IN-SITU ACCEPTANCE DETERMINATION FOR DIPHOTON EVENTS AT FCC-EE

Follow-up of this presentation on 17/04/23

Michael Benedikt, Alain Blondel, Mogens Dam, Christophe Grojean, Katsunobu Oide, Emmanuel Perez

Scientific motivation

- Well described in the $1^{\text {st }}$ and $3^{\text {rd }}$ case studies submitted to Snowmass 2021

See https://www.overleaf.com/read/nknybgrqqwbp

3 Towards an ultimate measurement of the Z peak cross section

The Z peak cross section can be measured at FCC-ee with hadronic and dimuon events produced at $\sqrt{s}=91.2 \mathrm{GeV}$, with a potential relative statistical precision of $\mathcal{O}\left(10^{-6}\right)$. Together with the ratio R_{ℓ} (Section 1), this quantity allows the determination of the number of light neutrino types.

A limiting systematic uncertainty comes from the absolute determination of the integrated luminosity. A determination with low-angle Bhabha scattering is likely to be limited by a relative theoretical precision of $\mathcal{O}\left(10^{-4}\right)$ [6], but that might not be the case for large angle diphoton production, $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma$ (to be checked with actual full two-loop calculations [7]). The requirements on the detector design to measure the absolute luminosity with diphoton events, and in particular to separate these events from the large angle Bhabha background, will be studied.

Lumi measurement with $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma$ Acceptance determination for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \ell^{+} \ell^{-}$

1 Towards an ultimate measurement of $R_{\ell}=\frac{\sigma(\mathrm{Z} \rightarrow \text { hadrons })}{\sigma(\mathrm{Z} \rightarrow \text { leptons })}$
The ratio R_{ℓ} can be measured at FCC-ee with an event sample of $5 \times 10^{12} \mathrm{Z}$ produced at $\sqrt{s}=$ 91.2 GeV , and therefore benefits from a potential relative statistical precision of $\mathcal{O}\left(3 \times 10^{-6}\right)$ for each lepton type. It is a key quantity [4] that serves - in conjunction with the total Z decay width and the peak hadronic cross section - as input to several fundamental quantities:
i) the measurement of the leptonic Z partial width $\Gamma_{\ell \ell}$, a very clean electroweak observable whose relation to the Z mass is the ρ (or T) parameter, and unaffected by $\alpha_{\mathrm{QED}}\left(m_{\mathrm{Z}}^{2}\right)$, with a 10^{-5} relative precision;
ii) the measurement of the strong coupling constant $\alpha_{\mathrm{S}}\left(m_{\mathrm{Z}}^{2}\right)$ with an absolute experimental uncertainty below 0.0001 (Section 5);
iii) the measurement of the number of light neutrinos with a precision of 0.0004

Experience from LEP showed that a limiting systematic uncertainty comes from the knowledge of the geometrical acceptance for lepton pairs. The requirements on the detector design to match the statistical precision will be studied in the full context of the constraints from the interaction region layout. As a by-product, the determination of the geometrical acceptance for the $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma$ process (which may be used for the measurement of the absolute luminosity, potentially with a statistical precision of a few 10^{-5}) will be investigated - see also Section 3. The knowledge of the acceptance for the more abundant hadronic Z decays, a much easier problem at LEP, will need to be verified at the same level of precision.

- A case study is aimed at detector requirements and theory precision constraints
- To match systematic uncertainty to the FCC-ee expected statistical precision
\rightarrow Just pick your case study!

Luminosity measurement with $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma$ events

- At the Z pole, $\sigma_{\text {tot }}=60(40)$ pb for $\theta_{\text {cut }}^{*}=10^{\circ}\left(20^{\circ}\right)$ - Total luminosity $=45 \mathrm{ab}{ }^{-1} /$ expt
- Total of 3 (2) $10^{9} \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma$ events / expt $\quad \Delta \mathrm{L} / \mathrm{L} \sim 2.10^{-5}$ stat
- Cross section is strongly peaked forward/backward
\rightarrow Major systematic uncertainty : $\theta^{*}{ }_{\text {cut }}$ accuracy

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \cos \theta^{*} \mathrm{~d} \phi^{*}}=\frac{\alpha_{\mathrm{em}}^{2}}{s} \frac{1+\cos ^{2} \theta^{*}}{\sin ^{2} \theta^{*}}
$$

