

QCD & Event Generators for FCC-ee

P. Monni (CERN)

FCC Week 2023 - 6 June 2023

Role of precision QCD at FCC-ee

Reaching the foreseen precision poses outstanding challenges on theory calculations. Evolution in many areas is required to meet the goals

Role of precision QCD at FCC-ee

This talk addresses mainly QCD aspects*, EW corrections will be discussed in detail in the EW sessions

Outline of the talk: please visit indico pages for more info

Perturbative calculations

Physics at the Z pole

Numbers are given here for FCC-ee (best prospects)

[P. Janot's talk @ CERN FC workshop 2022]

Observables	Present value	FCC-ee stat.	FCC-ee current syst.	FCC-ee ultimate syst.	Theory input (not exhaustive)
m _z (keV)	91187500 ± 2100	4	100		Lineshape QED unfolding Relation to measured quantities
$\Gamma_{\rm Z}$ (keV)	2495500 ± 2300 [*]	4	25 5?		Lineshape QED unfolding Relation to measured quantities
σ ₀ _{had} (pb)	41480.2 ± 32.5 [*]	0.04	4	0.8	Bhabha cross section to 0.01% $e^+e^- \rightarrow \gamma\gamma$ cross section to 0.002%
$N_{\nu}(\times 10^3)$ from σ_{had}	2996.3 ± 7.4	0.007	1	0.2	Lineshape QED unfolding $(\Gamma_{\nu\nu}\!/\!\Gamma_{\ell\ell})_{\text{SM}}$
R_{ℓ} (×10 ³)	20766.6 ± 24.7	0.04	1	0.2 ?	Lepton angular distribution (QED ISR/FSR/IFI, EW corrections)
$\alpha_{\rm s}$ (m _Z) (×10 ⁴) from R _{ℓ}	1196 ± 30	0.1	1.5	0.4?	Higher order QCD corrections for Γ_{had}
R _b (×10 ⁶)	216290 ± 660	0.3	?	< 6o ?	QCD (gluon radiation, gluon splitting, fragmentation, decays,)

- Theory crucial in 3 ways: measurement/calibration (e.g. QED ISR); interpretation of results (EWPO); parametric uncertainties (i.e. couplings, masses)
- QCD uncertainties concern all three categories

Precision physics in Z/γ* → jets

- Main computational challenges from EW aspects:
 - EWPO Z → qq+X @ 3 loops EW and beyond
 - ► Beam calibration [e+e- \rightarrow e+e-, μ + μ -, γ @ NNLO EW still beyond reach]
- But high potential for precision QCD studies at the Z pole and above:
 - Strong coupling constant
 - Jet dynamics and substructure: spin correlations, fragmentation & track functions, multi-jet observables (global/non-global)
 - Non-perturbative effects & modelling
 - Heavy quarks (Q) studies (e.g. asymmetries, fragmentation) & jet tagging (e.g. q/Q vs. g jets)
 - τ decays (α_S)
 - Calibration/tuning of ML & MC models (instrumental for higher-energy runs)

Precision physics in Z/γ* → jets

- Significant room for improvement for QCD calculations, e.g.
- Heavy quarks: R_b, A_{FB} requires QQg and qqg(→ QQ) @ 2 loops with m_b dependence (NLO known)
- Fragmentation functions
- Multi-jet final states
 - 3 jets @ N³LO QCD
 - 4 & 5 jets at NNLO QCD

Some of this is within the reach of technology developed at LHC (e.g. Z/γ*+2 jets @ 2 loops, subtraction methods)

[e. g. five-point amplitudes in Abreu et al. '18-'23; Badger et al '19-'22; Chawdhry et al. '20-'21]

• Promising new directions for loop calculations: e.g. numerical approaches for total rates at $N^{(2/3)}LO$ (e.g. Feynman parameters, local unitarity, AMFlow, diffExp), though further progress needed for distributions

Precision physics in Z/γ* → jets

• All-order logarithmic corrections (resummations) desirable for phenomenology. A lot of new techniques refined in recent years for jet observables (SCET(s), numerical methods, generating functionals, ...)

