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Scientific motivation
❑ Well described in the 1st and 3rd case studies submitted to Snowmass 2021

◆ A case study is aimed at detector requirements and theory precision constraints

⚫ To match systematic uncertainty to the FCC-ee expected statistical precision 

➔ Just pick your case study !
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See https://www.overleaf.com/read/nknybgrqqwbp

Lumi measurement with e+e- ➝ gg

Acceptance determination for e+e- ➝𝓁+𝓁-

https://www.overleaf.com/read/nknybgrqqwbp


Radial tolerance (in mm) at z = 2.5m

A. Blondel and M. Dam

Luminosity measurement with e+e-➝ gg events
❑ At the Z pole, stot = 60 (40) pb for q*

cut = 10o (20o) – Total luminosity = 45 ab-1 / expt

◆ Total of 3 (2) 109 e+e- ➝ gg events / expt DL/L~2.10-5 stat

⚫ Cross section is strongly peaked forward/backward

➔ Major systematic uncertainty : q*
cut accuracy

❑ Challenging detector design tolerance

◆ For q*
cut = 20o

⚫ Dr ≪ 27 mm & Dz ≪ 75 mm

◆ For q*
cut = 10o

⚫ Dr ≪ 16 mm & Dz ≪ 90 mm

◆ Even smaller for dileptons!

⚫ Dr (Dz) ≪ 8 (22) mm at 20o

❑ Angular cut accuracy (10/20o)

◆ Dq* ≪ 6.5 (10) mrad for gg

◆ Dq* ≪ 5 (3) mrad for dileptons
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❑ Crossing angle a0 in the horizontal plane for crab waist collisions: a0 ≃ 30 mrad

❑ Longitudinal boost e0 due to uneven placement of RF along the ring: e0 ≃ 0.02%

NB. The detector is not in the collision rest frame 
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NB. The detector is not in the collision rest frame 
❑ It originally appeared as an additional burden

◆ Lorentz transforms are needed in order to go from the laboratory to the CM frame and back

◆ A polar angle (q*) cut in the collision rest frame depends on q and f in the laboratory frame

Detector design tolerance on q AND f !

❑ Reality may actually be significantly brighter 

◆ The large crossing angle, if known precisely, provides an absolute angle scale to each event

⚫ The crossing angle ”propagates” to final state particles through energy/momentum conservation

Fundamental for an absolute in situ determination of q*
cut with e+e- ➝ gg events

◆ The dependence of q* on f is not too large

⚫ Tolerance on f is 2/a ~65 times looser than on q, i.e. ~ 450 mrad at 10o

450 mrad at 10o corresponds to a ~200 mm design precision in the f direction at f = p/2 5
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Reminder: Energy-Momentum conservation
❑ Total energy-momentum conservation applied to two-body final states (+ one ISR g)

◆ For example, for dilepton and diphoton events, e+e- ➝ e+e-(g), m+m-(g), t+t-(g), gg(g)

⚫ Where E± are the measured energies of the outgoing e±, m± , t±
, or the forward/backward g

⚫ Where q± are measured with respect to the z axis in this ”FCC-ee” frame,

⚫ Where f± are measured with respect to the x axis in the plane transverse to the z axis, 

⚫ Where a, e, and the x, y, z axes have been defined previously

⚫ Where √s is the centre-of-mass energy of the collision
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Solve E, p conservation for a and e
❑ See this didactic presentation at the 2nd EPOL Workshop for a step-by-step proof

◆ Crossing angle (valid even with an ISR photon) 

◆ Longitudinal boost (here, the ISR photon is absorbed in the e spread)

◆ Reduced lepton/photon energies:  
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𝑥± = 𝐸± cos Τ𝛼 2 Τ𝑠 1 − 𝜀2

https://indico.cern.ch/event/1181966/contributions/5049894/attachments/2512991/4319811/WG4_EnergySpread.pdf


Crossing angle after one minute at the Z pole 
❑ Angles measured from dimuons in the tracker (assumed to be perfectly aligned)

◆ The spread of the distribution is dominated by the muon angular resolution (here 0.1 mrad)

⚫ Horizontal beam divergence ( = [e*
x / b

*
x ]

1/2 = 84 mrad) is the next-to-largest contributor

➔ Almost insensitive to ISR, and totally insensitive to the longitudinal boost and its spread (0.02 ± 0.089)%
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Mean value = nominal crossing angle a0



Longitudinal boost after one minute at the Z pole 
❑ Angles measured from dimuons in the tracker (assumed to be perfectly aligned)

◆ The spread is dominated by the natural beam energy spread

⚫ Initial state radiation is the next-to-largest contributor

➔ Marginal contribution from the muon angular resolution
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Mean value = nominal boost e0



In-situ acceptance determination for e+e-➝ gg events 
❑ In a first step, let’s assume the following

◆ The values of a0 and e0 are known a priori from a perfectly aligned tracker

◆ The photon azimuthal angle tolerance is much better than 0.45 (0.65) mrad at 10o (20o) 

⚫ This corresponds – for example – to a 200 (600) mm design tolerance at 10o (20o) 

⚫ For each endcap separately (cell-to-cell), and for one endcap with respect to the other endcap

◆ As a consequence, ignore for now the photon azimuth in the acceptance determination

