> [m]	26658.883	6911.562	628.325
h	35640	2 × 4620	2×420

- Goal: optimize circumference based on RF synchronization

$$f_{RF} = 400.79 \text{ MHz}$$

$$\frac{h_{LHC}}{h_{SPS}} = \frac{27}{7} \qquad \qquad \frac{h_{SPS}}{h_{PS}} = \frac{11}{1}$$

FCC

Choice of circumference for FCC-hh

8 main constraints were identified:

- 1. Keep SPS and/or LHC as injectors of FCC-hh (compulsory).
- 2. $C_{FCC} \approx 90.6$ km (geological constraints) (compulsory).
- 3. $f_{RF} = 400.79$ MHz (optional).

June 8th 2023

FCC

- 4. h_{FCC} must be divisible by 2 to allow for 4 IPs (compulsory).
- 5. h_{FCC} should keep a continuous bunch clock for at least 25 ns bunch spacing (compulsory).
- 6. h_{FCC} should provide as many bunch spacings as possible (optional).
- 7. Largest prime factor of h_{FCC} , h_{LHC} & h_{SPS} should be smaller than 300 (arbitrary) to allow generation of intermediate frequencies (optional).
- 8. Denominators in h_{FCC}/h_{LHC} and h_{FCC}/h_{SPS} should less than 300 (arbitrary) to minimise transfer times (optional).

○ FCC

Circumference vs RF frequency

- Color size: number of bunch spacing options
- Dot size: largest prime factor of h_{FCC}

We are looking for a horizontally wellpopulated line with small light-coloured dots.

Three most favorable circumference options:

h _{FCC}	C _{FCC} [m]	ΔC _{FCC} [m]	$rac{h_{_{FCC}}}{h_{_{LHC}}}$	$rac{h_{FCC}}{h_{SPS}}$	Largest prime factor	Bucket spacings	Bunch spacings [ns]	Bunch spacing options
120960 $= 2^7 \times 3^3 \times 5 \times 7$	90478.7	-179.5	$\frac{112}{33}$	$\frac{144}{11}$	7	1, 2, 3, 4, 5, 6, 7, 8, 9, 10	2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25	10
121200 $= 2^4 \times 3 \times 5^2 \times 101$	90658.2	0	$\frac{1010}{297}$	$\frac{1010}{77}$	101	1, 2, 3, 4, 5, 6, 8, 10	2.5, 5, 7.5, 10, 12.5, 15, 20, 25	8
121440 $= 2^5 \times 3 \times 5 \times 11 \times 23$	90837.7	+179.5	$\frac{92}{27}$	$\frac{92}{7}$	23	1, 2, 3, 4, 5, 6, 8, 10	2.5, 5, 7.5, 12.5, 15, 20, 25	8

Conservative choices were deliberately made to ensure that bunch transfer and RF synchronisation would work, while allowing maximum flexibility for future parameter changes.

From [Zhang L.], to appear in ICFA BD NL#85

FCC

Parameters update

Change of circumference and luminosity optimisation lead to parameter updates. The most relevant for RF are:

Parameter	Z	W	н	ttbar	
	Per beam	Per beam	2 beams	2 beams	2 beams
RF freq. [MHz]	400	400	400	400	800
RF voltage [MV]	79	1050	2100	2100	9200
Current [mA]	1280	135	53.4	10	10
E loss/turn SR [MV]	39.40	374	1890	10420	10420

From K. Oide (FCC Week 2023)

Stages: after the Z, W and Higgs operations, we will add 800 MHz cavities for ttbar. We need to know which voltage satisfies beam dynamics requirements.

Optimisation of the double harmonic voltage

Objective: find the offset phase Φ_2 that minimises the required voltage V_{800} to compensate for an energy loss $U_0 = 10.42$ GV while satisfying

$$\begin{cases} V_{400} \sin(\phi_s) + V_{800} \sin(n\phi_s + \Phi_2) = 10.42 \text{ GV} \\ \cos(\phi_s) + n \frac{V_{800}}{V_{400}} \cos(n\phi_s + \Phi_2) = \frac{Q_s^2}{C} \end{cases}$$

 $V_{800,min} = argmin_{\phi_s \in [0,2\pi]} [V_{400} f(\phi_s)]$

 $\phi_{s,min} = 1.85$ $V_{800,min} = 9.35 \text{ GV}$ $\Phi_2 = -1.60$

From K.Oide, FCC-ee parameter meeting, Nov. 16, 2021 [Indico]

-1.0

0

1

2

3

phi

5

FCC

CBI at calibration energy due to HOMs

Calibration: once a month, for each working point (W, H, ttbar) the machine will operate at Z pole (45.6 GeV) with maximum possible current to minimise calibration time.

Standard formulae for the shunt impedance threshold (only one sideband contributes) are:

$$Z_{\parallel}^{\rm th}(f) = \frac{2E_b Q_s}{eI_{b,\rm DC}\eta\tau} \frac{1}{f}$$

$$Z_{\perp}^{\rm th} = \frac{E_b}{e f_{\rm rev} I_{b,\rm DC} \beta_{xy} \tau}$$

The impedance instability threshold is:

- proportional to the energy
- inversely proportional to the current

Low energy will drive coupled bunched instabilities. What is the maximum current allowed for energy calibration at each working point?

The damping time τ can be acted on to mitigate the threshold : Will synchrotron radiation suffice to suppress transverse CBI due to HOMs or is a bunch-by-bunch feedback system required?

Longitudinal and transverse CBI due to HOMs: ttbar at calibration energy

- Limit instabilities \rightarrow need safety margin (a factor of 3-10) \rightarrow Even lower current is required
- Transverse stability is the main concern → more aggressive FB system needs to be explored

Longitudinal and transverse CBI due to HOMs: Higgs at calibration energy

- Limit instabilities \rightarrow need safety margin (a factor of 3-10) \rightarrow even lower current required
- Transverse stability is the main concern → more aggressive FB systems need to be explored
- Due to lower impedance, maximum current larger than for ttbar

Longitudinal and transverse CBI due to HOMs: W at calibration energy

- Limit instabilities \rightarrow need safety margin (a factor of 3-10)
- Higher current allowed due to less cavities

FCC

Summary

- FCC circumference further reduced from 2022, current design $C_{FCC} = 90658.154$ m
- Following the collider parameters update, the 800 MHz RF voltage was optimised
- At calibration energy (Z mode 45.6 GV), the maximum current allowed are (without margin):

I _{max}	$ au_{SR}$	$ au_{FB}$
ttbar	20 mA	1 A
Higgs	nominal	nominal
W	nominal	nominal

Longitudinal

- · Feasibility of more aggressive feedback should be explored
- Maximum current might be further reduced after analysis of:
 - Stability limits due to fundamental mode impedance
 - RF power limits due to beam loading
 - Higher-order modes power losses

Transverse

I _{max}	$ au_{SR}$	$ au_{FB}$
ttbar	0.9 mA	10 mA
Higgs	22.5 mA	260 mA
W	45 mA	525 mA

Thank you for your attention.

Additional Slides

○ FCC

2 cell vs 5 cell impedance dominance

Impedance largely dominated by 5-cell 800 MHz (red curve) vs 2-cell 400 MHz (black curve)

