

Traditio et Innovatio

ALTERNATIVE DESIGN OF A 5-CELL CAVITY FOR THE tT OPERATING POINT

Sosoho-Abasi Udongwo

Supervisors: Dr. Shahnam Gorgi Zadeh, Dr. Rama Calaga, Prof. Ursula van Rienen 08.06.2023 UNIVERSITÄT ROSTOCK | Fakultät für Informatik und Elektrotechnik

Content

- SRF overview $t\overline{t}$ operating point
- Machine parameters
- Review of the baseline design (FCCUROS5)
- Aim
- Cavity Design
- Comparison with FCCUROS5
- Summary and Outlook

SRF Overview

- The previous RF baseline presented in the CDR [1] considers:
 - Hybrid system 4-cell 400 MHz and 5-cell 800 MHz cavities $t\bar{t}$ working point [2]
- The current RF baseline considers:
 - Hybrid system 2-cell 400 MHz and 5-cell 800 MHz cavities $t\bar{t}$ working point [2]
- The FCCUROS5 is a cavity geometry design proposed for the $t\bar{t}$ working point [2, p. 68]

[2] S. Gorgi Zadeh, "Accelerating cavity and higher-order mode coupler design for the Future Circular Collider", Ph.D. thesis, Theoretische Elektrotechnik, Universität Rostock, 2020;http://purl.uni-rostock.de/rosdok/id00003023

^[1] M. Boscolo et al., "FCC-ee machine design overview", in FCC week, Amsterdam, 2018.

Machine Parameters

Machine parameter	tt Operating Point		
Beam energy [GeV]	182.5		
Beam current [mA]	10		
Beam RF voltage [GV]	9.2		
Bunch intensity [10 ¹¹]	2.26		
Bunch SR length [mm]	1.67		
Bunch BS length [mm]	2.54		

Review of FCCUROS5 (2019)

 The plots show that the FCCUROS5 is still suitable for operation at the tt operating point.

Universität

Rostock

Traditio et Innovatio

Transverse impedance plot

• Investigate the possibility of improving the performance of the FCCUROS5 for the $t\bar{t}$ operating point, especially concerning higher-order modes (HOMs) effects.

 Also, considering the high beam current of 140 mA for the Z booster, by improving the HOM characteristics of the 5-cell cavities, the same type of 5-cell 800 MHz cavities can be used for the boosters of all four operating points

Design Procedure

$$\begin{split} \min_{\mathbf{x}_{i},\mathbf{x}_{e}\in\mathbf{X}} & \left(\frac{E_{\mathrm{pk}}}{E_{\mathrm{acc}}}, \frac{B_{\mathrm{pk}}}{E_{\mathrm{acc}}}, -R/Q, |Z_{\parallel,p}|, |Z_{\perp,q}|\right) \\ \text{s.t.} & R_{\mathrm{eq}}/\mathrm{mm} = \operatorname*{arg\,\min}_{R_{\mathrm{eq}}} \quad f(R_{\mathrm{eq}}) - f_{\mathrm{FM}} \\ & L_{\mathrm{e}}/\mathrm{mm} = \operatorname*{arg\,\min}_{L_{\mathrm{e}}} \quad f(L_{\mathrm{e}}) - f_{\mathrm{FM}}, \\ & A_{\mathrm{i,e}}, B_{\mathrm{i,e}}/\mathrm{mm} \in [20, 80], \\ & a_{\mathrm{i,e}}, b_{\mathrm{i,e}}/\mathrm{mm} \in [10, 60], \\ & R_{\mathrm{i,i,e}}/\mathrm{mm} \in [60, 85], \\ & L_{\mathrm{i}}/\mathrm{mm} = 93.5, \\ & \alpha_{\mathrm{i}} \geq 90^{\circ}, \\ & \frac{E_{\mathrm{pk}}}{E_{\mathrm{acc}}} \leq 3, \\ & \frac{B_{\mathrm{pk}}}{E_{\mathrm{acc}}}/\frac{\mathrm{mT}}{\mathrm{MV/m}} \leq 5, \end{split}$$

Objective function

Universität Rostock Algorithm 1 Pareto-based Genetic AlgorithmInitialisation: $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_Q)$, $n = 0, v_t$; \triangleright First generation, v_t : hypervolume threshold value.while n < N do \triangleright Generation loopfor $\mathbf{x} = \mathbf{x}_1 \dots, \mathbf{x}_Q$ do \triangleright Half-cell geometry looprun SLANS, ABCI \triangleright for $\frac{E_{pk}}{E_{acc}}$, $\frac{B_{pk}}{E_{acc}}$, R/Q, $|Z_{\parallel,p}|$, $|Z_{\perp,q}|$ $\mathbf{P}_n \leftarrow$ Evaluate and interpolate Pareto hypersurfaceif n > 0 thenEvaluate hypervolume v between \mathbf{P}_n and \mathbf{P}_{n-1}

