

Higgs couplings to hadrons and invisible particles

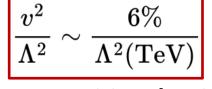
Loukas Gouskos (CERN)

FCC Week London 2023

Credits: A. Del Vecchio (Roma), J. Eysermans (MIT), D. Garcia (CERN), G. Marchiori (CNRS), A. Mehta(Liverpool), N. Robotis (Liverpool), M. Selvaggi (CERN)

Loukas Gouskos

Physics motivation


• LHC results: do not concretely point to any BSM scenario/mass scale

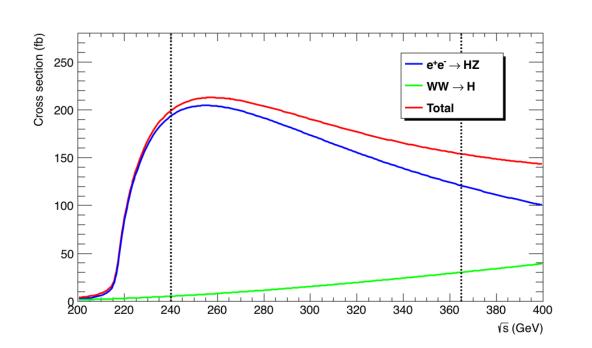
FCC Week London 2023

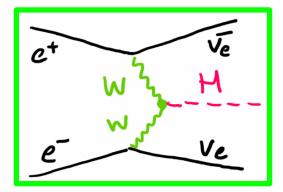
- HL-LHC: <u>Direct searches</u>: reach O(5-10) TeV regime <u>Higgs-couplings</u>: few%, self-coupling ~50%
- Which precision?

Model	$b\overline{b}$	CĒ	gg	WW	au au	ZZ	$\gamma\gamma$	$\mu\mu$
MSSM [40]	+4.8	-0.8	- 0.8	-0.2	+0.4	-0.5	+0.1	+0.3
Type II 2HD [42]	+10.1	-0.2	-0.2	0.0	+9.8	0.0	+0.1	+9.8
Type X 2HD $[42]$	-0.2	-0.2	-0.2	0.0	+7.8	0.0	0.0	+7.8
Type Y 2HD [42]	+10.1	-0.2	-0.2	0.0	-0.2	0.0	0.1	-0.2
Composite Higgs [44]	-6.4	-6.4	-6.4	-2.1	-6.4	-2.1	-2.1	-6.4
Little Higgs w. T-parity [45]	0.0	0.0	-6.1	-2.5	0.0	-2.5	-1.5	0.0
Little Higgs w. T-parity [46]	-7.8	-4.6	-3.5	-1.5	-7.8	-1.5	-1.0	-7.8
Higgs-Radion [47]	-1.5	- 1.5	+10.	-1.5	-1.5	-1.5	-1.0	-1.5
Higgs Singlet [48]	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5

Ref BSM O(1TeV): Impact on H-couplings

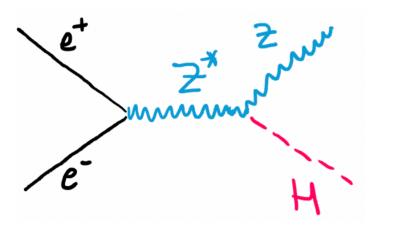
e.g. ∧=1 (5)TeV→~5 (0.1)%

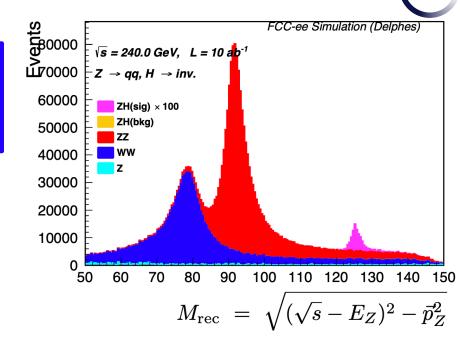

- HL-LHC cannot guarantee definite answers to the open questions
- Begs for Higgs factory \rightarrow e⁺e⁻



Physics								
• LHC results: do								
HL-LHC: Direct								
Ref BSM O(1 FeV Model MSSM [40] Type II 2HD [42]	Higg Higg Dete Sum	tegy ar s coup	ling: ling: equi	s to s to	"vi "in nen	sib ivisi ts	le"	measurements particles " particles e.g. ∧=1 (5) Te → 5 (0.1)%

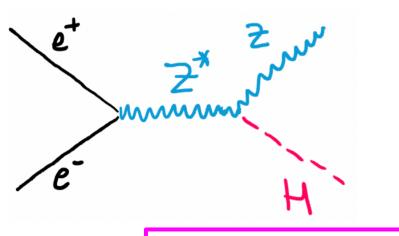
Higgs production at FCC-ee


Focus at ZH production: 2M Higgs [4IP]

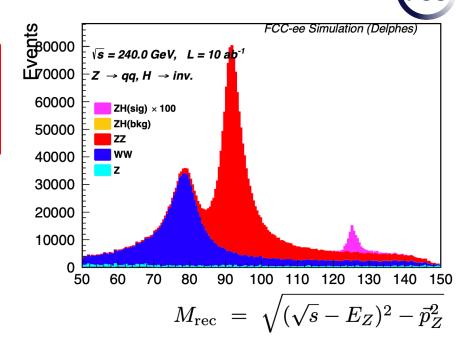

- Clean environment
- Small BKGs [compared to hadron colliders]

