

Higgs Mass, cross-section & self-coupling at FCC-ee

Louis Portalès

FCC week 2023, London - 07/06/2023

Higgs properties at (HL-)LHC

Extensive Higgs physics program currently ongoing at (HL-)LHC

- → With impressive results, despite the harsh conditions of p-p collisions
- → Higgs mass, looking at H→ZZ* and H→yy
 - O(‰) uncertainties achieved by ATLAS+CMS
 - Can expect ~10-20 MeV precision with HL-LHC
- → Higgs width, in H→ZZ* on- & off-shell production
 - ~ 50% uncertainties with Run 2
 - Great achievement, but far from "precision" realm
- → **Higgs self-coupling**, mainly in HH production
 - ~ 50% uncertainty expected with full HL-LHC dataset
 - Maybe pessimistic as not accounting for latest (+ future) tool developments, esp. object (b, taus, ...) tagging

FCC-ee - Looking differently

At FCC-ee, things will look much different

- → Two datasets enriched in ZH (@ 240 GeV) and VBF-H (@365 GeV) will be gathered
 - * "ZH" run @ 240 GeV: ~ 2 million ZH events, ~ 50.000 VBF-H events w/ 4IP
 - "ttbar" run @ 365 GeV: ~ 400.000 ZH events, ~ 100.000 VBF-H events w/ 4 IP
- → ZH events will allow to **study the Higgs boson inclusively**, looking the associated Z boson
 - Evaluating the Higgs "recoil" mass: $M_{\rm rec}^2 = s 2E_Z\sqrt{s} + M_Z^2$
 - ► Clean Higgs peak to measure ZH cross-section and m_H
 - → And unbiased access to g_{HZZ} from production

Through simple parametrisation of cross-section measurement:

$$\sigma_{\rm ZH} BR(H \rightarrow ZZ^*) \propto \frac{g_{\rm HZZ}^4}{\Gamma_{\rm H}}$$

- → **Higgs self coupling** will also be accessible, through loop effects
 - And probed (mostly) inclusively

FCC-ee - Looking differently

At FCC-ee, things will look much different

- → Two dataCovered by the ongoing prospect studies athered
 - "ZH" run @ 240 (and in the following slides) events per IP "ttbar" run @ 365 GeV: ~ 200 000 ZH events

Ang Li, Jan Eysermans, Gregorio Bernardi

- → ZH events will allow to **study the Higgs boson inclusively**, looking the associated Z boson
 - Evaluating the Higgs "recoil" mass: $M_{\rm rec.}^2 = s 2E_Z\sqrt{s} + M_Z^2$
 - Clean Higgs peak to measure ZH cross-section and m_H
 - → And unbiased access to q_{HZZ} from production

N. Harringer, R. Salerno, L. Portales, R. Lemmon, S. Sasikumar, A. Tishelman-Charny, E. Brost

- **Higgs self coupling** will also be accessible, through loop effects:
 - And probed (mostly) inclusively

Higgs mass and ZH cross-section

→ Analysis focusing on Z(→ee/μμ)H

- Small fraction of Z decays, but better resolution by far
- Allows for clean and narrow M_{rec} peak

→ Using "standard" FCC-PED simulations:

- Simulated events from IDEA detector
 - →Excellent tracking capability w/ drift chambers
- Assuming 10 ab⁻¹ of data

→ Analysis selection (in short):

- At least 2 SFOS leptons (pT > 20 GeV)
 - → at least one **isolated** lepton
- Selecting lepton pair from Z decay minimizing

$$\chi^2 = 0.6 \times (m_{\ell\ell} - m_Z)^2 + 0.4 \times (m_{rec} - m_h)^2$$

- 86 < m_{||} < 96 GeV
- 20 < p_{II} < 70 GeV
- 120 < M_{rec} < 140 GeV
- $|\cos(\theta_{miss})| < 0.98$ (mass measurement only)

- → ≤0.2% momentum resolution with IDEA drift chambers
- → Reduced for electrons due to bremstrahlung (despite partial recovery)

5 / 15

Higgs mass and ZH cross-section

→ 6 categories defined

- As a function of leptons flavor & θ (CC, CF & FF)
 - → ~ classified according to expected peak resolution