- Angular cut accuracy ($10 / 20^{\circ}$)
- $\Delta \theta^{*} \ll 6.5$ (10) μ rad for $\gamma \gamma$
- $\Delta \theta^{*} \ll 5$ (3) μ rad for dileptons 0.00
- Challenging detector design tolerance
- For θ^{*} cut $=20^{\circ}$
- $\Delta r \ll 27 \mu \mathrm{~m} \& \Delta z \ll 75 \mu \mathrm{~m} \quad 30.00$
- For $\theta^{*}{ }_{\text {cut }}=10^{\circ}$
- $\Delta r \ll 16 \mu \mathrm{~m} \& \Delta \mathrm{z} \ll 90 \mu \mathrm{~m}$
- Even smaller for dileptons!
- $\Delta r(\Delta z) \ll 8(22) \mu \mathrm{m}$ at 20°

Radial tolerance (in $\mu \mathrm{m}$) at $\mathrm{z}=2.5 \mathrm{~m}$
25.00
35.00 5.00 10.00 10.00 5.00

NB. The detector is not in the collision rest frame

- Crossing angle α_{0} in the horizontal plane for crab waist collisions: $\alpha_{0} \simeq 30 \mathrm{mrad}$

Fig. 1 At FCC-ee, the beams cross with an angle α_{0} in the horizontal plane (x, z) (the plane of this figure). The vertical axis y, perpendicular to this paper sheet - i.e., to the horizontal plane - and the interaction point (IP) are also represented.

- Longitudinal boost ε_{0} due to uneven placement of RF along the ring: $\varepsilon_{0} \simeq 0.02 \%$

$$
E_{e}^{ \pm}=E\left(1 \pm \varepsilon_{0}\right)
$$

NB. The detector is not in the collision rest frame

- It originally appeared as an additional burden
- Lorentz transforms are needed in order to go from the laboratory to the CM frame and back
$\cos \theta=\frac{\cos \theta^{*} \cos \frac{\alpha}{2} \sqrt{1-\varepsilon^{2}}+\varepsilon \cos \frac{\alpha}{2}\left(1+A^{*} \cos \frac{\alpha}{2} \sqrt{1-\varepsilon^{2}}\right)}{1+A^{*}}$
$\cos \theta^{*}=\frac{\cos \theta \cos \frac{\alpha}{2} \sqrt{1-\varepsilon^{2}}+\varepsilon \cos \frac{\alpha}{2}\left(1-A \cos \frac{\alpha}{2} \sqrt{1-\varepsilon^{2}}\right)}{1-A}$
- A polar angle (θ^{*}) cut in the collision rest frame depends on θ and ϕ in the laboratory frame \longrightarrow Detector design tolerance on θ AND ϕ !
- Reality may actually be significantly brighter
- The large crossing angle, if known precisely, provides an absolute angle scale to each event
- The crossing angle "propagates" to final state particles through energy/momentum conservation Fundamental for an absolute in situ determination of θ^{*} cut with $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma$ events
- The dependence of θ^{*} on ϕ is not too large
- Tolerance on ϕ is $2 / \alpha \sim 65$ times looser than on θ, i.e. $\sim 450 \mu$ rad at 10°

$$
\frac{\partial \theta^{*}}{\partial \phi} \approx \frac{\alpha}{2} \cos \theta \sin \phi
$$

Reminder: Energy-Momentum conservation

- Total energy-momentum conservation applied to two-body final states (+ one ISR γ)
- For example, for dilepton and diphoton events, $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}(\gamma), \mu^{+} \mu^{-}(\gamma), \tau^{+} \tau^{-}(\gamma), \gamma \gamma(\gamma)$

$$
\begin{array}{|lll}
E^{+} \sin \theta^{+} \cos \phi^{+}+E^{-} \sin \theta^{-} \cos \phi^{-}+\left|p_{z}^{\gamma}\right| \tan \alpha / 2 & =\sqrt{s /\left(1-\varepsilon^{2}\right) \tan \alpha / 2} \\
E^{+} \sin \theta^{+} \sin \phi^{+}+E^{-} \sin \theta^{-} \sin \phi^{-} & =0 \\
E^{+} \cos \theta^{+}+E^{-} \cos \theta^{-} & +p_{z}^{\gamma} & =\varepsilon \sqrt{s /\left(1-\varepsilon^{2}\right)} \\
E^{+}+E^{-} & +\left|p_{z}^{\gamma}\right| / \cos \alpha / 2 & =\sqrt{s /\left(1-\varepsilon^{2}\right)} / \cos \alpha / 2
\end{array}
$$