Z boson reconstruction:

- explore several decay modes
- recoil mass

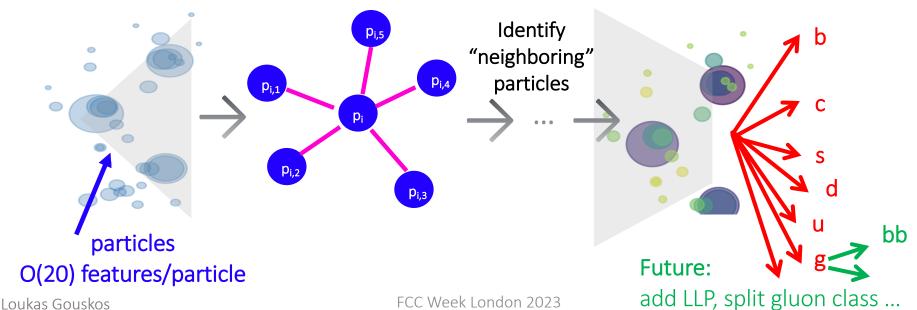


FCC


Z boson reconstruction:

- explore several decay modes
- recoil mass

Higgs boson reconstruction:


- jet clustering
- jet flavor identification

BR(H→hadrons) ~ 80%
BR(Z→hadrons) ~ 70%
Optimal reconstruction of
hadronic final states essential

Jet Flavour identification ("tagging")

- Jet representation: Particle cloud
 - i.e. unordered set of particles
- Network architecture: Graph Neural Networks
 - Particle cloud represented as a graph
 - particles: vertices of graph; interactions b/w particles: edges of graph
- Hierarchical learning approach: local \rightarrow global structures

H. Qu and LG <u>PRD 101 056019 (2020)</u> F. Bedeschi, M. Selvaggi, LG <u>EPJ C 82 646 (2022)</u>

Jet tagging: Performance

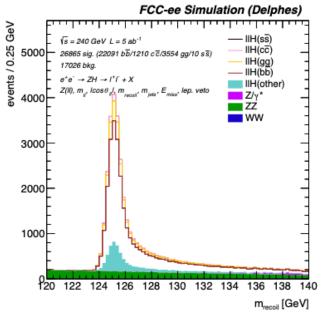
	\ \ 1		c-tago	ging	DEA)			strang	je-taggi	ng	IDEA)
	probability	⁺ e ⁻ → ZH , H j = u, d, s, c, t		c tagging		robability	Γ	<i>Z H , H → j j</i> d, s, c, b, g	s tag	ging	
	10 ⁻²	- c vs g c vs ud c vs b	bet			¹ jet misid. probability 10-1 10-5.01		rs ud rs c rs b		etter -	
	10 0	0.2	0.4	0.6 0 jet tagging	.8 1 efficiency		0 0	0.2 0.4	0.6 jet taq	0.8 gging effic	iency
	WP	Eff (c)	Mistag (g)	Mistag (ud)	Mistag (b)	WP	Eff (s)	Mistag (g)	Mistag (ud)	Mistag (c)	Mistag (b)
	Loose	90%	7%	7%	4%	Loose	90%	20%	40%	10%	1%
Louk	Medium	80%	2%	0.8%	2%	Medium	80%	9%	20%	6%	0.4%

FCC

8

H-Couplings to visible particles

Analysis channels

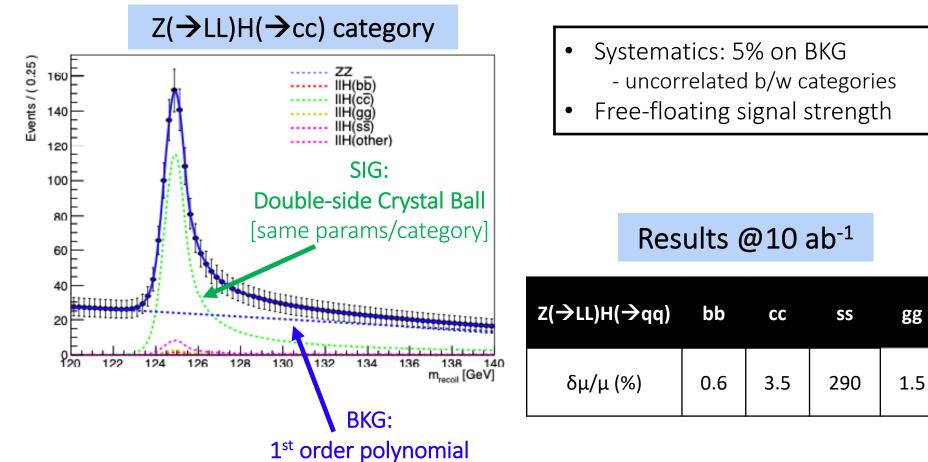

- $Z(\rightarrow LL)H$: clean but smaller signal acceptance
- $Z(\rightarrow vv)H$: good compromise b/ signal acceptance and purity
- ◆ Z(→hadrons)H: Largest signal acceptance, but.. jets [work in progress]

Study all possible Higgs decay modes

- Currently: bb, cc, ss, gg, ττ
 - work on going: uu, dd, + off diagonal terms

- Baseline: N_L=2, N_i=2
 - \bullet m_{LL} (m_{jj}) consistent with m_Z (m_H)
 - ◆ d₂₃ > 2, d₃₄> 1.5