Room for improvement in highmultiplicity (≥ 3 jets) observables, possibly requires algorithmic methods

Non-perturbative QCD corrections

• Better understanding of hadronisation in jet observables appears to be essential (event shapes, jet rates, jet substructure); serious limitation of TH accuracy. Possible avenues (possibly in combination):

• Techniques to calculate leading corrections as 1/Q expansion, recently first important steps for 3-jet configurations (largely based on large- n_F approximation)

- New observables with reduced NP sensitivity, e.g. through jet grooming. Preliminary studies on strong coupling extractions
- Tuning of MC generators across
 √s values (Q/q/g samples).
 High perturbative accuracy
 demanded, a lot of recent
 progress

[Luisoni, PM, Salam '20] [Caola, Ferrario Ravasio, Limatola, Melnikov, Nason '21+'22] [Nason, Zanderighi '23]

[Marzani, Reichelt, Schumann, Soyez, Theeuwes '19]

ZH threshold

- Experimental precision approaching 0.1% in many cases at ZH threshold
- Example: total cross section will be measured with precision in the range 0.2%-0.5%. Necessary ingredients:
 - e+e- → Z H (now available), H v v (e+e-) @ 2 loops EW (hard at the moment)

[Chen, Guan, He, Liu, Ma '22; Freitas, Song '21-'22]

Mixed QCD⊗EW @ 2 loops under control

[Gong et al. '17]

• Wealth of data in hadronic decays of the Higgs boson (demanding also excellent jet tagging performance*)

Decay	current unc. $\delta\Gamma$ [%]				future unc. $\delta\Gamma$ [%]			
	$ ho$ Th $_{ m Intr}$	$\mathrm{Th}_{\mathrm{Par}}^{m_q}$	$ ext{Th}_{ ext{Par}}^{lpha_s}$	$\mathrm{Th}_{\mathrm{Par}}^{m_H}$	$ ho$ Th $_{ m Intr}$	$\mathrm{Th}_{\mathrm{Par}}^{m_q}$	$ ext{Th}_{ ext{Par}}^{lpha_s}$	$\mathrm{Th}_{\mathrm{Par}}^{m_H}$
$H o b ar{b}$	< 0.4	1.4	0.4	_	0.2	0.6	< 0.1	_
$H \to \tau^+ \tau^-$	< 0.3	_	_	_	< 0.1	_	_	_
$H \to c \overline{c}$	< 0.4	4.0	0.4	_	0.2	1.0	< 0.1	_
$H o \mu^+ \mu^-$	< 0.3	_	_	_	< 0.1	_	_	_
$H o W^+ W^-$	0.5	_	_	2.6	0.3	_	_	0.1
$H \to gg$	3.2	< 0.2	3.7	_	1.0	_	0.5	_
$H \to ZZ$	0.5	_	_	3.0	0.3	_	_	0.1
$H o \gamma \gamma$	< 1.0	< 0.2	_	_	< 1.0	_	_	_
$H\to Z\gamma$	5.0	_	_	2.1	1.0	_	_	0.1

* See e.g. L. Gouskos' talk

Projected reduction of intrinsic TH uncertainties in line with what can be achieved with future calculations (total rates); improvement needed in parametric unc.