- Where $\mathrm{E}^{ \pm}$are the measured energies of the outgoing $\mathrm{e}^{ \pm}, \mu^{ \pm}, \tau^{ \pm}$, or the forward/backward γ
- Where $\theta^{ \pm}$are measured with respect to the z axis in this "FCC-ee" frame,
- Where $\phi^{ \pm}$are measured with respect to the x axis in the plane transverse to the z axis,
- Where α, ε, and the x, y, z axes have been defined previously
- Where $\sqrt{ } \mathrm{s}$ is the centre-of-mass energy of the collision

$$
\sqrt{s}=2 \mathrm{E} \sqrt{1-\epsilon^{2}} \cos \frac{\alpha}{2} \text { and } \mathrm{E}_{\mathrm{e}}^{ \pm}=\mathrm{E}(1 \pm \epsilon)
$$

Solve E, p conservation for α and ε

- See this didactic presentation at the $2^{\text {nd }}$ EPOL Workshop for a step-by-step proof
- Crossing angle (valid even with an ISR photon)

$$
\alpha=2 \arcsin \left[\frac{\sin \left(\phi^{+}-\phi^{-}\right) \sin \theta^{+} \sin \theta^{-}}{\sin \phi^{+} \sin \theta^{+}-\sin \phi^{-} \sin \theta^{-}}\right]
$$

- Longitudinal boost (here, the ISR photon is absorbed in the ε spread)

$$
\varepsilon=\frac{x_{+} \cos \theta^{+}+x_{-} \cos \theta^{-}}{\cos \alpha / 2}
$$

- Reduced lepton/photon energies:

$$
\begin{gathered}
x_{ \pm}=\frac{\mp \sin \theta^{\mp} \sin \phi^{\mp}}{\sin \theta^{+} \sin \phi^{+}-\sin \theta^{-} \sin \phi^{-}} \\
x_{ \pm}=E^{ \pm} \cos (\alpha / 2) \sqrt{s /\left(1-\varepsilon^{2}\right)}
\end{gathered}
$$

Crossing angle after one minute at the Z pole

- Angles measured from dimuons in the tracker (assumed to be perfectly aligned)

One minute of dimuon events at $\sqrt{s}=91.2 \mathrm{GeV}$, per experiment

Mean value $=$ nominal crossing angle α_{0}

$$
\alpha_{0}=29.9999 \pm 0.0006 \mathrm{mrad} .
$$

- The spread of the distribution is dominated by the muon angular resolution (here 0.1 mrad)
- Horizontal beam divergence $\left(=\left[\varepsilon_{x}^{*} / \beta_{x}^{*}\right]^{1 / 2}=84 \mu \mathrm{rad}\right)$ is the next-to-largest contributor
\rightarrow Almost insensitive to ISR, and totally insensitive to the longitudinal boost and its spread (0.02 ± 0.089) \%

Longitudinal boost after one minute at the Z pole

- Angles measured from dimuons in the tracker (assumed to be perfectly aligned)

One minute of dimuon events at $\sqrt{s}=91.2 \mathrm{GeV}$, per experiment

Mean value $=$ nominal boost ε_{0}

$$
\varepsilon_{0}=(1.98 \pm 0.02) \times 10^{-4}
$$

- The spread is dominated by the natural beam energy spread
- Initial state radiation is the next-to-largest contributor
\rightarrow Marginal contribution from the muon angular resolution

In-situ acceptance determination for $\mathrm{e}^{+} \mathbf{e}^{-} \rightarrow \gamma \gamma$ events

- In a first step, let's assume the following
- The values of α_{0} and ε_{0} are known a priori from a perfectly aligned tracker
- The photon azimuthal angle tolerance is much better than 0.45 (0.65) mrad at $10^{\circ}\left(20^{\circ}\right)$
- This corresponds - for example - to a $200(600) \mu \mathrm{m}$ design tolerance at $10^{\circ}\left(20^{\circ}\right)$
- For each endcap separately (cell-to-cell), and for one endcap with respect to the other endcap
- As a consequence, ignore for now the photon azimuth in the acceptance determination
- Only consider polar angle biases $\Delta \theta^{+} \& \Delta \theta^{-}$in this first step
- Minimize the following χ^{2} with respect to $\Delta \theta^{+}$and $\Delta \theta^{-}$ - In each bin of θ^{*} and ϕ^{*}

$$
\chi^{2}=\sum_{i=1}^{N_{e v t}} \frac{\left(\alpha_{i}-\alpha_{0}\right)^{2}}{\sigma_{\alpha}^{2}}+\frac{\left(\varepsilon_{i}-\varepsilon_{0}\right)^{2}}{\sigma_{\varepsilon}^{2}}
$$