- Main [non-Higgs] BKGs: ZZ
 - ◆ Key: disentangle Higgs decay modes

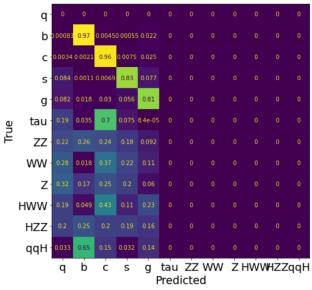


- Event-level discrimination with NN:
 - Inputs:
 - ParticleNet-ee scores / jet
 - Event-level: d23, d34, p_{miss}, m_{jj}
 - Multiclass output

 $\mathbb{Z}(\rightarrow LL)H$ channel (II)

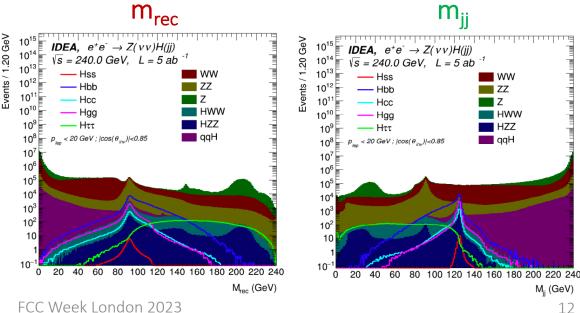
Fit m_{rec} simultaneously in all categories

Loukas Gouskos


FCC Week London 2023

ℤ Z(→vv)H channel

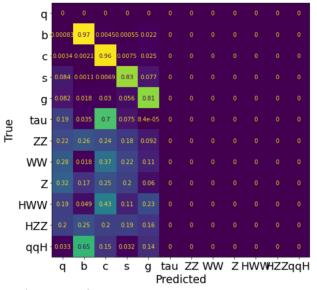
Similar strategy: but larger and more complex BKGs


Event categorization

- Sum ParticleNet scores of 2 jets
 - e.g. scores: b_1b_2 , c_1c_2 , s_1s_2 , ...
- Largest Σ : Characterize event
 - Subcategories based on S/B

SIG-vs-BKG discrimination

- Different SIG and BKGs shapes in m_{rec} & m_{ii}
- Bump hunt in 2D
 - simultaneous fit in all categories


Loukas Gouskos

♥ Z(→vv)H channel (II)

Similar strategy: but larger and more complex BKGs

Event categorization

- Sum ParticleNet scores of 2 jets
 - e.g. scores: b₁b₂, c₁c₂, s₁s₂, ...
- Largest ∑: Characterize event
 - Subcategories based on S/B

Results @10 ab⁻¹

Systematics:

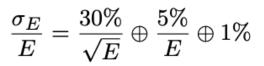
- 5 (0.1)% BKG (SIG)
 - uncorrelated b/w processes BKG: constrained to O(1)%

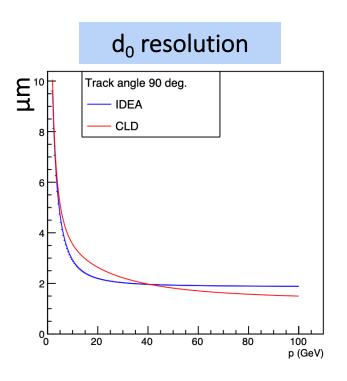
- Limited MC statistics

Z(→vv)H(→qq)	bb	CC	SS	gg
δμ/μ (%)	0.3	2.1	100	0.8

*|BR_{H→ss}|<1.3

2x better compared to the 2L channel All-had channel: effort started

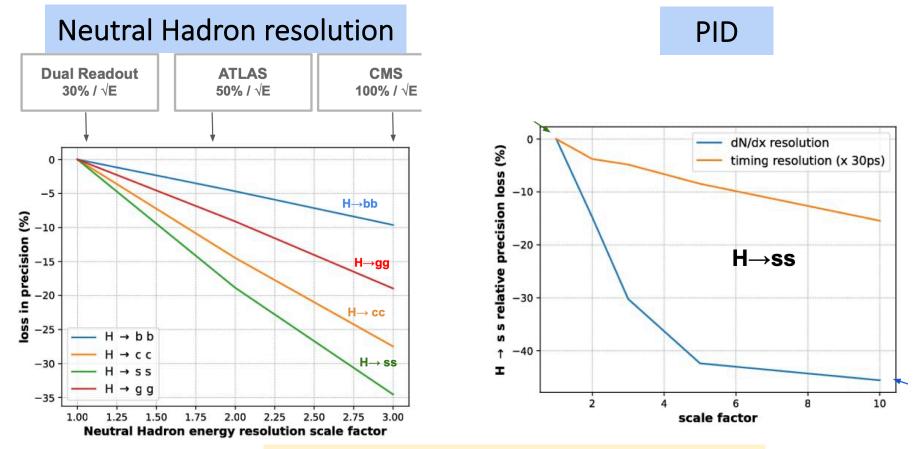



Impact of detector performance

FCC

- Neutral Hadron energy resolution
 - relevant for all H decays modes
- Impact parameter resolution (d0, dz)
 - relevant for $H \rightarrow bb$, $H \rightarrow cc$
- dN/dX resolution:
 - relevant for $H \rightarrow$ ss
- Timing resolution (nominal = 30 ps)
 - relevant for $H \rightarrow$ ss