[Credit: J. de Blas]

Hadronic Higgs decays

• Accuracy significantly lower for differential distributions (e.g. potential sensitivity to light-quarks Yukawa)

NNLO (+resummations) achievable in the coming years (already available in H→bb and partly H→gg*);

sufficient for several-% precision (3loops needed for few-% level)

* All ingredients for HO in H→gg known (also with full mass dependence)

[Czakon et al. '20; Bonciani et al. '22 Melnikov, Enin '16; Liu, Penin '17-'19; Anastasiou, Penin '20; Chen, Jakubcik, Marcoli, Stagnitto '23]

 y_{cut}

12

Hadronic Higgs decays

• Accuracy significantly lower for differential distributions (e.g. potential sensitivity to light-quarks Yukawa)

However, hadronisation remains the main bottleneck

• e.g. thrust in Higgs decays (MC variation in plot)

- Increase in energy insufficient for suppression ($Q \sim m_H$)
- Runs at lower energies are essential for a robust tuning of NP models in MCs
- Also crucial for training of ML algorithms for jet tagging, instrumental in extraction of Higgs couplings

WW threshold scan and W mass and width

• TH cross section currently known accurately at NLO (EW) + NNLO (unstable particles EFT) sufficient for $\delta m_W \sim 5\text{--}6~MeV$

[Denner, Dittmaier, Roth, Wieders '05; Actis, Beneke, Falgari, Schwinn '08]

	$\sigma(e^-e^+ \to \mu^-\bar{\nu}_{\mu}u\bar{d}X)(\mathrm{fb})$						
$\sqrt{s} [\mathrm{GeV}]$	Born	Born (ISR)	NLO	$\hat{\sigma}^{(3/2)}$	$\sigma_{ m ISR}^{(3/2)}$		
158	61.67(2)	45.64(2)	49.19(2)	-0.001	0.000		
		[-26.0%]	[-20.2%]	[-0.0%]	[+0.0%]		
161	154.19(6)	108.60(4)	117.81(5)	0.147	0.087		
		[-29.6%]	[-23.6%]	[+1.0%]	[+0.6%]		
164	303.0(1)	219.7(1)	234.9(1)	0.811	0.544		
		[-27.5%]	[-22.5%]	[+2.7%]	[+1.8%]		
167	408.8(2)	310.2(1)	328.2(1)	1.287	0.936		
		[-24.1%]	[-19.7%]	[+3.1%]	[+2.3%]		
170	481.7(2)	378.4(2)	398.0(2)	1.577	1.207		
		[-21.4%]	[-17.4%]	[+3.3%]	[+2.5%]		

- Can be further improved using NLL ISR
- Effect of tight selection cuts in the EFT to be understood

Reaching the stat. uncertainty of 0.3-0.5 MeV is very demanding

$$\Delta m_{\mathrm{W}}(\mathrm{T}) = \left(\frac{d\sigma_{\mathrm{WW}}}{dm_{\mathrm{W}}}\right)^{-1} \Delta \sigma_{\mathrm{WW}}(\mathrm{T})$$

$$\Delta \sigma_{\rm WW}({\rm T}) < 0.8 \text{ fb}$$

W mass extraction from hadronic and semi-leptonic decays

- Very good experimental resolution with momentum conservation fit (4C or 5C),
 competitive with threshold scan
- Theory modelling harder, with systematics yet to be precisely assessed
 - Control over QED ISR (NLL available)
 - EFT resonant aspects near threshold
 - Backgrounds: 2f & 4f final states
 - Colour reconnection in hadronic channels

[G. Wilson's talk @ CERN FC workshop 2022]

fully hadronic qqqq

$$B_h^2 = 45.4\%$$

semi-leptonic $qar{q}\ell
u_\ell$

$$6B_{\ell}B_{h}=43.9\%$$

Top physics

- Huge potential from threshold scan: up to per-mille accuracy on cross section & asymmetries
- Access to top mass and width, as well as strong coupling and top Yukawa coupling
- e.g. projected exp. target for top mass $\delta m_t \sim 20 \; MeV$

Great challenge for theory to match this precision; intrinsic (e.g. higher order) & parametric (e.g. strong coupling from Z pole) uncertainties