- In my talk in April, minimization was done "manually" with a fast simulation
- Today, we'll do everything analytically (and check if we find the same result before moving)
- With α_{1} and ε_{1} measured event-by-event from the photon angles:

$$
\alpha=2 \arcsin \left[\frac{\sin \left(\phi^{+}-\phi^{-}\right) \sin \theta^{+} \sin \theta^{-}}{\sin \phi^{+} \sin \theta^{+}-\sin \phi^{-} \sin \theta^{-}}\right] \quad \varepsilon=\frac{x_{+} \cos \theta^{+}+x_{-} \cos \theta^{-}}{\cos \alpha / 2}, \quad x_{ \pm}=\frac{\mp \sin \theta^{\mp} \sin \phi^{\mp}}{\sin \theta^{+} \sin \phi^{+}-\sin \theta^{-} \sin \phi^{-}} .
$$

Analytical expression of the χ^{2}

$$
\begin{aligned}
& \Delta \alpha\left(\theta^{+}, \theta^{-}, \phi^{+}, \phi^{-}\right)=\frac{\partial \alpha}{\partial \theta^{+}} \Delta \theta^{+}+\frac{\partial \alpha}{\partial \theta^{-}} \Delta \theta^{-}+\frac{\partial \alpha}{\partial \phi^{+}} \Delta \phi^{+}+\frac{\partial \alpha}{\partial \phi^{-}} \Delta \phi^{-} . \\
& \Delta \varepsilon\left(\theta^{+}, \theta^{-}, \phi^{+}, \phi^{-}\right)=\frac{\partial \varepsilon}{\partial \theta^{+}} \Delta \theta^{+}+\frac{\partial \varepsilon}{\partial \theta^{-}} \Delta \theta^{-}+\frac{\partial \varepsilon}{\partial \phi^{+}} \Delta \phi^{+}+\frac{\partial \varepsilon}{\partial \phi^{-}} \Delta \phi^{-} .
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \alpha=\frac{1}{2}\left(\frac{\partial \alpha}{\partial \theta^{+}}+\frac{\partial \alpha}{\partial \theta^{-}}\right)\left(\Delta \theta^{+}+\Delta \theta^{-}\right)+\frac{1}{2}\left(\frac{\partial \alpha}{\partial \theta^{+}} \frac{\mathrm{f}_{2}}{-} \frac{\partial \alpha}{\partial \theta^{-}}\right)\left(\Delta \theta^{+}-\Delta \theta^{-}\right) \\
& \Delta \varepsilon=\frac{1}{2}\left(\frac{\partial \varepsilon}{\partial \theta^{+}}+\frac{\partial \varepsilon}{\mathrm{g}_{1}} \frac{\partial \theta^{-}}{}\right)\left(\Delta \theta^{+}+\Delta \theta^{-}\right)+\frac{1}{2}\left(\frac{\partial \varepsilon}{\partial \theta^{+}}-\frac{\partial \varepsilon}{\mathrm{g}_{2}} \frac{\partial \theta^{-}}{}\right)\left(\Delta \theta^{+}-\Delta \theta^{-}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f_{1}=\alpha\left[-\frac{\alpha}{2} \frac{\cos ^{3} \theta^{*} \cos \phi^{*}}{\sin ^{2} \theta^{*}}+\varepsilon \frac{1+\cos ^{2} \theta^{*}}{\sin \theta^{*}}\right] \\
& f_{2}=\alpha \frac{\cos \theta^{*}}{\sin \theta^{*}}, \Rightarrow \Delta \boldsymbol{\theta}^{+}-\Delta \boldsymbol{\theta}^{-} \\
& g_{1}=-\frac{1}{\sin \theta^{*}}, \Rightarrow \Delta \boldsymbol{\theta}^{+}+\Delta \boldsymbol{\theta}^{-} \\
& g_{2}=\frac{\alpha}{2} \frac{\cos 2 \theta^{*} \cos \phi^{*}}{\sin ^{2} \theta^{*}}-\varepsilon \frac{\cos \theta^{*}}{\sin \theta^{*}},
\end{aligned}
$$

