

1-cell and 2-cell 400 MHz cavity RF designs for FCC-ee

Shahnam Gorgi Zadeh

Overview

- Recent updates on cavity shapes
- Single-cell 400 MHz cavity
 - HOM coupler optimization
 - Beam impedance and HOM power calculation
- Two-cell 400 MHz cavity
 - HOM coupler optimization
 - Beam impedance and HOM power calculation
- Increasing cells per cavity for tt and booster

Recent updates on the 1-cell & 2-cell cavity shapes

- Single-cell 400 MHz cavity: quasi-LHC cavity was developed with an aperture radius and length similar to that of the LHC cavity, but with improved Higher-Order Mode (HOM) properties
- Two-cell 400 MHz cavity: the 2-Cell-V2 cavity design provides improved mechanical properties and $B_{\rm pk}/E_{\rm acc}$ compared to the previous design, albeit with a trade-off in HOM properties

HOM coupler optimization for the single-cell cavity

- No longitudinal mode is trapped in the single-cell. The first dipole passband must be strongly damped
- The LHC-type hook coupler is connected to the cavity and optimized to push the $Q_{\rm ext}$ of modes in the first dipole passband below 100

HOM coupler optimization for the two-cell cavity

 The damping scheme employed in the two-cell cavities is similar to the one suggested for the single-cell cavity, utilizing two hooktype couplers to effectively damp the dipole modes

The encircled parameters are varied by trust region optimization method and Genetic algorithm to minimize transversal impedance

Couplers for HOM power extraction

- A coupler required between cavities to
 - Take the HOM energy arising from the broadband part of the impedance out of the module
 - Damp modes created in the beam pipe (BP)

Cavity distance in a module

• To achieve a maximum $S_{2,1}$ transmission of \sim -50 dB between FPC and the coaxial HOM coupler on the BP,

a minimum distance of 1650 mm between cavities is required

 d_{cav}

HOM power and Impedance in the Z working point

Single-cell 400 MHz damping scheme: 2 hook-type couplers +
 2 FPC-like coaxial couplers between cavities

HOM power distribution in the module

HOM power and Impedance in the W working point

Two-cell 400 MHz damping scheme: 2 hook-type couplers +
 2 FPC-like coaxial couplers between cavities

 $\frac{\boxed{\mathbb{Z}} 10^5}{\boxed{\mathbb{Z}} 10^3}$

One 2-cell 400 MHz cavity

H: $Z_{\perp,\text{limit}}$ W: $Z_{\perp,\text{limit}}$

Z: $Z_{\perp, \text{limit}}$

Higher number of cells per cavity for tt and booster

• The tt collider and booster in FCC-ee require the highest number of cavities. Investigating an increase in the number of cells per cavity from five to higher values is worthwhile. This modification can have a significant impact on the total cost, as it would require fewer cavities and result in a shorter RF structure.

	ttbar2			ttbar2		
	Collider (2 beams)			booster		
# cell / cav	5	6	7	5	6	7
$E_{\rm acc}$ [MV/m]	22.33	22.17	22.33	22.52	22.59	22.55
# cavities (N_{cav})	448	376	320	544	452	388
Total length [m] $(\approx N_{cav}(L_{acc} + 2\lambda))$	754	703	658	916	845	798
FM Pcav [kW]	178	212	249	9	11	13
$N_{\rm cells}^2/k_{\rm cc}$	1111	1600	2178	1111	1600	2178
P_{HOM} [kW] ($t\bar{t}_2$) ($\sigma_z = 2.66 \text{ mm}$)	0.81	0.95	1.08	-	-	-
Cavity design	UROS5	UROS6	UROS7	UROS5	UROS6	UROS7

^{*} $N_{\rm cells}^2/k_{\rm cc}$ for Tesla 9-cell 1.3 GHz cavity is 4091

Impedance comparison between 5- to 7-cell cavity

• In all cases the transversal impedances are below the beam stability threshold of $t\bar{t}_{collider}$

Assumption: The impedance stability limits are calculated from the parameters of the collider ring → only the beam current is divided by 10 for the booster

"Tentative values, to be updated later"

Conclusion

- Recent updates on the adopted cavity shapes was presented
- HOM damping method for single-cell and two-cell 400 MHz cavities include
 - Two hook-type couplers to damp trapped dipole modes
 - Two large coaxial HOM couplers between the cavities for HOM power extraction
- Longitudinal and transversal impedances are below the stability limit → only for the Z-working point a bunch-by-bunch feedback system might be needed to maintain transversal stability
- Increasing the number of cells per cavity beyond five for the 800 MHz cavity can lead to a
 reduced number of required cavities, albeit with higher input power, increased HOM power,
 and a greater field flatness coefficient. While the current indications suggest that these tradeoffs may not pose significant issues, it is still worth considering thorough investigations in light
 of their potential advantages.