Top physics: theory for threshold scan

• PNRQCD predictions known to N³LO (also including EW+non-resonant effects @ NNLO)

$$R \sim v \sum_{k} \left(\frac{\alpha_s}{v}\right)^k \cdot \left\{ \underbrace{1 \text{ (LO)}}_{s} ; \underbrace{\alpha_s, v \text{ (NLO)}}_{s}; \underbrace{\alpha_s^2, \alpha_s v, v^2 \text{ (NNLO)}}_{s}; \underbrace{\alpha_s^3, \alpha_s^2 v, \alpha_s v^2, v^3 \text{ (N3LO)}}_{s}; \dots \right\}$$

[Beneke, Kiyo, Marquard, Penin, Piclum, Steinhauser '15]

- Uncertainty in top mass (potential subtracted) $\delta m_t \sim 40$ MeV. Towards exp. target (20 MeV):
 - Some improvements already from matching of N³LO+NNLL (NNLL from Hoang et al.)
 - Needs NLL ISR (possibly including soft modes)
 - Ultimately might require N4L0 in PNRQCD needed (currently out of reach)

Top physics: above threshold & continuum (mainly ILC/CLIC)

- Continuum: target is 0.1% on cross section. N³LO QCD recently calculated but NNLO EW is necessary
- Top mass from radiative return from ISR photon: required matching of continuum and threshold calcns
 - TH unc. doesn't seem to be dominant source of unc.
 - Possible access to running of (MSR) mass

[Boronat, et al. '19]

cms energy	CLIC, $\sqrt{s} = 380 \text{GeV}$		ILC, $\sqrt{s} = 500 \text{GeV}$		
luminosity $[fb^{-1}]$	500	1000	500	4000	
statistical	$140\mathrm{MeV} 90\mathrm{MeV}$		$350\mathrm{MeV}$	$110\mathrm{MeV}$	
theory	$46\mathrm{MeV}$		$55\mathrm{MeV}$		
lum. spectrum	$20\mathrm{MeV}$		$20\mathrm{MeV}$		
photon response	$16\mathrm{MeV}$		$85\mathrm{MeV}$		
total	$150\mathrm{MeV}$	$110\mathrm{MeV}$	$360\mathrm{MeV}$	$150\mathrm{MeV}$	

QED collinear factorisation

- Central component in FCCee precision phenomenology (Z, WW, tt, ZH,...)
- Recently important progress in formulating collinear factorisation (as opposed to YFS) beyond LO/LL. NLL sizeable (% level) and process/observable dependent. E.g. corrections to total rates $(\tau_{\min} = \frac{M^2}{s})$
 - NNLL hard but within reach of modern perturbative techniques
 e. g. [Bluemlein et al. '12-'21]
 - Ongoing discussions as to whether a simultaneous resummation of soft and collinear corrections is necessary

•
$$\sqrt{Q^2}=500$$
 GeV $\ell=\log \frac{Q^2}{\langle E_\gamma
angle^2}\,, \qquad L=\log \frac{Q^2}{m^2}\,$

[Example from S. Frixione 2022]

$$L = 24.59 \implies \frac{\alpha}{\pi} L = 0.068$$

$$0 \le m_{ll} \le m_Z, \quad \ell = 1.46 \implies \frac{\alpha}{\pi} \ell = 0.0036$$

$$m_Z - 1 \text{ GeV} \le m_{ll} \le m_Z, \quad \ell = 4.51 \implies \frac{\alpha}{\pi} \ell = 0.01$$

Parton showers & event generators

Event generators impact FCC physics programme in toto

- Perturbative calculations often available for (semi-)inclusive observables. Event generators vital for, e.g.
 - Exclusive hadronic observable (e.g. jets)
 - Beam & detector calibration
 - Training of Machine Learning tools for jet/flavour tagging
- Matching the accuracy goals of FCCee poses an outstanding challenge:
 - Perturbative accuracy of parton shower algorithms
 - Matching to higher order calculations for hard scattering
 - Treatment of heavy resonances
 - Non-perturbative QCD
 - QED corrections (jointly with QCD)