In each $\left(\theta^{*}, \phi^{*}\right)$ bin, $\chi^{2}=\Delta^{\mathrm{T}} \mathrm{V} \Delta \quad\left(\mathrm{V}^{-1}=2 \times 2\right.$ error matrix $)$
$V_{i j}\left(\theta^{*}, \phi^{*}\right)=N\left(\theta^{*}, \phi^{*}\right)\left[\frac{f_{i} f_{j}}{\sigma_{\alpha}^{2}}+\frac{g_{i} g_{j}}{\sigma_{\varepsilon}^{2}}\right]$

$$
\Delta=\frac{1}{2}\left[\begin{array}{l}
\Delta \theta^{+}+\Delta \theta^{-} \\
\Delta \theta^{+}-\Delta \theta^{-}
\end{array}\right]
$$

$$
\begin{aligned}
\cos \theta^{*} & =\left(\cos \theta^{+}-\cos \theta^{-}\right) / 2, \\
\cos \phi^{*} & =\left(\cos \phi^{+}-\cos \phi^{-}\right) / 2, \\
\sin \theta^{*} & =\left(\sin \theta^{+}+\sin \theta^{-}\right) / 2, \\
\sin \phi^{*} & =\left(\sin \phi^{+}-\sin \phi^{-}\right) / 2 .
\end{aligned}
$$

$\sigma_{\alpha, \varepsilon}$ obtained from error propagation \oplus beam divergence (for α) \oplus energy spread (for ε)

Error matrix with 45 ab $^{-1}$ @ Z pole for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma$ events

Bin size : $1^{\circ} \times 1^{\circ}$

- Commensurate with CLD/IDEA/crystal calo readout cell
- Photon position resolution $\sigma_{x, y}=0.5 \mathrm{~mm}$
- Typical of CLD / IDEA / crystal calorimeter
- Preshower in front of the endcaps : $\sigma_{x, y}=0.075 \mathrm{~mm}$

In the endcaps:

$$
\sigma_{\theta}=\frac{\sigma_{x, y} \cos ^{2} \theta}{z}, \sigma_{\phi}=\frac{\sigma_{x, y}}{z \tan \theta}
$$

Error matrix in the collision frame with $45 \mathrm{ab}^{-1}$ @ Z pole

$\rho\left(\theta^{*}, \phi^{*}\right)$

- Transfer matrix from collision rest frame to lab frame

Precision of acceptance determination

θ^{*} accuracy along ϕ^{*} at $10^{\circ}\left(20^{\circ}\right)$

Integration (of V) over ϕ^{*}

- If the crossing angle, longitudinal boost, and azimuthal angles are known perfectly
- Acceptance accuracy can be determined in situ with a sub-mrad precision
$\rightarrow 0.2 \mu \mathrm{rad}$ with a polar angle θ^{*} cut at 10° (was $0.25 \mu \mathrm{rad}$ in April with the simulation)
$\rightarrow 0.6 \mu \mathrm{rad}$ with a polar angle θ^{*} cut at 20° (was $0.75 \mu \mathrm{rad}$ in April with the simulation)
- Reminder: Tolerance estimated to be $6.5 \mu \mathrm{rad}$

Simultaneous fit of α and ε with $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma$ events

- For each event, fit $\alpha, \varepsilon, \theta^{*}$ and ϕ^{*} - not just the last two
- Need to use the four angle measurements $\theta^{+}, \theta^{-}, \phi^{+}, \phi^{-}$in the χ^{2}

$$
\begin{aligned}
& \Delta \alpha=\frac{1}{2}\left(\frac{\partial \alpha}{\partial \theta^{+}}+\frac{\partial \alpha}{\partial \theta^{-}}\right)\left(\Delta \theta^{+}+\Delta \theta^{-}\right)+\frac{1}{2}\left(\frac{\partial \alpha}{\partial \theta^{+}}-\frac{\partial \alpha}{\partial \theta^{-}}\right)\left(\Delta \theta^{+}-\Delta \theta^{-}\right) \\
&+\frac{1}{2}\left(\frac{\partial \alpha}{\partial \phi^{+}}+\frac{\partial \alpha}{\partial \phi^{-}}\right)\left(\Delta \phi^{+}+\Delta \phi^{-}\right)+\frac{1}{2}\left(\frac{\partial \alpha}{\partial \phi^{+}}-\frac{\partial \alpha}{\partial \phi^{-}}\right)\left(\Delta \phi^{+}-\Delta \phi^{-}\right) \\
& \Delta \varepsilon=\frac{1}{2}\left(\frac{\partial \varepsilon}{\partial \theta^{+}}+\frac{\partial \varepsilon}{\partial \theta^{-}}\right)\left(\Delta \theta^{+}+\Delta \theta^{-}\right)+\frac{1}{2}\left(\frac{\partial \varepsilon}{\partial \theta^{+}}-\frac{\partial \varepsilon}{\partial \theta^{-}}\right)\left(\Delta \theta^{+}-\Delta \theta^{-}\right) \\
&+\frac{1}{2}\left(\frac{\partial \varepsilon}{\partial \phi^{+}}+\frac{\partial \varepsilon}{\partial \phi^{-}}\right)\left(\Delta \phi^{+}+\Delta \phi^{-}\right)+\frac{1}{2}\left(\frac{\partial \varepsilon}{\partial \phi^{+}}-\frac{\partial \varepsilon}{\partial \phi^{-}}\right)\left(\Delta \phi^{+}-\Delta \phi^{-}\right) \\
& \mathrm{g}_{3}
\end{aligned}
$$