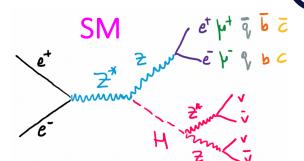
NB: Impact pessimistic
 → no retraining of jet identification algorithm performed



Details: M. Selvaggi talk 14

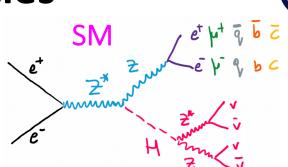
Impact of detector performance (II)

Hadronic resolution critical Powerful PID essential for H-strange coupling

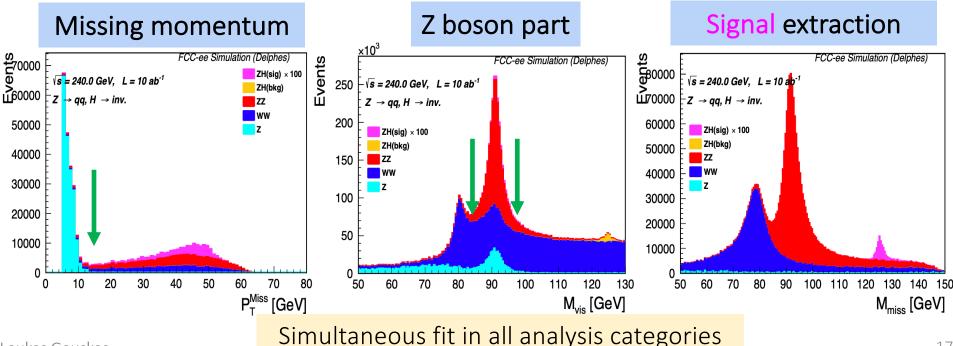

Loukas Gouskos

FCC Week London 2023

Details: M. Selvaggi talk 15


H-Coupling to invisible particles

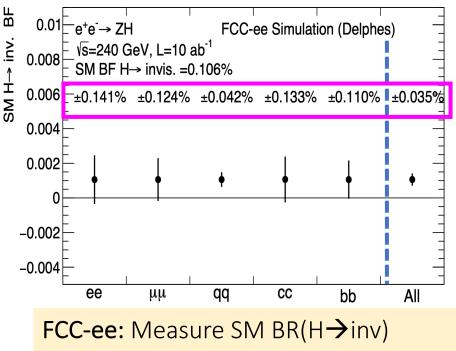
- Portal to Dark Matter (DM)
 - DM only via Higgs decays (?)
 - SM: BR(H→ZZ^{*}→vvvv) ~0.1%
 - Goal: reach neutrino floor with FCC-ee



H-Coupling to invisible particles

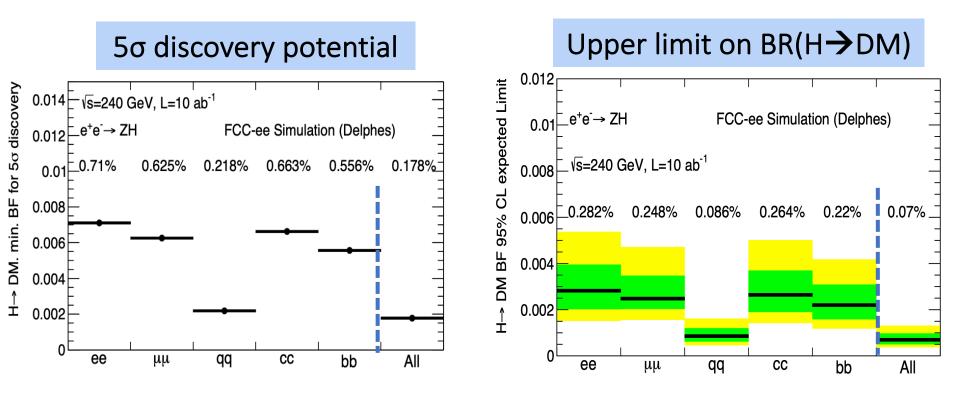
- Portal to Dark Matter (DM)
 - DM only via Higgs decays (?)
 - SM: BR(H→ZZ^{*}→vvvv) ~0.1%
 - Goal: reach neutrino floor with FCC-ee

Analysis strategy: Categorize based on Z decays modes



Loukas Gouskos

H-Coupling to invisible particles (II)

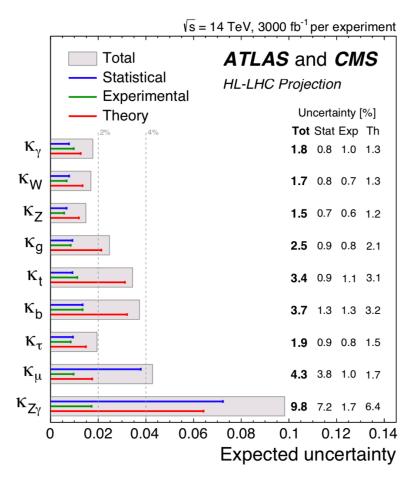

w/~35% uncertainty [Driven by hadronic channels] LHC: Upper limit BR(H→inv) ~10-15%

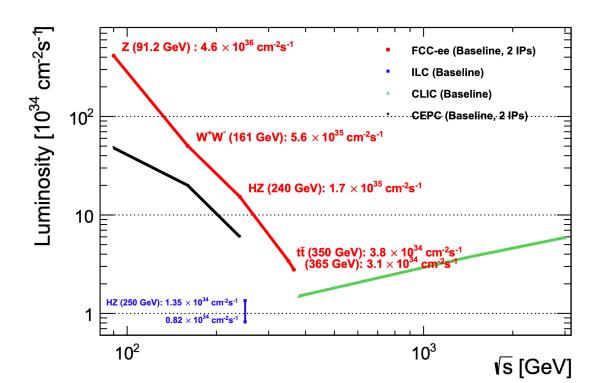
Impact of detector perf.

