FCC-ee TileCal simulation and reconstruction

Michaela Mlynarikova on behalf of the FCC-ee TileCal team

8 June 2023

Overview

- Present ongoing work on hadronic calorimeter design for FCC-ee based on ATLAS TileCal
- ATLAS TileCal in a nutshell:
 - Steel plates and plastic scintillators (the tiles) coupled to wavelength shifting fibres
 - About 5000 pseudo-projective cells, each cell readout by 2 photomultiplier tubes (10000 PMTs in total)
 - Dynamic range 10 MeV to 2 TeV per cell
 - $\frac{\sigma_E}{E} = \frac{50\%}{\sqrt{E[\text{GeV}]}} \oplus 3\%$
- Previously, TileCal-like HCal was included in the detector design for FCC-hh our starting point
 - TileCal-like geometry implemented in FCCDetectors
 - Algorithms for signal digitization and reconstruction implemented in k4RecCalorimeter
- Goal is the full detector simulation within the Noble Liquid ECal based detector concept

Michaela Mlynarikova FCC-ee TileCal 8 June 2023 2 / 11

A design for FCC-hh central calorimeter system

Specs:

- 5mm steel absorber plates, alternating with 3mm Scint. and 4mm Pb tiles
- 128 modules in ϕ , 2 tile/module
- 10 radial layers
- $\Delta\eta=0.025$ (grouping 3-4 tiles), $\Delta\phi=0.025$
- 4 times the tile density of ATLAS, 1 tile 1 channel
- · SiPM readout at outer radius
- Ongoing R&D on scintillator material and SiPMs
- Mechanical structure feasible
- Tested Sci tile + WLS fibre + SiPM readout

Standalone FCC-hh Tile and combined LAr+Tile performance

- Optimised absorbers for hadronic performance
 - decreasing non-compensation by suppression of EM response
 Pb: X0 =0.6cm/Fe: X0 =1.8cm
 - improves stochastic and constant term, and e/h from 1.24 to 1.1

- 8 layer LAr + 10 layer TileCal achieves desired performance
 - high granularity allows for machine learning technique: Deep Neural Nets (DNNs)
 - granularity achieved in the HCal barrel through SiPM readout
- Work documented in a note CERN-FCC-PHYS-2019-003 by Aleksa et. al.

A design for FCC-ee central calorimeter system

- Full Silicon vertex detector + tracker;
- Very high granularity, CALICE-like calorimetry;
- Muon system
- Large coil outside calorimeter system;
- Possible optimization for
- Improved momentum and energy resolutions
 - · PID capabilities

- Si vertex detector;
- · Ultra light drift chamber w. powerfull PID;
- Monolitic dual readout calorimeter:
- Muon system:
 - Compact, light coil inside calorimeter;
- Possibly augmented by crystal ECAL in front of coil:

Noble Liquid ECAL based

- High granularity Noble Liquid ECAL as core;
- PB+LAr (or denser W+LCr)
- Drift chamber (or Si) tracking;
- CALICE-like HCAL;
- Muon system;
- Coil inside same cryostat as LAr, possibly outside ECAL.

M. Aleksa et. al.

 Implemented TileCal-like barrel calorimeter in the 3rd detector concept, geometry optimization and performance studies ongoing

A design for FCC-ee central calorimeter system

Specs:

- 5mm steel absorber plates alternating with 3mm Scint.
- 128 modules in ϕ , 2 tile/module
- 13 radial layers
- $\Delta \eta = 0.025$ (grouping 3-4 tiles), $\Delta \phi = 0.025$
- Removed the Pb plates compared to FCC-hh design (HCAL acts as return yoke for the central solenoid)
- 13 layers in depth (smaller cells)
- FCC-ee TileCal geometry is available in FCCDetectors
- Work on optimisation of segmentation and reconstruction is in full swing
- Started testing Sci tile + WLS fibre + SiPM readout

6/11

Standalone FCC-ee TileCal geometry studies

- · Varying the number of radial layers and depth of the HCal
- From $\sim 8\lambda \rightarrow \sim 8.75\lambda \rightarrow \sim 9.5\lambda$

Standalone FCC-ee TileCal performance studies

- With 13 layers (default) still have quite a lot of energy deposited in the last radial layer (100 GeV π^{\pm})
 - \bullet Extending HCal dimension in R reduces the energy in the last layer and the constant term decreases
- Energy resolution for single π^\pm at $\eta=0.36$ for 3 different HCal geometries (work by B. Pereira (LIP))

Combined LAr+Tile performance (cells)

- 12 layer LAr + 13 layer TileCal
- Benchmark method
 - Was developed for ATLAS test-beam measurements
 - To be used for hadron simulation when combining ECal and HCal
 - Applies a correction for the energy lost between ECal barrel (EB) and HCal barrel (HB) and calibrates
 the energy deposits to the hadronic scale
 - · Derived using the energy deposited in cells
 - The total energy:

$$E_{\text{rec}}^{\text{bench}} = \rho_0 \cdot E_{\text{EB}}^{\text{EM}} + \rho_1 \cdot E_{\text{HB}}^{\text{HAD}} + \rho_2 \sqrt{|\rho_0 \cdot E_{\text{EB}}^{\text{last layer}} \cdot E_{\text{HB}}^{\text{first layer}}|} + \rho_3 (\rho_0 \cdot E_{\text{EB}}^{\text{EM}})^2 + \rho_4 \cdot E_{\text{EB}}^{\text{first layer}}$$

- Newly added upstream material (e.g. ECal cryostat) correction p₄
- Benchmark method calibration now available in the k4RecCalorimeter

Combined LAr+Tile performance (clusters)

- · Cluster reconstruction done with the sliding window algorithm
- Benchmark method applied to correct clusters energy

- Stochastic term $\sim 37-38\%$, constant term $\sim 4\%$
- Linearity of response for π^\pm with energies > 10 GeV is within 2%, for energies below 10 GeV the linearity is within 4%

Michaela Mlynarikova FCC-ee TileCal 8 June 2023 10 / 11

Outlook

- Presented work on TileCal-like hadronic calorimeter for FCC-ee
- TileCal-like hadronic calorimeter was implemented in the 3rd detector concept with Noble liquid ECal
- Ongoing performance studies and geometry optimization for standalone HCal and combined ECal+HCal simulation
- Endcaps implemented in FCCDetectors for both ECal and HCal, geometry optimization ongoing
- Cluster reconstruction in the barrel region done with the sliding window algorithm, next step is to move to topoclustering
- In parallel, starting an effort to train a Neural Net for the ECal+HCal energy reconstruction

Standalone FCC-ee TileCal performance studies

	λ	Geometry	Layers	Δη	Energy Resolution (%)	Scintillator number in 1 module
FCCee	~8	4x50 mm; 6x100 mm; 3x200 mm	13	0.025	$\frac{38.70}{\sqrt{E}} \oplus 5.09$	4030
	~8.75	4x50 mm; 6x100 mm; 3x200 mm	14	0.025	$\frac{39.81}{\sqrt{E}} \oplus 4.07$	4340
	~9	5x50 mm; 7x100 mm; 4x200 mm	16	0.025	$\frac{39.88}{\sqrt{E}} \oplus 3.58$	4960
FCChh	Pb and Steel	2x100; 4x150; 4x200	10	0.025	$\frac{42}{\sqrt{E}} \oplus 2.8$ $\frac{46}{4} \oplus 4.1$	
	Steel				$\frac{46}{\sqrt{E}} \oplus 4.1$	

1/2

Material budget LAr+Tile

• $\sim 100~X_0~{
m and} \sim 9.5 \lambda$

2/2