$$
\begin{gathered}
\Delta \phi^{+}+\Delta \phi^{-} \\
f_{3}=-\alpha \frac{\cos \phi^{*}}{\sin \phi^{*}}, \quad g_{3}=-\frac{\alpha}{2} \frac{\cos \theta^{*}}{\sin \theta^{*} \sin \phi^{*}} \\
f_{4}=-2 \frac{\sin \theta^{*}}{\sin \phi^{*}}, \quad g_{4}=-\frac{\cos \theta^{*} \cos \phi^{*}}{\sin \phi^{*}} \\
\Delta \phi^{+}-\Delta \phi^{-}
\end{gathered}
$$

- In each $\left(\theta^{*}, \phi^{*}\right)$ bin, $\chi^{2}=\Delta^{\mathrm{T}} \mathrm{V} \Delta(4 \times 4$ not regular matrix $)$

$$
V_{i j}\left(\theta^{*}, \phi^{*}\right)=N\left(\theta^{*}, \phi^{*}\right)\left[\frac{f_{i} f_{j}}{\sigma_{\alpha}^{2}}+\frac{g_{i} g_{j}}{\sigma_{\varepsilon}^{2}}\right]
$$

$$
\Delta=\frac{1}{2}\left[\begin{array}{l}
\Delta \theta^{+}+\Delta \theta^{-} \\
\Delta \theta^{+}-\Delta \theta^{-} \\
\Delta \phi^{+}+\Delta \phi^{-} \\
\Delta \phi^{+}-\Delta \phi^{-}
\end{array}\right]
$$

- θ^{*} / ϕ correlation: Add a $100 \mu \mathrm{~m}$ constraint on $\mathrm{r} \phi$ in the χ^{2} (i.e., in V)
For each endcap separately (cell-to-cell)
$\left(r \Delta \phi^{+} / 10^{-4}\right)^{2}+\left(r \Delta \phi^{-} / 10^{-4}\right)^{2}$
For one endcap wrt the other endcap

$$
\left(\Delta\left(\phi^{+}+\phi^{-}\right) / 4 \times 10^{-5}\right)^{2}+\left(\Delta\left(\phi^{+}-\phi^{-}\right) / 4 \times 10^{-5}\right)^{2}
$$

Error matrix with 45 ab $^{-1}$ @ Z pole for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma$ events

p(a, α)
$\sigma(\alpha)$

- α known to 1μ rad in 10 minutes $\checkmark \sigma(\varepsilon)$
- Error matrix shown in the $\left(\Delta \alpha_{0,} \Delta \varepsilon_{0,} \Delta \theta^{*}, \Delta \phi^{*}\right)$ basis
- With a moderate (?) $\mathbf{1 0 0} \mu \mathrm{m}$ constraint on $\mathrm{r} \phi$
- See backup slides for the transfer matrix

From the ($\Delta \alpha_{0,} \Delta \varepsilon_{0,} \Delta \theta^{*}, \Delta \phi^{*}$) basis
To the ($\Delta \theta^{+}+\Delta \theta^{-}, \Delta \theta^{+}-\Delta \theta^{-}, \Delta \phi^{+}+\Delta \phi^{-}, \Delta \phi^{+}-\Delta \phi^{-}$) basis
$\sigma\left(\phi^{*}\right)$

Precision of acceptance determination

θ^{*} uncertainty in the (θ^{*}, ϕ^{*}) plane
$\sigma\left(\theta^{*}\right)$

Integration over ϕ^{*}
$\sigma\left(\theta^{*}\right)$

- Acceptance precision in the right ball park at 10° and 20°
- Bottom line
- Traded a tolerance of $10 \mu \mathrm{~m}$ in radius for a tolerance of $100 \mu \mathrm{~m}$ in the ϕ direction
- No dependence in the relative distance between the two endcaps (while θ is Δz-dependent)
- Measurements in the ϕ direction are mostly relative (total is 2π !)

