

Simulations of IR Tuning

Leon van Riesen-Haupt

WORK SUPPORTED BY THE SWISS ACCELERATOR RESEARCH AND TECHNOLOGY (CHART)

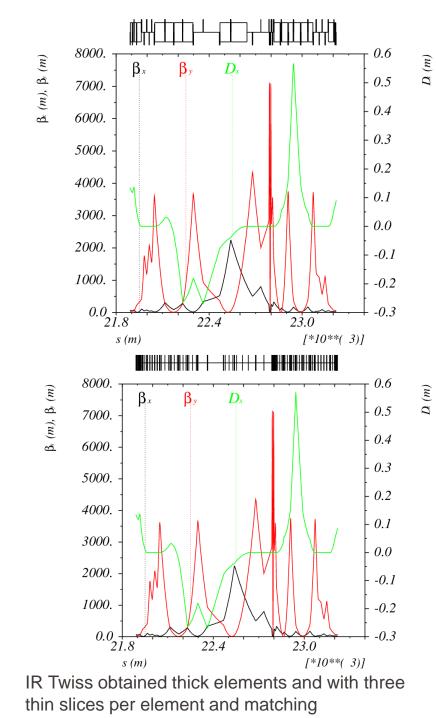
- Work originally motivated by to correct optics when converting between codes
 - Ensure **same physics** for different studies
 - EPFL/CHART software framework
- Synergies with needs of other studies that require optics tuning
 - Attempt to apply **segment-by-segment** style corrections to improve IR optics
 - Attempt to create tuning knobs in IR for correcting perturbations without rematching
- Relaxed optics for easier commissioning but also for simpler benchmarking studies

EPFL Levels of Matching

Global corrections

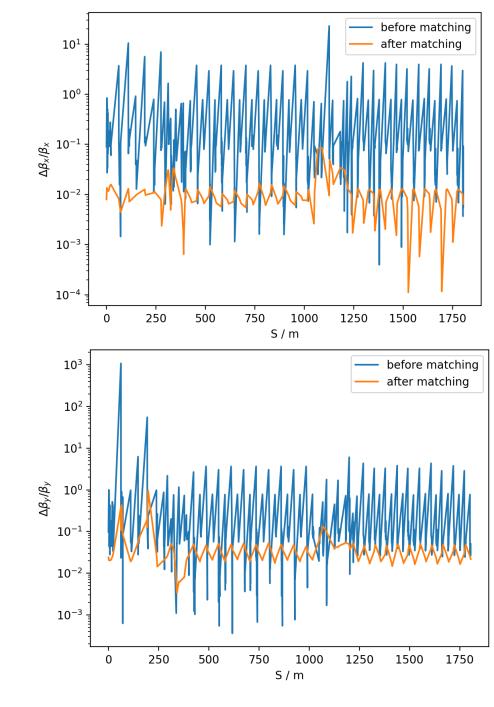
- Tune, detuning, chromaticity, beta beating
 - Benchmarked in conversion
 - Not relevant to IR tuning
- Segment-by-segment style matching
 - Match several important optics at certain physically relevant checkpoints
 - Includes IP, crab sextupoles, dispersion suppressor etc.
- Tuning knobs
 - For local correction of specific parameters
 - β^* control, waist shift,
- Non-linear corrections
 - To be explored...

EPFL


Segment-by-segment

EPFL Segment-by-segment: Strategy

- Identify sections based on
 - Magnets with common purposes
 - Important optics properties at specific points
- Compute and save ideal optics at these points
- Load perturbed lattices and match optics using segment-by-segment matching
 - Assume ideal optics at entrance of section
 - Perform matching to exit of section
- Iterate from one section to the next to recover correct optics


EPFL Segment-by-segment: Application

- Scripts for this written in MADX
- Tested for systematically and randomly perturbed optics
 - Recover design strengths and optics
- Applied to recover optics after slicing of lattice
 - Aim to be able to **reduce number** of slices to speed up simulations
 - Correct optics even with only three slices

EPFL Segment-by-segment: Application

- Applied to globally corrected lattices
 - Corrected lattices provided by T. Charles
- Scripts changed to correct and save each quarter separately
- Insertion style correction does not consider non-zero closed orbit
 - Small residual beating when simulating closed machine
- IP β-beating reduced from ~20% to ~2% percent
 - Need to explore how this affects other parameters
 - E.g. increased coupling, increased β -beating in certain areas
 - Coupling increase reported by D. Shatilov