appendix

Beam parameter assumptions

Table 1: FCC-ee collider parameters as of Jan. 19, 2023

Beam energy	[GeV]	45.6	80	120	182.5	
Layout		PA31-3.0				
# of IPs		4				
Circumference	[km]	90.658816				
Bending radius of arc dipole	$[\mathrm{km}]$	9.936				
Energy loss / turn	[GeV]	0.0394	0.370	1.89	10.1	
SR power / beam	[MW]		50)		
Beam current	[mA]	1270	134	26.7	4.94	
Bunches / beam		9200	688	260	40	
Bunch population	$[10^{11}]$	2.60	3.68	2.04	2.33	
Horizontal emittance ε_x	[nm]	0.71	2.16	0.67	1.55	
Vertical emittance ε_y	[pm]	1.42	4.32	1.34	3.10	
Arc cell		Long 90/90 90/90			/90	
Momentum compaction α_p	$[10^{-6}]$	28.6 7.34				
Arc sextupole families		75 146				
$\beta_{x/y}^*$	[mm]	100 / 0.8	200 / 1.0	300 / 1.0	1000 / 1.6	
Transverse tunes/IP $Q_{x/y}$		53.565 / 53.595		100.556	56 / 98.590	
Energy spread (SR/BS) σ_{δ}	[%]	0.039 / 0.143	0.069 / 0.176	0.103 / 0.179	0.157 / 0.220	
Bunch length (SR/BS) σ_z	[mm]	4.37 / 15.9	3.55 / 9.09	3.34 / 5.78	1.89 / 2.66	
RF voltage 400/800 MHz	[GV]	0.120 / 0	1.0 / 0	2.1 / 0	2.1 / 9.4	
Harmonic number for 400 MHz		121200				
RF freuquency (400 MHz)	MHz	400.786684				
Synchrotron tune Q_s		0.0370	0.0800	0.0327	0.0881	
Long. damping time	[turns]	1158	215	63.8	18.3	
RF acceptance	[%]	1.6	3.3	1.9	3.1	
Energy acceptance (DA)	[%]	± 0.8	±1.3	± 1.7	-2.8 + 2.5	
Beam-beam ξ_x/ξ_y^a		0.0023 / 0.139	0.011 / 0.139	0.014 / 0.126	0.093 / 0.136	
Luminosity / IP	$[10^{34}/{\rm cm}^2{\rm s}]$	186	21.4	6.94	1.20	
Lifetime $(q + BS + lattice)$	[sec]	1120	_	< 1660	< 4170	
Lifetime $(lum)^b$	[sec]	980	960	620	750	

K. Oide, Status of collider optics, Jan. 2023

HOM damping scheme

Longitudinal Impedance of single-cell

H field

- QLHC has a smaller longitudinal impedance peak compared to LHC
- There is a trapped mode below BP cutoff frequency for UROS1.1 cavity with small R/Q

a: f=749.28 MHz, R/Q=0.006 Ω (PMC BC) a: f=749.06 MHz, R/Q=0.37 Ω (PEC BC) Mode with small R/Q below cutoff frequency

Loss factor of HOM couplers

	$k_{\parallel}~(\sigma_z{=}14.5~\mathrm{mm})~\mathrm{[V/pC]}$	P_{HOM} [kW]		
	$k_{\parallel} = 0.119$			
Quasi-LHC cavity	$k_{\parallel,0} = 0.054$			
	$k_{\parallel, \mathrm{HOM}} = 0.065$	3.22		
${\it cavity+2-hook+FPC}$	$k_{\parallel, \text{HOM}} = 0.090$	4.47		
BLA	0.137 (400 mm BLA)	6.83		
DLA	$0.0703~(200~{\rm mm~BLA})$	3.50		
3-WG	0.0271	1.35		
Ridged WG	0.0233	1.16		
Rectangular WG	0.0211	1.05		
2-coax	$0.0375 (d_{\text{tip}} = 110 \text{ mm})$	1.87		
4-coax-s	$0.0379 \ (d_{\rm tip} = 110 \ {\rm mm})$	1.89		
8-coax-s	$0.108 \ (d_{\rm tip} = 100 \ {\rm mm})$	5.38		
	$0.0723 \ (d_{\rm tip} = 110 \ {\rm mm})$	3.60		
	$0.0425~(d_{\rm tip}{=}120~{\rm mm})$	2.12		
	$0.0206 \ (d_{\rm tip}=130 \ {\rm mm})$	1.03		