Perturbative accuracy of parton showers

Possible NLL dipole-shower solutions for e⁺e⁻

[M. van Beekveld 2023]		Ordering	Kinemat i Dipole-local	Tests	
2110MG12	PanLocal (Dipole and antenna)	$0 < \beta < 1$	+, − , ⊥		Fixed- and all-order numerical tests for different observables
[2002.11114]	PanGlobal	$0 \le \beta < 1$	+,-	Τ	for e^+e^- and pp (colour singlet)
Alaric [2208.06057]		$\beta = 0$	+	−, ⊥	Numerical tests for global event shapes
Deductor [2011.04777]	Deductor k_t	$\beta = 0$	$+$ (Also formulation with $+,-,\perp$)	−, ⊥	Analytical and to some extent numerical for
	Deductor Λ	$\beta = 1$	+	-, ⊥	thrust
Manchester-Vienna [2003.06400]		$\beta = 0$	+	–, ⊥	Analytical for thrust and multiplicity

Showers also differ on the implementation of the splitting functions and how the global imbalance is redistributed

All have different approaches to assess NLL accuracy

- New technology to improve logarithmic accuracy on a more systematic basis: current status is NLL, with uncertainties at the ≥10% level
- Promising developments also re. subleading colour effects
- FCCee demands at least NNLL QCD accuracy, and arguably higher

e.g. NGLs in rapidity slice

 $singlet \rightarrow gg spectrum$ arXiv:2011.04154v $\Sigma_n(\rho)$ [S. Plaetzer 2023] 0.0010.010.1

Logarithmic accuracy aware matching

POWHEG_β and NNDL accuracy

 At DL accuracy the answer we are after is given by

$$\Sigma(O < e^L) = e^{-\bar{\alpha}L^2}, \quad \bar{\alpha} = \alpha_S$$

• If the shower and HEG contours line up everywhere, we would get that answer. If they disagree in the hard-collinear region, we instead get (neglecting terms beyond NNDL)

$$\Sigma(O < e^{L}) = e^{-\bar{\alpha}L^{2}} \left[1 + 2\left(e^{-\bar{\alpha}\beta L^{2}} - 1\right) \bar{\alpha}\Delta \right] \tag{1}$$

• Δ is the effective area of one shaded green region, which for PanLocal and $\gamma \to q\bar{q}$ is given by

$$\bar{lpha}\Delta=rac{2C_Flpha_{
m S}}{\pi}\cdotrac{4\pi^2-15}{24}.$$

- Since Δ is O(1) this gives rise to a tower $\propto \alpha_{\rm S} (\bar{\alpha}_{\rm S} L^2)^n$ in eq. (1), which breaks NNDL.
- Newly developed NLL showers constrain matching to N(N)LO
- Well known matching schemes may be affected by breaking of logarithmic accuracy in specific observables
- Further work needed to upgrade NNLO generators to NLL accuracy

[Hamilton, Karlberg, Salam, Scyboz, Verheyen 2023]

Treatment of heavy resonances

- Correct handling of resonances at higher orders essential at FCA
- Technology for resonance-aware NLO+PS already available in main MC generators.
- Logarithmic accuracy of matching with virtuality-preserving mappings
- MG5_aMC@NLO [Frederix, Frixione, Papanastasiou, Prestel, Torrielli '16]
 - ▶ Phase space remapping & prescription for including the resonance in LHE
 - pp → tj
 - ► SMC: Herwig6, Pythia8[†]
- I focus on POWHEGBOXRES+Pythia8 and POWHEGBOXRES+Herwig7

[T. Ježo 2023]