- 5% poorer Had. resolution:
 ~80% increase in H→inv unc.
- 5% poorer Lept. resolution:
 ~% effect in sensitivity

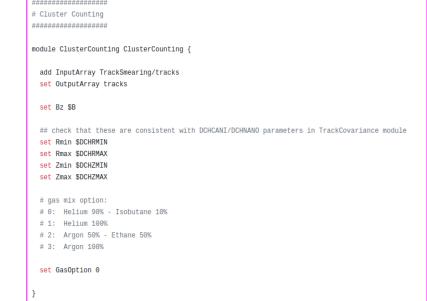
H-Coupling to invisible particles (III)

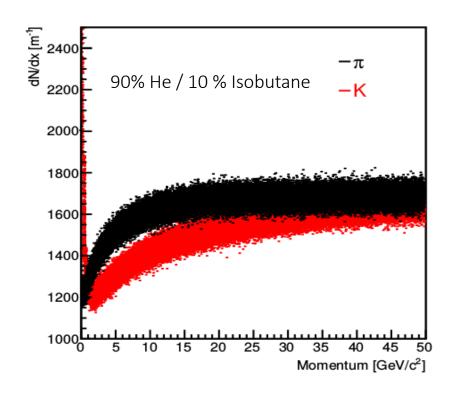
Discover: BR(H \rightarrow DM)~0.18% Exclude: BR(H \rightarrow DM) ~0.07%


- Unique situation: no clear direction of where to look for New Physics
 - but strong reasons to believe exists
- Major priority: Exhaustively study the Higgs boson
 - Full analysis: $H \rightarrow$ fermions/gluons/invisible at the ZH threshold
 - Understanding detector requirements
 - State-of-the-art jet flavor tagging algorithm <u>developed</u> and <u>implemented</u> in FCCSW
 use-case: beyond Higgs couplings
- O(10) improvement wrt HL-LHC:
 - e.g. $H \rightarrow$ fermions/gluons: O(1%) or better; $H \rightarrow ZZ \rightarrow 4v$ with 35% unc
- Still, lot's of room for ingenuity in several fronts
 - e.g. establish H-strange and H-electron couplings, exploration of additional channels, detector design, ..



- e+e-: Different strategies
 - different luminosity and E_{CM} scenarios
 - ◆ FCC-ee/CEPC:
 - Study Z, W, H and top with unprecedented precision
 - ∘ e.g. 10¹² Z, 1M H
 - ◆ CLIC/ILC:
 - Rich Higgs program
 - Direct access to HH


- Ultimate goal: O(100 TeV) pp collider
 - ◆ FCC-hh/SppC: use same tunnel constructed for FCC-ee/CepC

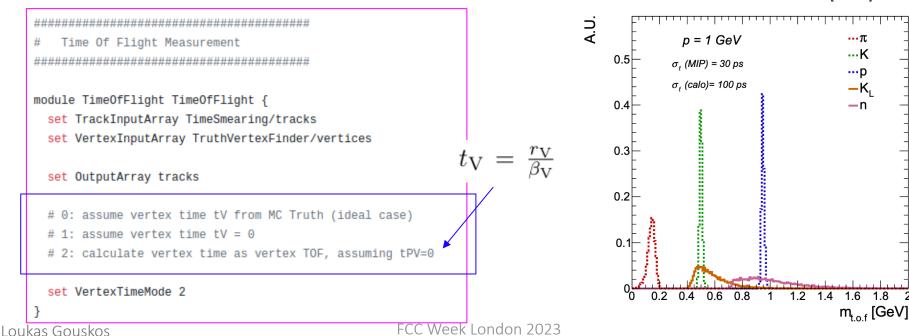

Today: Discuss results from FCC-ee

Loukas Gouskos

Particle ID: Cluster counting (dN/dx)

- Count number of primary ionization clusters along track path
- Avoids large Landau flukes
- Requires high granularity
- module added in Delphes

IDEA detector:



Particle ID: TOF

• Good K/ π separation at low-momenta:

$$t_{\text{flight}} \equiv t_{\text{F}} - t_{\text{V}} = \frac{L}{\beta} = \frac{L\sqrt{p^2 + m^2}}{p}$$

Assumption on vertex time [crucial for highly displaced K_s]