Cavity distance in a module

RF parameters for tt and its booster

	ttbar2			ttbar2			
	Collider (2 beams)			booster			
# cell / cav	5	6	7	5	6	7	
RF Frequency [MHz]	801.58	801.58	801.58	801.58	801.58	801.58	
RF voltage [MV]	9355	9355	9355	11455	11455	11455	
$E_{\rm acc}$ [MV/m]	22.33	22.17	22.33	22.52	22.59	22.55	
Vcavity [MV]	20.88	24.88	29.23	21.06	25.34	29.52	
#cells	2240	2256	2240	2720	2712	2716	
# cavities (N_{cav})	448	376	320	544	452	388	
# CM	112	94	80	136	113	97	
Total length [m]	754	703	658	916	845	798	
T operation [K]	2	2	2	2	2	2	
dyn losses/cav [W]	31.0	36.6	42.8	4.7	5.7	6.5	
stat losses/cav [W]	8	8	8	8	8	8	
$FM\ Q_{ext}$	4.7E+06	4.7E+06	4.6E+06	9.5E+07	9.5E+07	9.4E+07	
Detuning [kHz]	-0.05	-0.05	-0.05	-0.002	-0.002	-0.003	
FM Pcav [kW]	178	212	249	9	11	13	
rhob [m]	9936	9936	9936	9936	9936	9936	
Energy [GeV]	182.5	182.5	182.5	182.5	182.5	182.5	
energy loss [MV]	10100	10100	10100	10100	10100	10100	
$Cos(\emptyset_s)$	0.86	0.86	0.86	0.86	0.86	0.86	
Beam current [A]	0.010	0.010	0.010	0.0005	0.0005	0.0005	
$L_{\rm acc}$ [m]	0.935	1.122	1.309	0.935	1.122	1.309	
#cav/CM	4	4	4	4	4	4	
R/Q [ohm]	521	627	739.3	521	627	739.3	
G [ohm]	272.9	272.8	272.7	272.9	272.8	272.7	
Q_0	2.70E+10	2.70E+10	2.70E+10	2.70E+10	2.70E+10	2.70E+10	
$E_{\rm p}/E_{\rm acc}$	2.05	2.04	2.04	2.05	2.04	2.04	
$B_{\rm p}/E_{\rm acc}$	4.33	4.31	4.3	4.33	4.31	4.3	
$E_{\rm p}$ [MV/m]	46	45	46	46	46	46	
$B_{\mathfrak{p}}$ [mT]	97	96	96	98	97	97	
Cavity design	UROS5	UROS6	UROS7	UROS5	UROS6	UROS7	

- Total length $\approx N_{\rm cav}(L_{\rm acc} + 2\lambda)$
- A duty cycle of 15% is considered in the dynamic loss calculation for the booster cavities
- RF voltage and Cos(Ø_S) of ttbar2 is taken from

Optimising the offset phase for the double RF system, Oct. 2022, A. Vanel

Main parameters of the cavities

Parameters	UROS5	UROS6	UROS7
Frequency [MHz]	801.58	801.58	801.58
Number of cells	5	6	7
$R/Q[\Omega]$	521	627.0	739.3
Geometry factor [Ω]	272.9	272.8	272.7
$G.R/Q$ [k Ω^2]	142.2	171.0	201.6
$B_{\rm pk}/E_{\rm acc} [mT/(MV/m)]$	4.33	4.31	4.30
$E_{\rm pk}/E_{\rm acc}$ [-]	2.05	2.04	2.04
Cavity active length [mm]	919.5	1106.5	1293.5
Iris radius [mm]	60	60	60
Beam pipe radius [mm]	78	78	78
Wall angle [degree]	100/96.9	100.969	100/96.9
Cell to cell coupling of mid-cells (k_{cc}) [%]	2.25	2.25	2.25
Field flatness [%]	99	99	98.9
$N_{\rm cells}^2/k_{\rm cc}$	1111	1600	2178
$k_{ }(\sigma_z = 2.66 mm) [V/pC]$	2.82	3.32	3.81
P_{HOM} [kW] (t $\bar{\text{t}}_2$)	0.81	0.95	1.08
Cutoff TE ₁₁ [GHz]	1.126	1.126	1.126
Cutoff TM ₀₁ [GHz]	1.471	1.471	1.471

Impedance comparison between 5-cell and 7-cell cavity

$$Z_{\parallel}^{\rm th} = \frac{2(E_0/q_e)\nu_s}{N_{\rm cav}fI_0\alpha_{\rm c}\tau_s}$$

$$Z_{\perp}^{\text{th}} = \frac{2(E_0/q_e)}{N_{\text{cav}} f_{\text{rev}} I_0 \beta_{\text{xy}} \tau_{\text{xy}}}$$

Assumption: The impedance stability limits are calculated from the parameters of the collider ring → only the beam current is divided by 10 for the booster

"Tentative values, to be updated later"

Impedances are for bare cavity derived from a wakelength of 400 m

Z_{\parallel} of UROS7 cavity

(<u>a</u>)

Z_{\perp} of UROS7 cavity

UROS5 HOMs

HOM power for Z, H and tt beam in two-cell cavity module

HOM power for W beam in two modules

Hook-type coupler and FPC is eliminated to simplify the simulation setup → results into smaller total HOM power