This is far from being the end of the story

- One (two) additional constraint(s), not used so far, can be added to the χ^{2}

$$
\begin{gathered}
x^{+}-x^{-}=A^{*}\left(=\sin \frac{\alpha}{2} \sin \theta^{*} \cos \phi^{*}+\varepsilon \cos \theta^{*}\right) \\
x_{ \pm}=\frac{\mp \sin \theta^{\mp} \sin \phi^{\mp}}{\sin \theta^{+} \sin \phi^{+}-\sin \theta^{-} \sin \phi^{-}} .
\end{gathered}
$$

- Constraining A^{*} in situ with the angle measurements will reduce the $\theta * / \phi$ correlation
- In this presentation, the acceptance cut was defined as a straight cut on θ^{*}
- This cut corresponds to apply the same cut to the two photons
- In real life, the cut will be applied on only one of the two photons
- Changing side at each event (forward - backward - forward - backward - etc.)
- This trick reduces the sensitivity of the acceptance cut
- In particular to the relative misalignment of the two endcaps in the ϕ direction
\rightarrow Due either to a global rotation around z, or a global translation in the (x, y) plane
- This trick will in turn loosen the tolerance of this relative misalignment

This is far from being the end of the story

- A global relative (x, y) misalignment of the two endcaps is measurable in situ as well!
- Rotation around z

Translation in the x, y plane
$\Delta \phi_{ \pm}=\Delta \gamma_{ \pm}^{z}$
ϕ distribution for a given θ cut

$$
\Delta \phi_{ \pm}=\frac{\Delta y_{ \pm}}{r} \cos \phi_{ \pm}-\frac{\Delta x_{ \pm}}{r} \sin \phi_{ \pm}
$$

More events on this side

More events
on this side

23200
23000
22800

\sim vanishes after ϕ integration
ϕ^{*} distribution for a given θ^{*} 0.01% of the total statistics at 91.2 GeV 1 cm displacement

Less events
on that side

This is far from being the end of the story

- A global relative (x, y) misalignment of the two endcaps is measure in situ as well!
- Rotation around z

Trans

Bonus slides

Including $\mathrm{x}^{+}-\mathrm{x}^{-}=\mathrm{A}^{*}$

θ^{*} uncertainty in the $\left(\theta^{*}, \phi^{*}\right)$ plane
Integration over ϕ^{*}

Lorentz transform

- From the collision frame to the laboratory frame

$$
\begin{aligned}
& p_{x}=p_{x}^{*}+\sin \frac{\alpha}{2}\left[\gamma E^{*}+\frac{\gamma-1}{\beta^{2}}\left(p_{x}^{*} \sin \frac{\alpha}{2}+p_{z}^{*} \varepsilon \cos \frac{\alpha}{2}\right)\right], \\
& p_{y}=p_{y}^{*}, \\
& p_{z}=p_{z}^{*}+\varepsilon \cos \frac{\alpha}{2}\left[\gamma E^{*}+\frac{\gamma-1}{\beta^{2}}\left(p_{x}^{*} \sin \frac{\alpha}{2}+p_{z}^{*} \varepsilon \cos \frac{\alpha}{2}\right)\right] \\
& E=\gamma\left[E^{*}+p_{x}^{*} \sin \frac{\alpha}{2}+p_{z}^{*} \varepsilon \cos \frac{\alpha}{2}\right] .
\end{aligned}
$$

$$
\mathcal{O}\left(\alpha^{2}, \varepsilon^{2}, \alpha \varepsilon\right) \quad \begin{aligned}
& E^{+} \sin \theta^{+} \cos \phi^{+}=E^{*}\left(\sin \theta^{*} \cos \phi^{*}+\sin \alpha / 2\right), \\
& E^{+} \sin \theta^{+} \sin \phi^{+}=E^{*} \sin \theta^{*} \sin \phi^{*}, \\
& E^{+} \cos \theta^{+}=E^{*}\left(\cos \theta^{*}+\varepsilon\right), \\
& E^{+} \quad=E^{*}\left(1+\sin \alpha / 2 \sin \theta^{*} \cos \phi^{*}+\varepsilon \cos \theta^{*}\right), \\
& E^{-} \sin \theta^{-} \cos \phi^{-}=-E^{*}\left(\sin \theta^{*} \cos \phi^{*}-\sin \alpha / 2\right), \\
& E^{-} \sin \theta^{-} \sin \phi^{-}=-E^{*} \sin \theta^{*} \sin \phi^{*}, \\
& E^{-} \cos \theta^{-} \\
& E^{-} \\
& E^{-}=-E^{*}\left(\cos \theta^{*}-\varepsilon\right), \\
&
\end{aligned}
$$

