
Design of the FCC-ee positron source 
target: current situation and challenges

Ramiro Mena Andrade, Barbara Humann, Daniele Calzolari, Jean Louis Grenard, Anton Lechner and Antonio Perillo Marcone (SY-STI)

on behalf of the WP3 team (FCC-ee injector update studies)

Date: 7th June 2023



• Part I: Introduction

• Part II: Target design

• Summary

Content

2



Part I: Introduction
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• Main components of an 
electron-positron (e-e+) collider 

1. e-e+ production*

2. Acceleration

3. Pre-collision

4. Collision

5. Data Analysis

Introduction (1/4)
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Fig. Layout of the FCC-ee injector complex. BC: bunch Compressor. EC: Energy Compressor. 
[ Craievich et al 2022]

Target



• How are positrons produced?

• EN: By hitting a target made of a 
high Z-material with a high-energy 
electron beam.

• TH-EP: Involved mechanisms:

1. Bremsstrahlung

2. Electron-Positron pair production 

3. Compton Scattering

Introduction (2/4)
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[radiopaedia.org]



• Why the FCC-ee target is made of 
a high-Z material?

• Because the electron-positron pair 
production cross section (s) by 
gamma rays is proportional to the 
square of the atomic number Z.

• Possible options: Ta, W, Re

• Selected material: Tungsten W

Introduction (3/4)
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Ta W Re

Atomic number 73 74 75

Melting point [K] 3258 3695 3459 

Density [g/cm3] 16.654 19.25 21.02

Radiation length [mm] 4.09 3.50 3.18 

Table. Physical properties of materials used in positron-production 

targets. [ Enomoto et al 2021]



• Which design options does the 
FCC-ee positron source target 
have?

1. Fixed target (standard)*

2. Hybrid target (crystal + converter)

3. Moving target (trolling or rotating)

Introduction (4/4)

7

[Chaikovska et al 2022]



Part II: FCC-ee positron source target design
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Target design: main parameters
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Source: [Chaikovska 2023]

Old parameters (2022) Current parameters (2023)



• Collaboration between CERN and PSI (FCC-ee – CHART)

• The goal is to have the same (or a similar) target design 

as for the P3 proof-of-principle experiment*

• CERN (SY-STI-TCD) to design and build the P3 target 

(to be installed in April 2025)

• For the moment, the FCC-ee target design studies 

focused exclusively on the HTS AMD

• As boundary condition for FCC-ee, we consider the same 

vacuum chamber aperture as for P3 (72 mm)

• Target design vs positron yield:

• As a baseline, we consider a 17.5 mm long W target, 

according to the e+ yield optimization studies by Y. Zhao 

et al. (CERN)

• As an alternative, we study the thin-rod design proposed 

by N. Vallis et al. (PSI)

Target design: P3 experiment* at PSI
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Fig. P3 experiment CAD model (top) general view and 

(bottom) cross section.  [Courtesy of PSI]

*See details in Paolo Craievich’s poster

f72



Model properties 

Effective radius r=5 mm

Thickness t=17.5 mm 

Beam sigma 0.5 vs 1 mm

Material: pure W

Cooling system: Ta pipes

Cooling fluid: water (u=5m/s, P=20bar)

Estimated htc = 18 kW/m2K

Target design: geometry
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Fig. Geometry of the target (1/8 sector) modelFig. Simplified geometry of the High-Temperature Superconducting (HTS) solenoid

Adiabatic Matching Device (AMD) and location of the target

beam



Target design: power load distribution
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@Z-pole

Target + shielding: 

1.46 kW

HTS coils: 2.9 W

Cryostat 

(stainless steel): 6 W

Copper support: 3.9 W

Aluminum: 0.9 W

Total on AMD: 15.2 W

Power load on AMD (in particular HTS coils) should be acceptable

Assuming e- drive 

beam power of 5 kW

Fig. Sankey diagram of the power load distribution for sigma=1.0 mm Fig. Power distribution between components for sigma=1.0 mm

