

Outline

Comparison of current Silicon tracking systems for ALICE-3 and FCC-ee (configurations, performance, operating conditions)

R&D highlights

(see more in D. Bartoletto's and M. Mager's presentations)

Special thanks to A Dainese, A. Di Mauro, M. Mager

ALICE-3 and FCC-ee detector concepts

^{*} Possibly higher above Z-pole beam energy

Detector performance requirements

ALICE-3

Component	Observables	η < 1.75 (barrel)	1.75 < η < 4 (forward)	Detectors
Vertexing	Multi-charm baryons, dielectrons	Best possible DCA resolution, σ _{DCA} ≈ 10 μm at 200 MeV/c	Best possible DCA resolution, $\sigma_{DCA} \approx 30 \ \mu m$ at 200 MeV/c	Retractable silicon pixel tracker: $\sigma_{pos}\approx 2.5~\mu m,~R_{in}\approx 5~mm, \\ X/X_0\approx 0.1~\%~for~first~layer$
Tracking	Multi-charm baryons, dielectrons	σ _{pT} / p _T ~1-2 %		Silicon pixel tracker: $\sigma_{pos} \approx 10 \ \mu m, \ R_{out} \approx 80 \ cm, \ X/X_0 \approx 1 \ \% \ / \ layer$
Hadron ID	Multi-charm baryons	π/K/p separation up to a few GeV/c		Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: aerogel, $\sigma_{\theta} \approx 1.5 \text{ mrad}$
Electron ID	Dielectrons, quarkonia, χ ₀₁ (3872)	pion rejection by 1000x up to ~2 - 3 GeV/c		Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: aerogel, $\sigma_{\theta} \approx 1.5 \text{ mrad}$ possibly preshower detector

Optimization driven toward low p_T signals

- High precision ultralight VD close to the beam
- High precision light Central Tracker
- ToF precision for PID up to O (3) GeV (+ RICH)

FCC-ee (M. Selvaggi's presentation)

Large p_T range, new precision constraints for flavor tagging (including Higgs sector), and detached vertices

Unprecedented precision in beam energy, luminosity, acceptance and B-field knowledge

FCC-ee detector performance requirements

Ongoing PED work* to establish configurations and identify detector features that matter most (including benefits of recent progress in reconstruction and analyses techniques)

FCC-ee (M. Selvaggi presentation's)

 p_T resolution B-field effect on Higgs mass resolution

inner layer radius effect on Higgs jet tagging

effect of Secondary and Tertiary Vertex transverse precision on S/N of Bs \rightarrow K* $\tau\tau$

Initial requirements are not in asymptote of physics performance (also in M. Selvaggi's presentation)

^{*} complementary work in <u>ECFA Working Groups</u> with communities of other future lepton collider projects

Vertex Detector configurations

Layer	Material	Intrinsic	Barrel layers		arrel layers Forward discs		
	thickness $(\%X_0)$	resolution (µm)	Length $(\pm z)$ (cm)	Radius (r) (cm)	Position ($ z $) (cm)	R _{in} (cm)	R _{out} (cm)
0	0.1	2.5	50	0.50	26	0.50	3
1	0.1	2.5	50	1.20	30	0.50	3
2	0.1	2.5	50	2.50	34	0.50	3

Resolution balanced with expected X/X_0

CLD / IDEA inner VD to be scaled to new BP radius of 10 mm

- CLD: 3 double layers/disks in Barrel/Endcaps
- IDEA: 3 single closer layers in Long Barrel
 - resolution 3 μ m $X/X_0 \simeq (2 \text{ x}) 0.3 0.25 \% / layer$
 - $r_{\text{BeamPipe}} = 1 \text{ cm} \cdot X/X_0 = 0.3\%$

Vertex Detector designs

ALICE-3 iris mechanical concept

 CO_2 colling at -35° micro-channel plate attached to Berylium case (250 μ m) & 3rd layer Monotlithic CMOS TPSCo 65 nm stitched - thin - bent sensors as for ITS3 (M. Mager's presentation)

Component Material Thickness Radiation length (cm) $(\%X_0)$ (µm) Si 9.37 0.032 30 Sensor 35.28 0.071 Support Be 250 50 0.014 Glue 35 0.117 **Total**

Monolithic CMOS LFoundry 110 nm (ARCADIA) reticule size chips abutted in z, airflow cooling

• an anlternative to stave design

risks from SR is one possible show stopper to consider layers inside the beam pipe

Vertex Detector performance

ALICE-3 x 2 better with lower inner radius & X/X₀ IDEA detailed simulation in progress A. Ilg's presentation

FCC-ee benefits from the beam spot constraint

Central Tracking Detector configurations

Layer Material		Intrinsic	Barrel layers		Forward discs		
	thickness (%X ₀)	resolution (µm)	Length (±z) (cm)	Radius (r) (cm)	Position ($ z $) (cm)	R _{in} (cm)	R _{out} (cm)
<u>3</u>	Ī.	10 ⁻	124	3.75	77	5	35
4	1	10	124	7	100	5	35
5	1	10	124	12	122	5	35
6	1	10	124	20	150	5	80
7	1	10	124	30	180	5	80
8	1	10	264	45	220	5	80
9	1	10	264	60	279	5	80
10	1	10	264	80	340	5	80
11	1				400	5	80