⚫ Only consider polar angle biases Dq+ & Dq- in this first step

❑ Minimize the following  𝜒2 with respect to Dq+ and Dq-

◆ In each bin of q* and f*

⚫ In my talk in April, minimization was done “manually” with a fast simulation 

⚫ Today, we’ll do everything analytically (and check if we find the same result before moving)

◆ With ai and ei measured event-by-event from the photon angles:
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Analytical expression of the 𝜒2
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Error matrix with 45 ab-1 @ Z pole for e+e-➝ gg events 
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❑ Bin size : 1o×1o

◆ Commensurate with CLD/IDEA/crystal calo readout cell

❑ Photon position resolution sx,y = 0.5 mm

◆ Typical of CLD / IDEA / crystal calorimeter

⚫ Preshower in front of the endcaps : sx,y = 0.075 mm

𝜎𝜃 =
𝜎𝑥,𝑦 cos

2 𝜃

𝑧
, 𝜎𝜙=

𝜎𝑥,𝑦

𝑧 tan 𝜃
In the endcaps: 



Error matrix in the collision frame with 45 ab-1 @ Z pole
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❑ Transfer matrix from collision rest frame to lab frame

Δ𝜃∗ =
1

2
Δ𝜃+ − Δ𝜃−

@

T

Polar angle cut

At 20o

At 10o

𝑉cm = 𝑇𝑇 𝑉lab 𝑇



Precision of acceptance determination
q* accuracy along f* at 10o (20o)                                      Integration (of V) over f*

◆ If the crossing angle, longitudinal boost, and azimuthal angles are known perfectly

⚫ Acceptance accuracy can be determined in situ with a sub-mrad precision

➔ 0.2 mrad with a polar angle q* cut at 10o (was 0.25 mrad in April with the simulation)

➔ 0.6 mrad with a polar angle q* cut at 20o (was 0.75 mrad in April with the simulation) 

⚫ Reminder: Tolerance estimated to be 6.5 mrad
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ISR, Selection cuts, 
Actual a0 & e0 smearing



Simultaneous fit of a and e with e+e-➝ gg events 
❑ For each event, fit a, e, q* and f* – not just the last two 

◆ Need to use the four angle measurements q+, q-, f+, f- in the 𝜒2

◆ In each (q*, f*) bin, 𝜒2 = DT V D   (4×4 not regular matrix)

◆ q*/f correlation: Add a 100 mm constraint on rf in the 𝜒2 (i.e., in V)

For each endcap separately (cell-to-cell)   

For one endcap wrt the other endcap 15
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Error matrix with 45 ab-1 @ Z pole for e+e-➝ gg events 

❑ After integration on q*, f*

◆ a known to 1 mrad in 10 minutes

◆ e known to 2×10-6 in 10 minutes  

❑ Error matrix shown in the (Da0, De0, Dq*, Df*) basis

◆ With a moderate (?) 100 mm constraint on rf

❑ See backup slides for the transfer matrix 

From the (Da0, De0, Dq*, Df*) basis

To the (𝛥𝜃+ + 𝛥𝜃−, 𝛥𝜃+ − 𝛥𝜃−, 𝛥𝜙+ + 𝛥𝜙−, 𝛥𝜙+ − 𝛥𝜙−) basis
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Precision of acceptance determination
q* uncertainty in the (q*, f*) plane                                            Integration over f*

◆ Acceptance precision in the right ball park at 10o and 20o

❑ Bottom line

◆ Traded a tolerance of 10 mm in radius for a tolerance of 100 mm in the f direction

⚫ No dependence in the relative distance between the two endcaps (while q is Dz-dependent)

⚫ Measurements in the f direction are mostly relative (total is 2p !) 17

This condition is needed anyway 



This is far from being the end of the story
❑ One (two) additional constraint(s), not used so far, can be added to the 𝜒2

◆ Constraining A* in situ with the angle measurements will reduce the q*/f correlation

❑ In this presentation, the acceptance cut was defined as a straight cut on q*

◆ This cut corresponds to apply the same cut to the two photons

◆ In real life, the cut will be applied on only one of the two photons

⚫ Changing side at each event (forward – backward – forward – backward – etc.)

◆ This trick reduces the sensitivity of the acceptance cut 

⚫ In particular to the relative misalignment of the two endcaps in the f direction 

➔ Due either to a global rotation around z, or a global translation in the (x,y) plane

◆ This trick will in turn loosen the tolerance of this relative misalignment 
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This is far from being the end of the story
❑ A global relative (x,y) misalignment of the two endcaps is measurable in situ as well !

◆ Rotation around z                                                                         Translation in the x,y plane 
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This is far from being the end of the story
❑ A global relative (x,y) misalignment of the two endcaps is measurable in situ as well !

◆ Rotation around z                                                                         Translation in the x,y plane 
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Bonus slides
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Including x+ - x- = A*

q* uncertainty in the (q*, f*) plane                                            Integration over f*

22



Lorentz transform
❑ From the collision frame to the laboratory frame
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Exact expressions



Lorentz transform
❑ Relations between measured angles in the detector and a, e, q*, f*

◆ Still to be cross-checked by Emmanuel
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With 



Lorentz transform
❑ Transfer matrix for small a, e, q*, f* deviations

◆ Still to be cross-checked by Emmanuel
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