Knobs

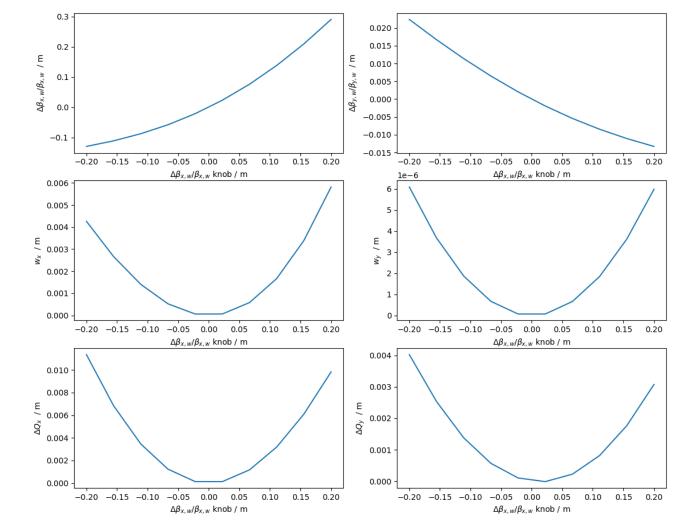
EPFL Knobs

- Often linear changes in multiple quadrupole strengths proportional to the target value of a parameter
 - $\Delta k = k_{knob} \times \Delta parameter$
- Compared to regular matching
 - More targeted adjustments
 - Easier and fast to use
 - Less precise, also at keeping other parameters unchanged
- Realistic in control room environment

EPFL Knobs from Fitting

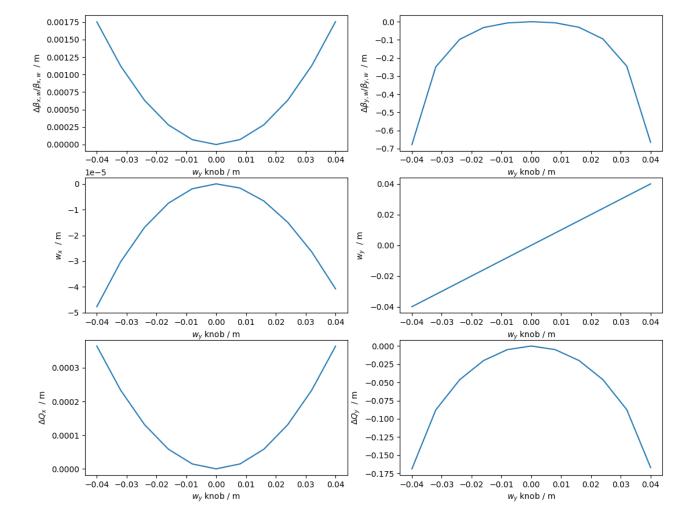
- Match one parameter to one value whilst keeping others constant and interpolate/extrapolate linearly for other values
- Certain parameters can be varied very linearly without distorting other parameters too much
 - Machine tune using RF insertion
 - Horizontal β -waist in IP
- Knobs for many other parameters much harder to define
 - Change other parameters more than the desired parameter
 - Vertical β -waist, β_w in both planes...
- More complex quadratic knobs can be defined to reduce unwanted changes in other parameters
 - Might be harder to implement in real machine
 - Still not satisfactory results for problematic parameters

EPFL Knobs via SVD


- Method pointed out by K Hanke, T Raubenheimer and P Raimondi at FCC-IS workshop
- Alternative method of creating knobs
 - "Reverse" to matching method
- Generate response matrix, M
 - Change setting of individual magnets, k_i
 - Monitor changes in observables o_j

•
$$o_j = M_{ji}k_i \approx \frac{\partial o_j}{\partial k_i}\mathbf{k}_i$$

- Construct pseudo inverse of M using SVD decomposition
 - $M = USV^T$
 - Pseudoinverse $M^{-1} = VS^{-1}U^T$
 - Can be used to find the correct setting k_i for a desired Δo
 - Can suppress small singular values to avoid linear codependency