time of flight [bs] 12000 11000 11000

10000

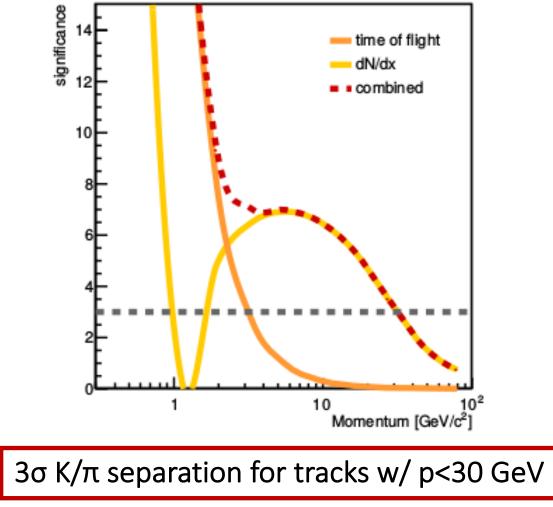
9000

8000

7000^L

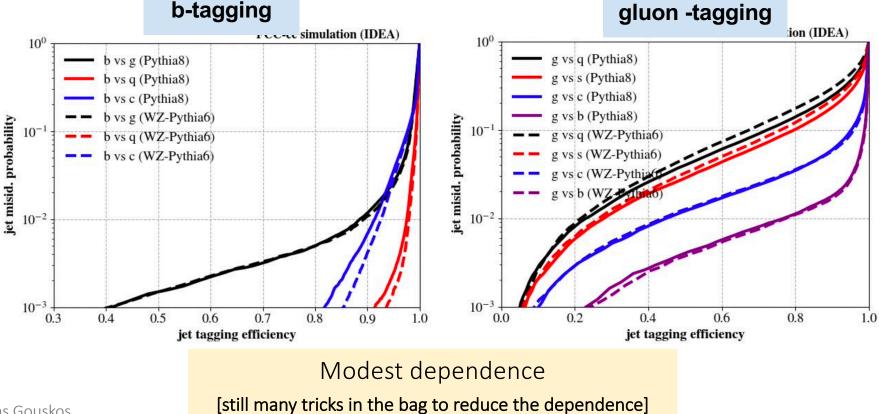
 $-\pi$

-K


Momentum [GeV/c²]

4.5 5

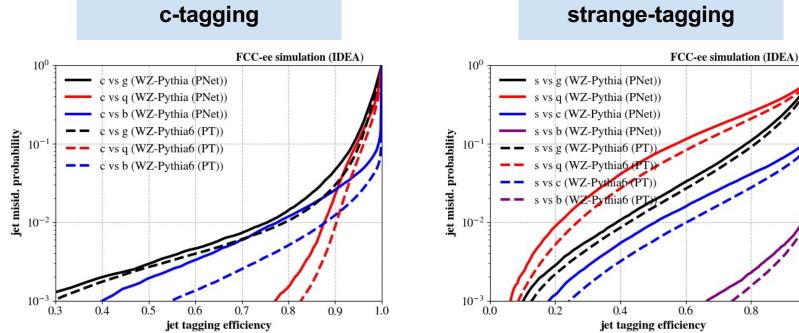
0.5 1 1.5 2 2.5 3 3.5 4 4.5



ParticleNet-ee: trained with Pythia8 samples

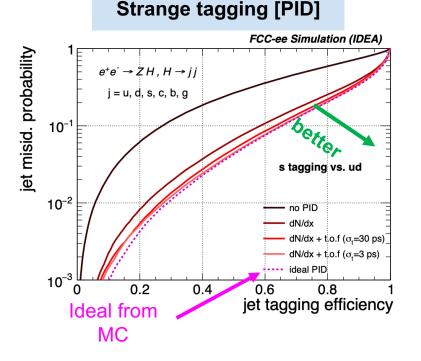
- tested on Pythia 8 [solid lines]
- tested on WZ-Pythia 6 [dashed lines]

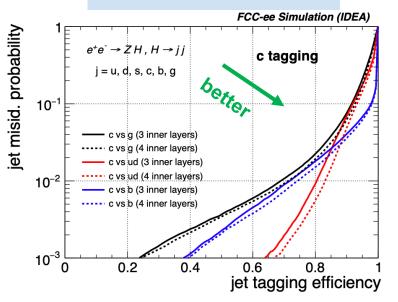
Pushing the limits further


Move to a fully connected graph: Particle transformer

based on: H. Qu, C. Li, S. Qian **ICML 2022** For FCCee: D. Garcia

0.8


1.0


strange-tagging

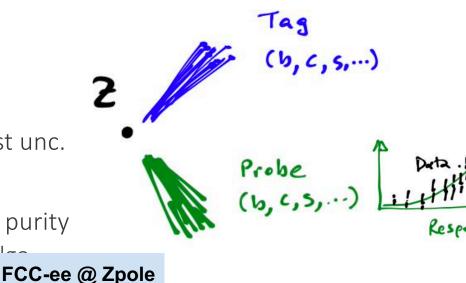
Improvement: up to 2x in BKG rejection

Impact of detector configurations

c-tagging [PIX layers]

- dN/dx brings most of the gain additional gain w/ TOF (30ps)
 - TOF (3ps): marginal improvement
 - dN/dX + TOF(30ps) ~ perfect PID

- Additional pixel layer:
 - 2x improved BKG rejection in c-tagging
 - marginal/no improvement in b-tagging


Improving robustness

- Current development relies solely on MC
 - Full control of class definition, lot's of [MC] data [~2M jets/ jet flavor]
 - but: MC != Data; potentially lead to large uncertainties
 - NB: it's also not Full SIM ..
- Another route: Use data
 - [Obvious] advantage: much smaller syst unc.
- How: Tag-and-probe @ Z pole
 - First: Tag one of the two jets with high purity
 - e.g. by using a pretrained MC-based
 - Then: create a training sample using t

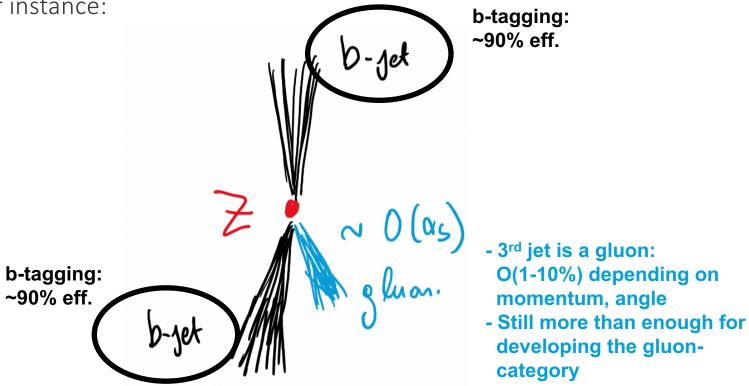
2nd jet (probe).