- Whizard [Chokoufé Nejad, Kilian, Lindert, Pozzorini, Reuter, Weiss '16]
 - ▶ Resonance-aware FKS with $Z \rightarrow b\bar{b}$ and $H \rightarrow b\bar{b}$ RH
 - ► Fixed order $e^+e^- \rightarrow t\bar{t}$ & $e^+e^- \rightarrow t\bar{t}H$
- Sherpa [Höche, Liebschner, Siegert '18]
 - Resonance-aware CS subtraction
 - ► Fixed order $e^+e^- \rightarrow t\bar{t}$ & $pp \rightarrow t\bar{t}$
- Must be analysed/revisited in light of recent and future NLL developments
 - Logarithmic accuracy of matching with virtuality-preserving mappings
 - ► Higher order showers for reactions with massive quarks (e.g. tt, WW → jets)
 - Non-relativistic effects (NRQCD, unstable particle EFT), currently out of reach in MCs

Non-perturbative QCD

- Modelling of NP effects is a crucial goal for precision programme
 - Spectrum of old&new models of NP physics
 - Input from FCCee is highly beneficial:
 - Span of c.o.m. energies crucial for tuning, jointly w/ higher order MCs
 - High-purity samples of gluon/heavy-quark jets beneficial for fragmentation models (used e.g. in jet tagging)
 - Potential of cross-benefit between stages of FCCee
 (e.g. tunes in Z → jets useful for ZH, CR at WW → jets, ...)
 - Crucial to explore implications of recent analytic calc^{ns} (in large-n_F) for MC generators (e.g. mappings)

e.g. CR inspired by amplitude-level evolution in PS

e.g. GANs as hadronisation model (π s only)

Discriminator

First steps towards NLL QED (ISR) effects in parton showers

QED Parton Shower

see for instance review in 0912.0749

[G. Stagnitto 2023]

Introduction of a cutoff $x_+ = 1 - \epsilon$, with $\epsilon \ll 1$, to regularise splitting kernels:

$$P_{+}(z) = \theta(x_{+} - z)P(z) - \delta(1 - z) \int_{0}^{x_{+}} dx P(x)$$

 $P_+(z) = \theta(x_+ - z)P(z) - \delta(1-z) \int_0^{x_+} \mathrm{d}x \, P(x)$ By introducing a Sukadov form factor: $\Pi(s_1, s_2) = \exp\left(-\frac{\alpha}{2\pi} \int_{s_2}^{s_1} \frac{\mathrm{d}s'}{s'} \int_0^{x_+} \mathrm{d}z \, P(z)\right)$

one can recast the evolution equation in an iterative integral form:

$$D(x,s) = \sum_{n=0}^{\infty} \prod_{i=1}^{n} \left\{ \int_{m_e^2}^{s_{i-1}} \frac{\mathrm{d}s_i}{s_i} \Pi(s_{i-1}, s_i) \frac{\alpha}{2\pi} \int_{x/(z_1 \cdots z_{i-1})}^{x_+} \frac{\mathrm{d}z_i}{z_i} P(z_i) \right\} \Pi(s_n, m_e^2) D\left(\frac{x}{z_1 \cdots z_n}, m_e^2\right)$$

which can be solved by means of a MC algorithm

- New extension of QED collinear factorisation to NLL provides the ingredients for a NLL (next-to-single-log) accurate evolution
- Currently inclusive treatment of radiation, more work needed for fully differential generator & interleaved QED

 QCD PS

Outlook

- Astounding experimental programme at FCCee, drastic reduction of statistical (and systematic) uncertainties: theory precision likely to be among the main bottlenecks
- Many (if not all) areas of theory calculations need to be involved (fixed order QCD + EW, resummations in QCD & QED, effective field theories, non-perturbative QCD, event generators, ...)
- Most challenges are technical in nature: hard calculations, currently beyond reach but likely to become achievable with the evolution of the field at the LHC in the coming decade(s), and substantial work
- Some deep conceptual issues, which need significant breakthroughs to improve their understanding: e.g. non-perturbative QCD (hadronisation, colour reconnection), currently a bottleneck in several studies
- Many new opportunities from high-quality experimental data, crucial to think of how to exploit it to improve on modelling aspects and theory uncertainties (e.g. heavy flavour & gluon fragmentation, hadronisation modelling, ...)