

Heavy-quark electroweak measurements

FCC week 2023 - London

Kevin Kröninger¹, Romain Madar², Stéphane Monteil², <u>Lars Röhrig</u>^{1,2} **06/07/2023**

¹Department of Physics – TU Dortmund University ²Laboratoire de Physique de Clermont – Université Clermont-Auvergne

Heavy-quark electroweak measurements

- Heavy quarks: charm, beauty and top
- Precision tests of the electroweak sector + Higgs boson properties
- Best suitable at FCC-ee for beauty- and charm-physics? Measurements at the Z-pole with $5.6 \cdot 10^{12}~Z \rightarrow q\bar{q}$

Heavy-quark electroweak measurements

- Heavy quarks: charm, beauty and top
- Precision tests of the electroweak sector + Higgs boson properties
- Best suitable at FCC-ee for beauty- and charm-physics? Measurements at the Z-pole with $5.6 \cdot 10^{12}~Z \rightarrow q\bar{q}$
- \blacksquare Statistics allow for new methods: flavour tagging for R_b and $A_{\rm FB}^{b\bar{b}}$

	Measurement	Pull	Pull -3 -2 -1 0 1 2 3
m ₇ [GeV]	91.1871 ± 0.0021	.08	
Γ_{z}^{-} [GeV]	2.4944 ± 0.0024	56	-
$\sigma_{hadr}^{\bar{0}}\left[nb\right]$	41.544 ± 0.037	1.75	
R _e	20.768 ± 0.024	1.16	_
A _{fb} ^{0,e}	0.01701 ± 0.00095	.80	_
A _e	0.1483 ± 0.0051	.21	•
A_{τ}	0.1425 ± 0.0044	-1.07	_
sin ² θ _{eff}	0.2321 ± 0.0010	.60	-
m _w [GeV]	80.350 ± 0.056	62	-
R _b	0.21642 ± 0.00073	.81	-
R _c	0.1674 ± 0.0038	-1.27	_
A _{fb} ^{0,b}	0.0988 ± 0.0020	-2.20	
A _{fb} ^{0,c}	0.0692 ± 0.0037	-1.23	_
A_b	0.911 ± 0.025	95	-
A _c	0.630 ± 0.026	-1.46	-
$\sin^2 \! \theta_{ m eff}^{ m lept}$	0.23099 ± 0.00026	-1.95	
$\sin^2 \theta_W$	0.2255 ± 0.0021	1.13	_
m _w [GeV]	80.448 ± 0.062	1.02	_
m _t [GeV]	174.3 ± 5.1	.22	•
$\Delta \alpha_{\text{had}}^{(5)}(\text{m}_{Z})$	0.02804 ± 0.00065	05	1
			-3 -2 -1 0 1 2 3

Principle of the measurement

- Produce $Z \rightarrow q\bar{q}$ at $\sqrt{s} = 91 \, \text{GeV}$
 - \blacksquare R_b : Which q is a b?
 - A_{FB}^{bb} : Where does which b go?
- FCC-ee brings unprecedented statistical precision, but: systematic uncertainties have to keep track!

Proposal: b-hemisphere tagger

"Look inside the jet" and select + identify the charge of the hemispheres by exclusively reconstruct *b*-hadrons. Targets:

- Potential purity of 100 %
- Efficiency of 1 %

Exclusive b-hadrons as hemisphere tagger.

■ Current systematic uncertainty budget for R_b measurement at LEP

lacktriangle Current systematic uncertainty budget for R_b measurement at LEP

Debits Credits

Current systematic uncertainty budget for R_b measurement at LEP

Debits Credits

 Loss in efficiency, thus statistical precision (~ factor 20)

Current systematic uncertainty budget for R_b measurement at LEP

Debits

 \blacksquare Loss in efficiency, thus statistical precision (\sim factor 20)

Credits

Evt. selection

7.5

21.5

MC stat.