Vacuum chamber

(inside AMD): 1.5 W



e- beam scenarios

a) Previous configuration: s = 0.5 mm

(-) power concentrated in a tinny volume fraction

(-) challenging conditions for the material

b) Current configuration: s = 1.0 mm

(+) level of power density is reduced

(+) improved condition for the material

Target design: power deposition maps
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Fig. Power deposition maps for a) s=0.5 and b) s=1

35 70beam

z

y
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Target design: thermo-mechanical analysis (1/3)
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Steady state analysis

when moving from a beam size of 0.5 
to 1.0 mm:

• there is a reduction of the peak temperature  

(324 °C → 305 °C).  However, a bigger portion 

of the target is heated and as a consequence, 

there is an increment in the thermal stresses at 

the cooling pipes interface (146 → 156 MPa)

• For tungsten, its ductile-brittle transition 

temperature (DBTT) is 400-650 °C [Palacios et al. 2013]

• As Tmax < DBTT, tungsten works in brittle

regime

Fig. Temperature and Equivalent Von Mises stress distribution for a) sigma 0.5, b) sigma 1.0



Target design: thermo-mechanical analysis (2/3)
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Fig. Maximum temperature and Von Mises Stresses evolution in time for a) s=0.5 and b) s=1

a) b) 

Transient state analysis

3 zones of interest: Pi, i=1,2,3

when moving from a beam size 
of 0.5 to 1.0 mm:

• The reduction in peak temperature at P1 

(from DT = 58.5 °C to DT = 24.9 °C) is 

translated to a reduction in stress 

amplitude too during the thermal cycle 

of impact and cooling. 

• However, although the temperature at 

P2 and P3 remains almost constant, 

there is an increment in stresses 

(counterintuitive)

P1 P2 P3

max

min

max

min



• First assessment of thermal fatigue:

• For a brittle material, we are mainly concerned on the variation of 

tensile stresses, therefore, we focus on s1.

• Next step, to consider a mutiaxial fatigue criteria…

Target design: thermo-mechanical analysis (3/3)
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Table. Mean and alternating stresses sm and sa for beam sigma 0.5 and 1 mm. Values in MPa, except for R.

Transient analysis

Fig. Goodman diagram for the FCC-ee target. 

Note: Tungsten material properties taken from Enomoto et al 2021.

𝜎𝑚 =
1

2
𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛 ; 𝜎𝑎 =

1

2
𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 ; 𝑅 =

𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥

s = 0.5 P1 P2 P3

s1 max 127.7 119.9 27.9

s1 min 91.4 117.1 27.7

sm 109.6 118.5 27.8

sa 18.1 1.4 0.1

R 0.72 0.98 0.99

s = 1.0 P1 P2 P3

s1 max 93.7 126.1 30.1

s1 min 76.3 122.9 29.9

sm 85.0 124.5 30.0

sa 8.7 1.6 0.1

R 0.81 0.97 0.99



• With σ=1mm, Peak power density of 12 kW/cm3 at Z pole (26 kW/cm3 for σ=0.5 mm)

• With σ=1mm, about 1 DPA/yr at Z pole (3 DPA/yr for σ=0.5 mm)

DPA → Target survival and frequency of target exchange to be assessed 

Target design: power density and DPA (vs e- beam σ)
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@Z-pole

Power 

density in 

target

Annual 

DPA in 

target
Assuming e- drive 

beam power of 5 kW

(185 days/year)



In general, no showstopper, but 

shielding design to be further optimized

Target design: radiation load to HTS coils 
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@Z-pole

(185 days/year

5 kW e- beam power)

Up to 8MGy/year Up to 8E-5 DPA/year

DPA likely acceptable (with annealing cycles)

Limits for ionizing dose to be understood (if any)

Cumulative dose in coils

(one year at Z-pole)

DPA in coils

(one year at Z-pole)



Summary
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• After several iterations, the current beam parameters provide a solid baseline for 
the design of the FCC-ee positron source target.

• A target made of pure tungsten now is a feasible option. The thermo-mechanical 
studies show values of temperature and stresses inside of the safety limits of 
tungsten. 

• As a next step, a R&D test campaign is foreseen to evaluate different 
manufacturing options for the target and the hipping of the tubes for the cooling 
system.

• The design of the P3 target is ongoing and it is a key factor to study the 
performance in terms of positron yield inside of the P3 experiment.
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