→ Using parametric model for signal & backgrounds

- Signal: 2CBG (beyond double-sided crystal-ball):
 - → combination of 2 single-sided crystal-ball and a gaussian:

$$pdf_{rec} = cb_1CB(\mu, \sigma, \alpha_1, n_1) + cb_2CB(\mu, \sigma, \alpha_2, n_2) + Gauss(\mu_{gt}, \sigma_{gt})$$

- Background: 3rd order polynomial
 - → Sufficient to model smooth sum of main background in SR

→ Signal extraction through likelihood fit:

- using CMS' combine tool
- Signal PDF parametrised as a function of mH
 - \rightarrow Including set of syst. uncertainties (BES, e/ μ scales, \sqrt{s})

Expecting δ mH ~ 3.3 MeV (~ 2.67 stat. only)

6/15

Detector & machine considerations

- → Some extended studies performed regarding detector effects
 - Looking at impact on mH resolution
 - → to be compared to **stat-only (syst.) nominal estimates**

~ Going from crystal calorimeter to Dual readout	Fit configuration	$\mu^+\mu^-$ channel	e^+e^- channel	combination
(tight artificial smearing applied to electrons)	Nominal	3.49 (4.27)	4.38 (4.72)	2.67 (3.28)
Nominal 2 T field → 3 T (stronger field → better tracking)	Inclusive	4.11 (4.79)	5.26 (5.73)	3.19 (3.89)
	Degradation electron resolution (*)	3.49(4.27)	5.09 (5.70)	2.82 (3.66)
	Magnetic field 3T	2.89 (3.79)	3.59(4.38)	2.20 (3.27)
IDEA drift chamber → CLD silicon tracker	CLD 2T (silicon tracker)	4.56 (5.32)	4.93 (5.48)	3.26 (3.99)
	BES 6% uncertainty	3.49 (4.35)	4.38 (5.00)	2.67 (3.42)
Important impact of BES uncertainties AND nominal value	Disable BES	1.92 (3.15)	2.52(3.46)	1.50 (2.70)
	Ideal resolution	2.67(3.44)	3.29 (3.94)	2.02 (2.96)
Assuming "perfect" (== gen-level) momentum resolution → Not so far off in some of the cases above :)	Freeze backgrounds	3.49 (4.27)	4.38 (4.72)	2.67 (3.27)
	Remove backgrounds	2.86 (3.69)	3.26 (3.47)	2.11 (2.64)

Higgs mass and ZH cross-section

→ Similar selection as mass measurement

- Dropping $|\cos(\theta_{miss})|$ requirement
 - → avoiding selection bias towards H decays w/ neutrinos
 - → But lowers sensitivity to signal
- Instead, trained a BDT using (Z) leptons kinematics
 - → To help recover lost sensitivity

→ Comparing fitted cross-section with Mrec & BDT score

- Binned likelihood fit of distributions
 - \rightarrow With cut on BDT for M_{rec} fit

Expecting $\delta \sigma \sim 0.61\%$ ($\sim 0.60\%$ stat. only) fitting BDT score

 $\Delta \sigma \sim 0.93\%$ (~ 0.55 stat. Only) with M_{rec}

Higgs self-coupling

Involved in single-higgs processes at NLO

$$\sigma_{i,\text{NLO}} = Z_{\text{H}} \sigma_{i,\text{LO}} \left(1 + \kappa_{\lambda} C_{1,i} \right)$$
Universal wave function renormalization

- → Can be probed **exclusively**
 - Combined fit of all decay modes
 - Under consideration (@ BNL: A.Tishelman, E.Brost)
- → Or (partially) inclusively
 - With combined analysis @ 240 GeV & 365 GeV
 - → Discussed in the following slides

Decay Modes $C_1^{\Gamma}[\%] \ | \gamma \gamma \ | ZZ \ | WW \ | far{f} \ | gg$ on-shell $H \ | 0.49 \ | 0.83 \ | 0.73 \ | 0 \ | 0.66$ $C_1^{\Gamma_{ m tot}} \equiv \sum_j { m BR^{SM}}(j) C_1^{\Gamma}(j) \ ^2 2.3 { m x} 10^{-3}$