12.2

Hemisphere corrolation

Tracking

• With $\varepsilon_b = 1\%$: $\Delta R_b(\text{stat}) = 1.9 \cdot 10^{-5}$ (factor 45 improvement wrt. LEP)

 \blacksquare Improved systematic uncertainty budget for R_b measurement at LEP

Debits

■ Loss in efficiency, thus statistical precision (~ factor 20)

Credits

Evt. selection

- With $\varepsilon_b = 1\%$: $\Delta R_b(\text{stat}) = 1.9 \cdot 10^{-5}$ (factor 45 improvement wrt. LEP)
- udsc-physics background free: Eliminates major source of systematic uncertainty

 \blacksquare Improved systematic uncertainty budget for R_b measurement at LEP

Debits

■ Loss in efficiency, thus statistical precision (~ factor 20)

Credits

- With $\varepsilon_b = 1$ %: $\Delta R_b(\text{stat}) = 1.9 \cdot 10^{-5}$ (factor 45 improvement wrt. LEP)
- udsc-physics background free: Eliminates major source of systematic uncertainty
- Evaluation of the systematic uncertainties (mainly hemisphere correlation, QCD corrections)

 \blacksquare Improved systematic uncertainty budget for R_b measurement at LEP

Debits

■ Loss in efficiency, thus statistical precision (~ factor 20)

Credits

- With $\varepsilon_b = 1\%$: $\Delta R_b(\text{stat}) = 1.9 \cdot 10^{-5}$ (factor 45 improvement wrt. LEP)
- udsc-physics background free: Eliminates major source of systematic uncertainty
- Evaluation of the systematic uncertainties (mainly hemisphere correlation, QCD corrections)
- Measurement of R_b : requires knowledge about the existence of a b-quark (inclusion of B^+ , B^0 , B_s , Λ_b^0)

■ Improved systematic uncertainty budget for R_b measurement at LEP

Debits

- Loss in efficiency, thus statistical precision (~ factor 20)
- Measurement of A_{FB}^{bb} : Further loss in efficiency \hookrightarrow Stay with not-mixing b-hadrons (B^+ and Λ_b^0)

Credits

- With $\varepsilon_b = 1\%$: $\Delta R_b(\text{stat}) = 1.9 \cdot 10^{-5}$ (factor 45 improvement wrt. LEP)
- udsc-physics background free: Eliminates major source of systematic uncertainty
- Evaluation of the systematic uncertainties (mainly hemisphere correlation, QCD corrections)
- Measurement of R_b : requires knowledge about the existence of a b-quark (inclusion of B^+ , B^0 , B_s , Λ_b^0)

• Improved systematic uncertainty budget for R_b measurement at LEP

Debits

- Loss in efficiency, thus statistical precision (~ factor 20)
- Measurement of A_{FB}^{bb} : Further loss in efficiency \hookrightarrow Stay with not-mixing b-hadrons (B^+ and Λ_b^0)

Credits

- With $\varepsilon_b = 1$ %: $\Delta R_b(\text{stat}) = 1.9 \cdot 10^{-5}$ (factor 45 improvement wrt. LEP)
- udsc-physics background free: Eliminates major source of systematic uncertainty
- Evaluation of the systematic uncertainties (mainly hemisphere correlation, QCD corrections)
- Measurement of R_b : requires knowledge about the existence of a b-quark (inclusion of B^+ , B^0 , B_s , Λ_b^0)
- Measurement of $A_{FB}^{b\bar{b}}$: Possibly overcome mixing dilutions + hemisphere confusion from hard gluon radiation

Analysis strategy for R_b

1. Result from PDG-search, that 1 % is in reach: select decay modes with Br $> 10^{-3}$

```
 \begin{array}{c} \textbf{B}^{+} \ 50+ \ \text{modes} \\ \textbf{B}^{0} \ 100+ \ \text{modes} \\ \textbf{B}_{s} \ 50+ \ \text{modes} \\ \textbf{A}_{b}^{0} \ \mathcal{O}(10) \ \text{modes} \\ \end{array} \right\} \ 200+ \ \text{decay modes:} \ \sum \ \text{Br} = 1.11 \ \%
```