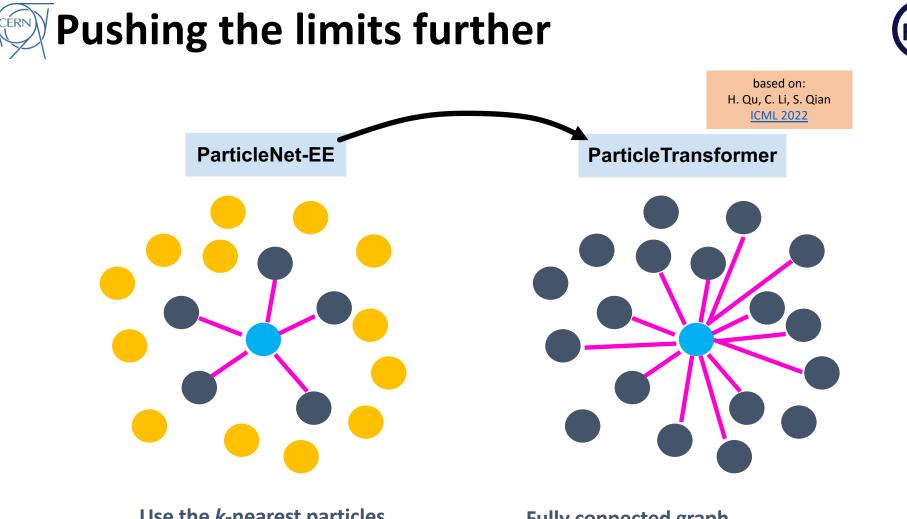
Z→hadrons	~70%	0.7x10 ⁶ M				
→ uu/cc	~12%/flavor	8.4x10 ⁴ M/ flavor				
ightarrow dd/ss/bb	~15%/flavor	1.1x10 ⁵ M/ flavor				

Improving robustness (II)

- Take into account tagging performance [& mistag rates]
 - NB: Each class does not have to be 100% pure on specific jet flavor or have the same population

Best case: b-tagging						"W				
WP	Eff (b)	Mistag (g)	Mistag (ud)	Mistag (c)	WP	Eff (s)	Mistag (g)	Mistag (ud)	Mistag (c)	Mistag (b)
Loose	90%	2%	0.1%	2%	Loose	90%	20%	40%	10%	1%
ledium	80%	0.7%	<0.1%	0.3%	Medium	80%	9%	20%	6%	0.4%

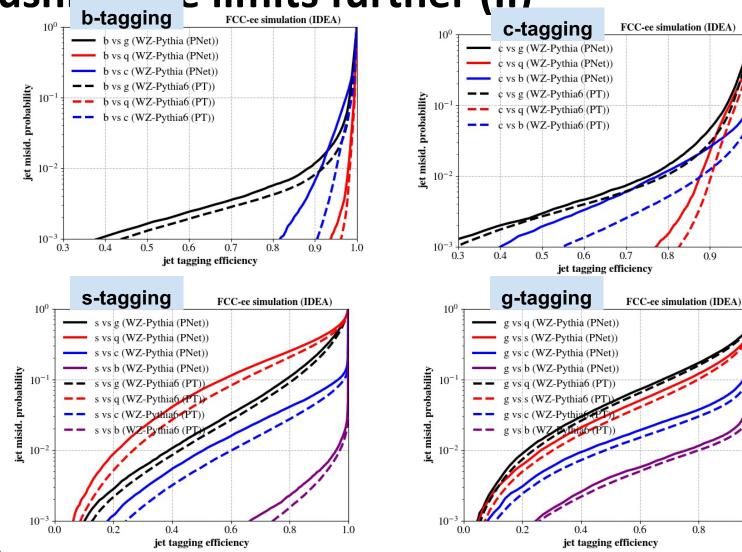

- Back-of-the-envelope: Training sample @ Zpole
 - ◆ bottom jets: ~1x10⁵ M, strange jets: ~8.8x10⁴ M
 - all other jet flavors in between


Loukas Gouskos

Much larger training sample than what used for the MC-based training sample

Gluon tagging using data?