Higgs self-coupling - Analysis

→ Analysis setup:

- Spring 2021 samples (older baseline w/ IDEA detector)
 - → to be updated!
- → Categorization tuned for the two energy points (240, 365 GeV)
 - 18 orthogonal categories
 - \rightarrow 2x2 Z(ee/µµ)H categories similar to mass & xsec analysis
 - \rightarrow 2x6 Z(qq)H categories per qq flavor
 - → Additional eeH(→bb) & vvH(bb) categories @ 365 GeV

Inclusive λ measurement – ZH selection

→ Similar selection as mH/cross-section analysis for Z→ee/µµ

(looking for the same process)

→ Tuned selection for Z→qq

- 6 flavor categories (bb,cc,ll,bc,bl,cl)
 - → Assuming ad-hoc tagging efficiencies
 - → Dedicated Z→cc optimisation ongoing (@BNL)
- 86 < m_{qq} < 96 GeV
- 120 < M_{rec} < 140 GeV
- $|\cos(\theta_{\text{miss}})| < 0.90$

→ BDT used for selection

- One per flavor category
 - → Using only Z→qq kinematics

	b jet	c jet	l jet	g jet
b tag	0.80	0.08	0.01	0.01
c tag	0.10	0.60	0.01	0.03
l tag	-	-	0.80	-

Inclusive λ measurement- VBF selection

→ Recoil mass not sufficient to properly isolate a Higgs peak in VBF

- Instead, looked at VBF H→bb
 - → Exclusive measurement, some model-dependance introduced

→ Defining selection adapted to VBF

- No μμ pair reconstructed (ννΗ: no ee pair either)
- 2 b-tagged jets
- $H_T > 20 \text{ GeV}$, $|\Delta \eta_{bb}| < 3 (vvH: + MET > 20 \text{ GeV})$
- $|M_{ee} M_Z| > = 6 \text{ GeV (eeH)}$
- $|M_{qq} M_H| \le 30 \text{ GeV (VVH)}$

→ Still using Mrec as template variable for the fit

Cutting on BDT discriminants, using (b-)jet kinematics and multiplicity as inputs

FCCAnalyses: FCC-ee Simulation (Delphes)

Inclusive λ measurement – combined fit

→ Measuring cross-section & coupling modifier

- Parametrised cross-section as a function of κ_{λ}
- Fitting all categories (ZH + VBF) together

→ Assuming:

- 0.1% luminosity uncertainty
- 1% selection efficiency uncertainty
- 2.8 MeV uncertainty on CoM energy
- $m_h = 125.38 +/- 0.14 \text{ GeV}$ (latest CMS result)
- Higgs decay BRs (H→bb) fixed to SM values

\rightarrow Reaching δκ_λ ~ 30% (~20% with 10 ab⁻¹)

- Combining with HL-LHC expected constraints
- Sensivity driven by Z(qq)H categories
- Adding ZH@365GeV resolves degerated minima
- Negligible impact from VBF-H

Conclusion & take-away

Prospective study of Higgs parameters (mass, cross-section, self-coupling) @ FCCee

- → Mainly targeting inclusive ZH production @ 240 GeV (+ exclusive VBF-H @ 365 GeV for λ)
 - → Reaching excellent precisions assuming baseline scenario (IDEA detector & 10 ab⁻¹)

Excellent playground to understand detector requirement

- → Detector/beam performance impact probed in mH measurement:
 - Clear gains from higher field (better lepton momentum resolution) & better control of BES
 - Ecal design would impact Z→ee category, but sensitivity driven by Z→μμ
- → Jet performance would significantly influence sensitivity to λ (driven by Z→qq categories)
 - Good physics usecase to compare calorimeter designs

Room for fine-tuning and to get to a better understanding/more educated design choices

- → Include more (and more realistic) systematics in the studies (esp. mH measurement)
- → Refresh analyses with state-of-the-art tools (e.g. ParticleNet), latest samples & detector performance estimates (esp. λ measurement)

Back up