Analysis strategy for R_h

- 1. Result from PDG-search, that 1% is in reach: select decay modes with a sufficiently large Br ✓
- 2. Perform a reconstruction of a b-hadron with representative decay modes: $B^+ \rightarrow \dots$

Fully charged, two tracks $\bar{D}^0\pi^+ \to [K^+\pi^-]_{\bar{D}^0}\pi^+$ Two leptons

Fully charged, three tracks $\bar{D}^0 D_s^+ \to [K^+ \pi^-]_{\bar{D}^0} [K^+ K^- \pi^+]_{D_s^+}$ Fully charged, four tracks $\bar{D}^0\pi^+ \to [K^+2\pi^-\pi^+]_{\bar{D}^0}\pi^+$ One π^0 , two tracks, $\bar{D}^0\pi^+ \to [K^+\pi^-\pi^0]_{\bar{D}^0}\pi^+$ Two π^0 , two tracks, $\bar{D}^0\pi^+ \to [K^+\pi^-2\pi^0]_{\bar{D}^0}\pi^+$ $J/\psi K^{+} \to [\ell^{+}\ell^{-}]_{L/\psi} K^{+}$

Exemplarily: $B^+ \to J/\psi K^+ \to [\ell^+ \ell^-]_{J/\psi} K^+$

5 / 12 L. Röhrig | 06/07/2023

2. Reconstruction of representative decay modes

- lacksquare $B^+ o J/\psi \, K^+$ reconstruction and $J/\psi o \ell^+ \ell^-$ with $4 \cdot 10^7 \, Z o q ar q$ events from winter2023 campaign
- Emulation of vertex resolution by requiring charged particles to have < 50 µm displacement

- Uncertainty from unbinned maximum likelihood fit to the B^{\pm} mass spectrum: 5.00 MeV
- Full mass spectrum already shows two orders of magnitude suppressed background, doing better?

2. Reconstruction of representative decay modes – doing better!

- Background contamination: gluon radiation and $g \to b\bar{b}$ (proven from simulation) \hookrightarrow These candidates are expected to have lower energy
- lacktriangle Energy spectrum of the truth-matched B^+ candidates confirms expectation
- Use an energy cut of E > 20 GeV

2. Reconstruction of representative decay modes – doing better!

- Background contamination: gluon radiation and $g \to b\bar{b}$ (proven from simulation) \hookrightarrow These candidates are expected to have lower energy
- lacktriangle Energy spectrum of the truth-matched B^+ candidates confirms expectation
- Use an energy cut of E > 20 GeV

• Original B^+ reconstruction efficiency = 85.7 % and purity = 98.6 %

2. Reconstruction of representative decay modes – doing better!

- Background contamination: gluon radiation and $g \to b\bar{b}$ (proven from simulation) \hookrightarrow These candidates are expected to have lower energy
- ullet Energy spectrum of the truth-matched B^+ candidates confirms expectation
- Use an energy cut of E > 20 GeV

• Original B^+ reconstruction efficiency = 85.7 % and purity = 98.6 % \rightarrow 80.4 % and 99.9 %

Analysis strategy for R_b

- 1. Result from PDG-search, that 1% is in reach: select decay modes with a sufficiently large Br \checkmark
- **2.** Perform a reconstruction of a b-hadron with representative decay modes: $B^+ \rightarrow \dots \checkmark$
- **3.** Verification for the other decay modes