Lorentz transform

- Relations between measured angles in the detector and $\alpha, \varepsilon, \theta^{*}, \phi^{*}$
- Still to be cross-checked by Emmanuel

$$
\begin{aligned}
& \frac{\cos \theta^{+}+\cos \theta^{-}}{2}=-A \cos \theta^{*}+\varepsilon+\mathcal{O}\left(\alpha^{3}, \alpha^{2} \varepsilon, \alpha \varepsilon^{2}, \varepsilon^{3}\right) \\
& \frac{\cos \theta^{+}-\cos \theta^{-}}{2}=\left(1+A^{2}-\frac{\alpha^{2}}{8}-\frac{\varepsilon^{2}}{2}\right) \cos \theta^{*}-\frac{A \varepsilon}{2}+\mathcal{O}\left(\alpha^{3}, \alpha^{2} \varepsilon, \alpha \varepsilon^{2}, \varepsilon^{3}\right) \\
& \frac{\cot \phi^{+}+\cot \phi^{-}}{2}=\cot \phi^{*}+\frac{\alpha A}{4 \sin \theta^{*} \sin \phi^{*}}+\mathcal{O}\left(\alpha^{3}, \alpha^{2} \varepsilon, \alpha \varepsilon^{2}, \varepsilon^{3}\right) \\
& \frac{\cot \phi^{+}-\cot \phi^{-}}{2}=\frac{\alpha}{2 \sin \theta^{*} \sin \phi^{*}}+\mathcal{O}\left(\alpha^{3}, \alpha^{2} \varepsilon, \alpha \varepsilon^{2}, \varepsilon^{3}\right) . .
\end{aligned}
$$

With $A=\sin \frac{\alpha}{2} \sin \theta^{*} \cos \phi^{*}+\varepsilon \cos \frac{\alpha}{2} \cos \theta^{*}$.

Lorentz transform

- Transfer matrix for small $\alpha, \varepsilon, \theta^{*}, \phi^{*}$ deviations
- Still to be cross-checked by Emmanuel

$$
\begin{equation*}
\frac{\Delta \theta^{+}+\Delta \theta^{-}}{2}=-A \Delta \theta^{*}-\frac{\alpha}{2} \cos \theta^{*} \sin \phi^{*} \Delta \phi^{*}+\frac{1}{2} \cos \theta^{*} \cos \phi^{*} \Delta \alpha-\sin \theta^{*} \Delta \varepsilon \tag{C103}
\end{equation*}
$$

$$
\begin{align*}
\frac{\Delta \theta^{+}-\Delta \theta^{-}}{2}= & \Delta \theta^{*} \\
& +\left[\left(-2 A \sin \theta^{*}-\xi \cos \theta^{*}\right) \frac{\cos \phi^{*} \cos \theta^{*}}{2 \sin \theta^{*}}+\frac{\alpha}{4} \frac{\cos \theta^{*}}{\sin \theta^{*}}+\frac{\varepsilon}{4} \cos \phi^{*}\right] \Delta \alpha \\
& +\left[\left(-2 A \cos \theta^{*}+\xi \sin \theta^{*}\right) \frac{\cos \theta^{*}}{\sin \theta^{*}}+\frac{\alpha}{4} \cos \phi^{*}+2 \varepsilon \frac{\cos \theta^{*}}{\sin \theta^{*}}\right] \Delta \varepsilon, \quad(\mathrm{C} 104) \\
\frac{\Delta \phi^{+}+\Delta \phi^{-}}{2}= & \Delta \phi^{*} \\
& +\left(\frac{\alpha}{2} \frac{\cos \phi^{*} \sin \phi^{*}}{\sin ^{2} \theta^{*}}-\frac{\alpha}{4} \cos \phi^{*} \sin \phi^{*}-\frac{\varepsilon}{4} \frac{\cos \theta^{*} \sin \phi^{*}}{\sin \theta^{*}}\right) \Delta \alpha \\
& -\frac{\alpha}{4} \frac{\cos \theta^{*} \sin ^{*} \phi^{*}}{\sin \theta^{*}} \Delta \varepsilon, \tag{C106}\\
\frac{\alpha \phi^{+}-\Delta \phi^{-}}{2}= & \frac{\alpha}{2} \frac{\cos \theta^{*} \sin \phi^{*}}{\sin ^{2} \theta^{*}} \Delta \theta^{*}-\frac{\alpha}{2} \frac{\cos \phi^{*}}{\sin \theta^{*}} \Delta \phi^{*}-\frac{1}{2} \frac{\sin \phi^{*}}{\sin \theta^{*}} \Delta \alpha . \quad(\mathrm{C} 106) \tag{C107}
\end{align*}
$$