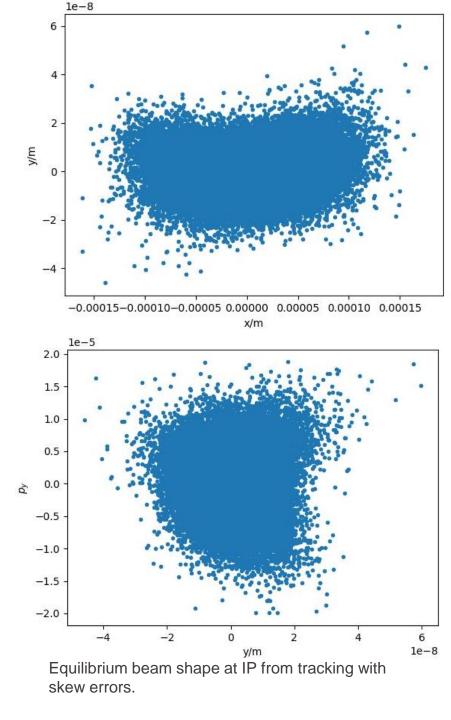

EPFL Knobs via SVD

- Effective for creating knobs where linear fitting fails
 - β_w control
 - Still not very linear but better than fit
 - Vertical β waist shift
- Seems to be more effective than linear fit
- Allows to gain insights in the behaviour of the machine
 - Also useful for alignment tolerances

EPFL Knobs via SVD

- Effective for creating knobs where linear fitting fails
 - β_w control
 - Still not very linear but better than fit
 - Vertical β waist shift
- Seems to be more effective than linear fit
- Allows to gain insights in the behaviour of the machine
 - Also useful for alignment tolerances

EPFL Coupling and Vertical Dispersion

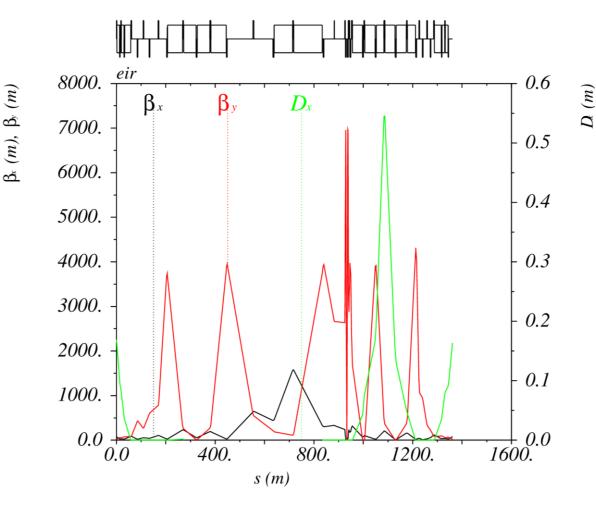

- SVD extendable
 - Further observables
 - Vertical dispersion, ΔQ_{min} , chromaticity
 - Further manipulations
 - Vertical displacement of sextupole, rotation of quadrupole, skew quadrupole field
- Allows for extension of method to create knobs to control further parameters at the IP e.g. vertical dispersion
 - Whilst keeping more observables constant
- Need to identify
 - Which magnets and perturbations to probe
 - Which observables to measure

EPFL

Non-linearities

EPFL Non-Linearities

- Require tuning of non-linear behaviour for e.g.
 - Dynamic aperture optimisation
 - Correcting aberrations in the IP for Luminosity
- Non-linear behaviour directly influenced by optics tuning
 - E.g. anharmonicities after segment-bysegment correction
- Development robust measurement and correction strategies
- Require robust simulation tools to determine non-linear behaviour



EPFL

Relaxed IR Optics

EPFL Relaxed IR Optics

- Relaxed optics important for
 - Easier **commissioning** and correction strategies
 - Benchmark simulations without IR effects
- Larger β* results in smaller β in final focus section
 - Lower non-linearities
 - Less susceptible to errors
- Scripts with madx macros that
 - Save initial optics at arcs
 - Match to a new target β^*
 - Save new strengths

EPFL Conclusion and Outlook

Segment-by-segment style matching

- Useful for recovering linear optics for conversion and simulated corrections
- Do not take into account **non-linear errors**
- Knob creation
 - SVD method more effective than linear interpolation
 - Demonstrated **effectiveness** for some knobs
 - Need to **create comprehensive** set of knobs for users
 - Coupling/vertical dispersion knobs to be explored
- Need to understand non-linear errors and conceptualise correction strategies
- **Relaxed optics** matching scripts for MADX available