Decay mode $B^+ \rightarrow \dots$	Reconstruction efficiency / %	Purity / %
$ar{\mathcal{D}}{}^0\pi^+ o [\mathcal{K}^+\pi^-]_{ar{\mathcal{D}}{}^0}\pi^+$	71.1	99.9
$ar{ar{\mathcal{D}}}{}^0\pi^+ o [\mathcal{K}^+\pi^-\pi^0]_{ar{\mathcal{D}}}{}^0\pi^+$	59.9	99.9
$ar{D}^0\pi^+ o [K^+\pi^- 2\pi^0]_{ar{D}^0} \pi^+$	47.1	99.8
$ar{D}^0\pi^+ o [K^+2\pi^-\pi^+]_{ar{D}^0} \pi^+$	64.8	99.6
$J/\psi K^+ o [\ell\ell] K^+$	80.4	99.9
$D_s^+ \bar{D}^0 \to [K^+ K^- \pi^+][K^- \pi^+]$	81.5	100.0

Analysis strategy for R_b

- 1. Result from PDG-search, that 1% is in reach: select decay modes with a sufficiently large Br ✓
- **2.** Perform a reconstruction of a b-hadron with representative decay modes: $B^+ \rightarrow \dots \checkmark$
- 3. Verification for the other decay modes ✓
- 4. Determination of the hemisphere correlation from fully simulated events

4. First look on Full Simulation

Special thanks to F. Bedeschi, E. Perez and X. Zuo!

- Hemisphere correlation determination requires fully simulated events in CLD (with all its ups and downs)
- lacksquare Forced decays on both legs to $B^\pm o D^0 \pi^\pm o [K^\pm \pi^\mp]_{D^0} \pi^\pm$ with EvtGen
- \blacksquare Usage of modified FCCAnalyses software to extract tracks and 4-vectors \hookrightarrow Performed complete vertexing up to the B^\pm

- \blacksquare Resolution on the B^+ mass degraded by a factor 3.1
- \blacksquare Correlation of hemispheres about to be determined: $\rho_b = \frac{\varepsilon(\tan\theta\,H_2\,|\,H_1)}{\varepsilon(\tan\theta\,H_1)}$

Conclusions

lacktriangle Presented a novel hemisphere tagger and it's application on R_b and $A_{ t FB}^{bar b}$

Proposal: b-hemisphere tagger

"Look inside the jet" and select+identify the charge of the hemispheres by exclusively reconstruct *b*-hadrons. Targets:

- Potential purity of 100 %
- Efficiency of 1%
- 1. Result from PDG-search, that 1% is in reach ✓
- 2. Perform B^+ reconstruction in a representative decay mode \checkmark
- 3. Verification for the other decay modes ✓
- 4. Hemisphere correlation from fully simulated events WIP
 - Strategy summarised in a rather final Internal Analysis Note

Bigger picture

- Combination of R_b and $A_{\text{FR}}^{b\bar{b}}$ with other heavy-quark measurements
- Possible anomalies translate from the Z-pole to top-measurements → Consistently described by a common set of dimension-6 operators in SMEFT

 \Rightarrow Anomaly in e. g. the t forward-backward asym.

About 25 observables extracted from the top-energy scale: global interpretation

12 / 12 L. Röhrig | 06/07/2023

Bigger picture

- Combination of R_b and $A_{\text{FR}}^{b\bar{b}}$ with other heavy-quark measurements
- Possible anomalies translate from the Z-pole to top-measurements → Consistently described by a common set of dimension-6 operators in SMEFT

 \Rightarrow Anomaly in e. g. the t forward-backward asym.

About 25 observables extracted from the top-energy scale: global interpretation

Thanks a lot for the attention!