if $v < v_t$ then break

do Ranking and Selection, Crossover, Mutation

do Introduce random half-cell geometries

 $\mathbf{X} \leftarrow$ newly created geometries return \mathbf{P}_n

Multi-objective optimisation algorithm

Traditio et Innovatio

Geometric Parameters

Traditio et Innovatio

Design Comparison

08.06.2023

UNIVERSITÄT ROSTOCK | Fakultät für Informatik und Elektrotechnik

Fundamental Mode Figures of Merit Comparison

Variable	FCCUROS5 (2019)	C3795 (2023)
$\boldsymbol{R}/\boldsymbol{Q}$ [Ω]	521.06	448.1244
G [Ω]	272.93	261.63
$\boldsymbol{G}.\boldsymbol{R}/\boldsymbol{Q}$ [Ω^2]	1.422e5	1.172e5
k _{cc} [%]	2.04	2.64
E_{pk}/E_{acc} [-]	2.05	2.43
B_{pk}/E_{acc} [mT/MV/m]	4.33	4.88

Impedance Plot Comparison

Transverse impedance plot

HOM Figures of Merit Comparison

Variable	FCCUROS5 (2019)	C3795 (2023)	
k_{\parallel} [V/pC] (SR, σ_z =1.67 mm)	3.784	2.632	
k_{\perp} [V/pC/m] (SR, σ_z =1.67 mm)	3.539	2.017	
P_{HOM} [W] (SR, σ_z =1.67 mm	1115	698	

Beam Current [mA] = 10mA, Bunch Intensity $N_{\rm b}$ [10¹¹] = 2.26

FM and HOM Figs. of Merit Comparison Summary

FM Figures of Merit

HOM Figures of Merit

Bar plot summary of FM and HOM figures of merit.

Power Comparison

Plot of static and dynamic power loss, no of cav and input power (P_{in}) vs E_{acc}

Bar plot summary dynamic, wall and HOM power comparison.

Universität Rostock

08.06.2023

Assumed $Q_0 = 3.0E10$

C3795 + HOM Couplers Study

08.06.2023

UNIVERSITÄT ROSTOCK | Fakultät für Informatik und Elektrotechnik

HOM Coupler Designs and Optimisation

Transmission properties of LHC-type hook coupler (HC), double quarter wave (DQW), and DQW double notch (DQW_DN) coupler.

Traditio et Innovatio

Lossy Eigenmode Impedance Plot for Cavity + HOM Couplers

Cavity + HOM coupler assembly longitudinal impedance plot

Traditio et Innovatio

*Assumed current for Z-booster operating point is 128mA

08.06.2023

Cavity + HOM coupler assembly transverse impedance plot showing first dipole passband modes

Summary and Outlook

- A 5-cell elliptical cavity geometry (C3795) was optimised for operation at the $t\bar{t}$ operating point
- C3795 untraps the first longitudinal HOM and is better in the longitudinal plane at the cost of FM degradation
- FCCUROS5 cavity remains a good option for the $t\overline{t}$ operating point
- The HOM power is 34% less for the C3795. The cost of this reduction is an increase of 19% and 13% in peak electric and magnetic fields, respectively
- The C3795 cavity geometry is better suited for the booster cavities of the Z-working point than the FCCUROS5 cavity geometry
- Study on HOM coupler is ongoing

Appendix

08.06.2023

UNIVERSITÄT ROSTOCK | Fakultät für Informatik und Elektrotechnik

Designed Cavity

Geometric Variables							
<i>A</i> , A _e [mm]	<i>B</i> , <i>B</i> _e [mm]	a , a_e [mm]	<i>b</i> , <i>b_e</i> [mm]	R_i, R_{ie} [mm]	L, L _e [mm]	R _{eq} [mm]	α [°]
62.22/62.58	66.13/57.54	30.22/17.21	23.11/12.00	72/80	93.5/93.795	171.20	94.50, 112.09

Fundamental Mode Figures of Merit			Higher-Or	der Mode Figure	es of Merit		
R/Q [Ω]	G [Ω]	$\boldsymbol{G}.\boldsymbol{R}/\boldsymbol{Q}$ [Ω^2]	$E_{\rm pk}/E_{\rm acc}$ [-]	$B_{ m pk}/E_{ m acc}$ [mT/MV/m]	k_{\parallel} [V/pC] (<i>SR</i> , σ_z =1.67 mm)	k_{\perp} [V/pC/m] (<i>SR</i> , σ_z =1.67 mm)	P_{HOM} [W] (SR, σ_z =1.67 mm)
448.1244	261.63	1.172e5	2.43	4.88	2.639	2.014	375.48

Designed cavity - C3795