CLD: 6 layers and 9 disks

IDEA: 1-2 layers surrounding DCH

ball park 5-7 μm resolution & 1 - 2 % X/X₀ inside-out

ALICE-3 stave concept inspired from ITS2

- $10 \times 10 \text{ cm}^2$ modules of Monolithic CMOS reticle size sensors ($\approx 8 \text{ cm}^2$)
- commercial module production
- water cooling at room temperature
- > Stitched sensors are considered, pending full characterization

Central Tracking performance

FCC-ee CLD better with x 2 larger outer radius however need to improve X/X_0

ALICE-3 Particle ID configuration and technology

	Inner TOF	Outer TOF	Forward TOF
Radius (m)	0.19	0.85	0.15–1.5
z range (m)	-0.62-0.62	-2.79-2.79	4.05
Surface (m ²)	1.5	30	14
Granularity (mm ²)	1×1	5×5	1×1 to 5×5
Hit rate (kHz/cm ²)	74	4	122
NIEL (1 MeV n_{eq}/cm^2) / month	1.3×10^{11}	6.2×10^{9}	2.1×10^{11}
TID (rad) / month	4×10^3	2×10^2	6.6×10^{3}
Material budget ($%X_0$)	1–3	1–3	1–3
Power density (mW/cm ²)	50	50	50
Time resolution (ps)	20	20	20

Technology options

- Monolithic CMOS with amplification layer (ex. ARCADIA) baseline
 - channel grouping after front-end toward TDC at the matrix periphery
- Thin LGADs with pads
- Alternative/complementary option with ToF from RICH readout with SPADS
- > R&D on power consumption to allow higher channel density (integrate ToF in tracking layer)

ALICE-3 Particle ID performance

ALICE-3 PID

 p_T range vs η with 3σ separation versus η complementarity of ToF layers and aerogel RICH

IDEA

3σ separation momentum complementarity of ToF layer at 2 m and DCH

Beyond PID, interest for precision $O(\lesssim 10)$ ps for correction of BES within bunches 4D tracking would also allow to reduce beam background (if it does not affect X/X₀)

Summary comparison of today's requirements including operation conditions

			ALICE 3	FCC-ee
Vertex Detector ³⁾	MAPS Planar/3D/Passive CMOS LGADs	Position precision (µm)	2.5	3
		X/X ₀ (%/layer)	0.1	0.1
		Power (mW/cm²)	70	tbd
		Rates (MHz/cm²)	100	50
		Wafer are (cm²)	25 x 10	tbd
		Time bin/precision (μs)	0.5/0.1	1
	ä	NIEL (1 eV neq/cm²)	1 x 10 ¹⁶	?
		TID (rad)	300 x 10 ⁶	?
	MAPS Planar/3D/Passive CMOS LGADs	Position precision (μm)	10	7
Tracker ⁶⁾		X/X ₀ (%/layer)	1	1
		Power (mW/cm²)	20	tbd
		Rates (kHz/cm²)	1 - 5	
		Wafer are (cm²)	2.6 x 3.2	tbd
		Time bin/precision (μs)	0.5/0.1	1
		NIEL (1 MeV neq/cm²)	5 x 10 ⁹	
		TID (rad)	1.5 x 10 ²	
Time of Flight ⁸⁾	MAPS Planar/3D/Passive CMOS LGADs	Timing precision (ps)	20	tbd
		Granularity (mm)	1 x 1 5 x 5	
		Power (mW/cm²)	50	tbd
		Rates (kHz/cm²)	74/4/120	
		NIEL (x 10 ¹¹ neq/cm ²)	2 x 10 ¹¹	
		TID (rad)	7 x 10 ³	

Most constraining conditions in VD

- Maximum rates have same scale in ALICE-3 and FCC-ee
- Integration time have same scale in ALICE-3 and FCC-ee
- NIEL and TID likely more constraining in ALICE3
- ➤ Work in progress in MDI to reassess FCC-ee conditions with more realistic simulations (A. Ciarma's presentations)

Power consumptions*

- $VD \simeq 70 \text{ mW/cm}^2$, $CT \simeq 20 \text{ mW/cm}^2 \text{ALICE-3}$
- TL \simeq 50 mW/cm² (ARCADIA)
- ➤ Slightly less constraining conditions at FCC-ee may help, a priori similar model for architecture ?

Radiation tolerance

 should be within SoA MCMOS technology limit assuming operation at -25° temperature

^{*} Depending on channel density, timing precision, rates, technology, RO architecture, sensor size through power distribution

Broad brush timeline of ECFA roadmap strategic programs*

^{*} Not exhaustive, now BELLE considering 3rd upgrade at high luminosity, Muon Collider new timeline from Snowmass, and also CEPC

Summary

ALICE-3 and current FCC-ee detector performance targets are in the same ballpark smaller radius for inner layer improves IP resolution in ALICE-3 larger outer radius in FCC-ee improves momentum resolution

R&D topics

main challenge to lower X/X_0 (VD, but also CT to reach FCC-ee BES limit)

needs optimization of resolution versus X/X_0 (realistic description), drives channel density/power needs realistic rates to design readout architecture

yield and fill factor need to be assessed for stitched sensors

low power RO is a major challenge, determines channel density achievable vs timing precision and rates system integration and cooling are crucial elements (including approach to beam line)

track timing precision < 20 ps is another challenge for sensors ... radiation tolerance seems within current state of the art performance

Main R&D goals are common to several other projects
CERN DRD3 collaborations are being formed to organize R&D
ALICE-3 is a stepping stone with a relatively short timescale
new steps in technology are likely needed and possible to improve performance by FCC-ee