- Challenging... topic of discussion and brainstorming
 - For instance:



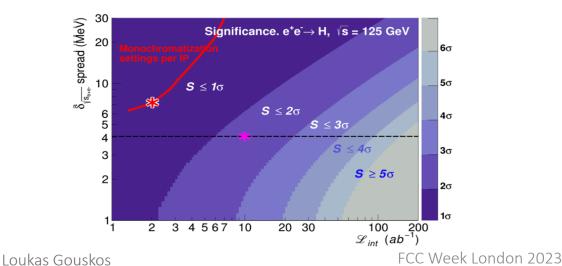
Use the k-nearest particles [k=8 for ParticleNet-EE]

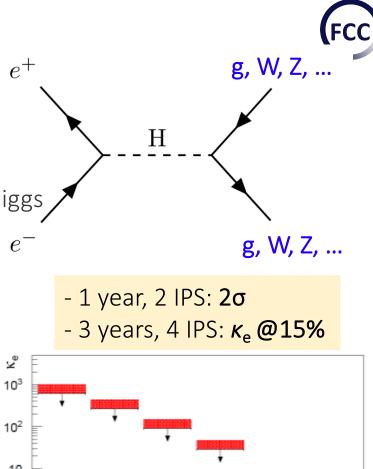
- Fully connected graph
- Include per-particle-pair properties more directly

Pushing the limits further (II)

1.0

1.0


Loukas Gouskus


Unique at FCC-ee: $H \rightarrow ee$

- Extremely challenging: $BR(H \rightarrow ee) \sim 10^{-9}$
- FCC-ee: Resonant Higgs production
 - tiny signal (1.64 fb) vs. huge BKGs
 - but: huge luminosity: <u>20 ab⁻¹/year/IP</u> → 30K Higgs

Key points:

- Beam spread (\sim MeV) \rightarrow monochromatization
- Precise $m_H \rightarrow$ from ZH run

 e^{-}

ۍ ۲

10³

10²

10

10⁻¹

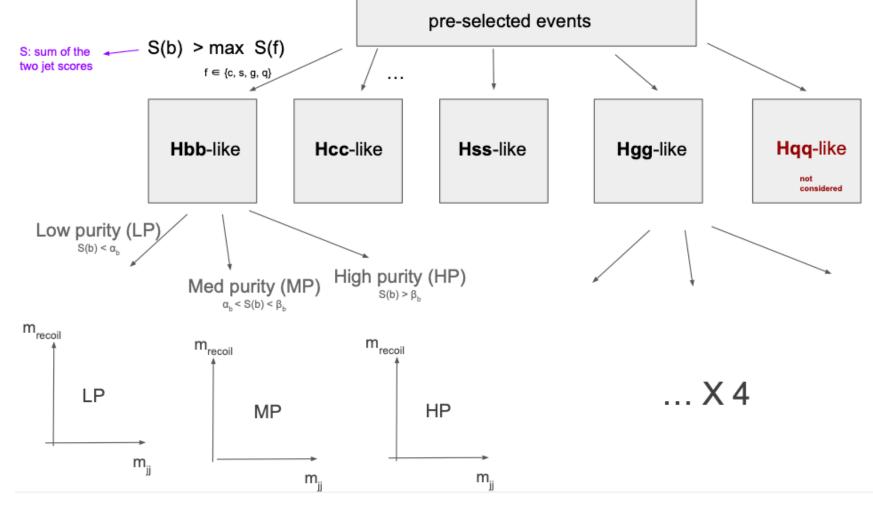
Standard Model

Run2

H-H

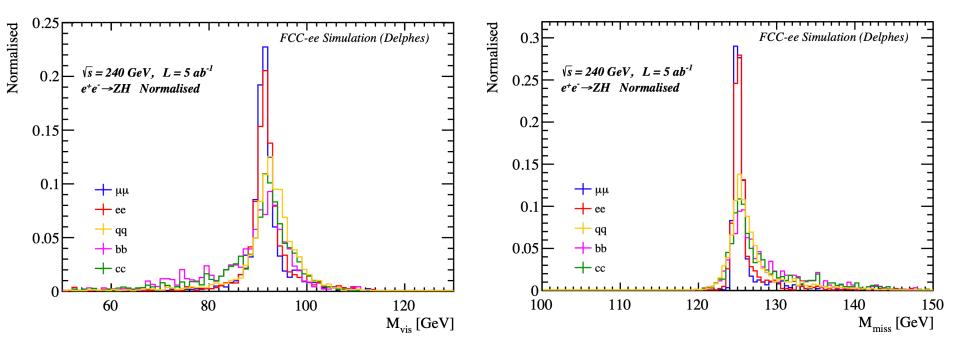
FCC-hh

SMS MS

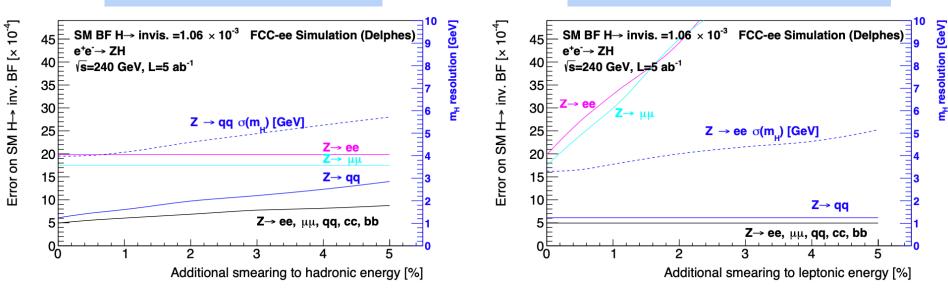

FCC-ee

35

FOC-ee 2 IP, 1yr


Putting pieces together

₩


H-Coupling to invisible particles (III)

Leptonic resolution

Impact of detector performance

Hadronic resolution

Powerful hadronic resolution is essential -5% poorer HAD resolution: ~80% larger unc. in H→inv

Loukas Gouskos

FCC Week London 2023