12 / 12 L. Röhrig | 06/07/2023

Appendix: Primary vertex resolution

Primary vertex resolution extracted from the CLD Full Simulation sample

Appendix: D^0 vertex and momentum resolution

Vertex and momentum resolution for the Full Simulation sample with the CLD detector

Appendix: B^+ vertex and momentum resolution

Vertex and momentum resolution for the Full Simulation sample with the CLD detector

Appendix: CLD B^+ mass fit

- \blacksquare Fit of the reconstructed B^+ meson with a sum of three Gaussian distributions
- Fit parameters: $\mu = 5279.09 \, \text{MeV}$ and $\sigma_{\text{comb.}} = 12.75 \, \text{MeV}$

Appendix: Further increasing the efficiency

- Efficiency of the tagger can be further improved by accepting also partially reconstructed candidates
- No degradation of the purity

Fast Simulation: Decay mode $B^+ \to [K^+\pi^-]_{\bar{D}^0}\pi^+$

Fast Simulation: Decay mode $B^+ \to [K^+\pi^-\pi^0]_{\bar{D}^0}\pi^+$

Fast Simulation: Decay mode $B^+ \to [K^+\pi^-2\pi^0]_{\bar{D}^0}\pi^+$

Fast Simulation: Decay mode $B^+ \to [K^+ 2\pi^- \pi^+]_{\bar{D}^0} \pi^+$

Fast Simulation: Decay mode $B^+ \to [\ell^+ \ell^-]_{J/\psi} K^+$

Fast Simulation: Decay mode $B^+ \to [K^+K^-\pi^+]_{D_s^+}[K^+\pi^-]_{\bar{D}^0}$

Appendix: Internal Analysis Note

Status: Fast Simulation reconstruction described in detail + Full Simulation studies to be included

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP-2023-001 FCC-ee-INT-2023-001 February 02, 2023

Reconstructed exclusive b-hadron decays as hemisphere jet charge tagger and its application for the measurement of R_b and $A_{\rm FB}^b$

FCC-ee collaboration

Abstract

This paper presents a novel approach using exclusively reconstructed b-basico copy as a hemisphere tagge and its application for the measurement of R_0 , the decompose a beautiful and the present of R_0 and the second of the present of R_0 and the second of the

© 2023 CERN for the benefit of the FCC-ee collaboration. CC BY 4.0 licence

Contents

2	4 Introduction	
3	2 Motivation for a new hemisphere tagger	2
	2.1 Current state of the art and its limitations	3
5	2.2 Overcoming limitations and a new method	3
	2.3 New hemisphere tagger in the context of FCC-ee.	- 4
7	3 Analysis	4
	3.1 Simulated data samples	5
		5
30	3.2.1 Reconstruction of the B ⁺ with one c-meson	- 6
11	3.2.2 Reconstruction of the B ⁺ with two c-mesons	22
12	3.2.3 Reconstruction of the B ⁺ with a cc meson	22
33	3.3 Statistical result	24
14	4 Discussion of hemisphere correlation uncertainties	26
	5 Conclusions	26
**	Conclusions	20
14	References	26

" 1 Introduction

Measurements of electroweak precision observables in high-energy physics requires the precise and unambiguous determination of the products emerging from the hard scattering. The products, summarised as a collection of particles sharing the same thrust in a

in hemisphere of the collision, are referred to as a jet. The determination of the jet flavour, is i.e. the determination of the flavour of the originating quark, becomes complicated due many quantum chromodynamic (QCD) processes taking place before the hadronisation of

the quark.

The two most prominent observables at electron-positron colliders with collision

see energies of $\sqrt{s} = m_Z$ requiring exquisite and unique determination of the beauty-flavour are the fraction of hadronic Z decays to b-quarks R_b and the forward-backward asymmetry of the b-quark, Ab... While R_b is defined as

$$R_b = \frac{\Gamma(Z \to b\bar{b})}{\Gamma(Z \to \text{had})}$$

and just requires the knowledge about the presence of absence of a b-quark, the forwardbackward asymmetry

$$A_{FB}^b = \frac{N_F - N_B}{N_F + N_B}$$
(2)

(1)

 $_{^{11}}$ also asks for the angle and the charge of the quark wrt. the incoming electron (or of the

22 antiquark wrt. the positron).