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Physics motivation

▶ Considerable interest in the flavour community in b→ sℓ+ℓ− and b → cℓ−ν
transitions

▶ b → sνν transitions are complementary probes (ℓ+ and ν share a weak doublet)

▶ SM predictions are clean:

▶ Dominant uncertainties from hadronic form-factors and CKM elements

▶ No long-distance contributions from (in)famous charm loops

▶ Sensitive to a variety of NP scenarios e.g. Z′, leptoquarks etc.
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▶ In the SM, Cii
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R = 0 [1, 2, 3, 4]
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Experimental state-of-the-art

▶ FCC-ee provides a (possibly unique) opportunity for semileptonic flavour physics
▶ A beauty/charm factory at the Z gets the best of both LHCb and B-factories
▶ e+–e− collision, high production rate, access to high mass states, hermetic detector

▶ In the SM b → sνν BF predictions are O(10−5)

▶ Not yet seen experimentally

▶ From the underlying b → sνν̄ transition we can study:

Decay B-factories FCC-ee Current Limit SM prediction

B+ → K+νν ✔ ✔ < 1.6× 10−5 (4.0± 0.5)× 10−6

B+ → K∗+νν ✔ ✔ < 4.0× 10−5 (9.8± 1.1)× 10−6

B0 → K0
Sνν ✔ ✔ < 2.6× 10−5 (3.7± 0.4)× 10−6

B0 → K∗0νν ✔ ✔ < 1.8× 10−5 (9.2± 1.0)× 10−6

B0
s → ϕνν ✗ ✔ < 5.4× 10−3 (9.9± 0.7)× 10−6

Λ0
b → Λ0νν ✗ ✔ – –

▶ Decays with intermediate vectors are consierably easier experimentally
▶ single track is hard, final state neutral needs good K0

S/ Λ0 reco
▶ intermediate scalars are much cleaner for theory

▶ Decays with intermediate scalars are cleaner for theory

▶ With 2 neutrinos in the final state, decays are (probably) impossible at the LHC 3/28



Event topology

We have studied the prospects for B0 → K∗0νν and B0
s → ϕνν

▶ Use the thrust axis for Z0 → qq to define event hemispheres

▶ Due to missing energy in the signal decay the two hemispheres have different energy
distributions

Plane normal to thrust axis 
defines the hemispheres
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Energy in each hemisphere
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Event-level MVA

▶ Background sample from inclusive Z0 → qq, cc, bb using PDG branching fractions

▶ Input variables are the event energy distributions and vertex information
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▶ Powerful seperation - cut at 0.6 has > 90% signal efficiency and ∼ 90% background
rejection

▶ Very similar for the B0
s → ϕνν mode
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Analysis-level MVA

▶ Train a second BDT on variables related to the candidate properties:
▶ Intermediate candidate kinematics
▶ Intermediate candidate topology
▶ The nominal B-meson energy (Z mass minus Erec)

▶ Use multivariate splines to build efficiency maps across the (BDT1, BDT2) plane

▶ Then maximise the FOM, S/
√
S +B, as a function of the BDT cuts for a range of

BF values
B0 → K∗0νν B0

s → ϕνν
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Signal estimate

▶ Signal expectation is computed as

S = NZ B(Z → bb) 2 fB B(B → Y νν)B(Y → f) ϵspre ϵ
s
BDTs,

▶ Background expectation computed as

B =
∑

f∈{bb,cc,qq}

NZ B(Z → f) ϵbpre ϵ
b
BDTs,

assuming

▶ 3× 1012 Z0 in FCC-ee operation (needs updating to 2× 1012)
▶ known / predicted production fractions and branching ratios
▶ analysis efficiencies
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B0 → K∗0νν Efficiency and Sensitivity

For optimal cuts at the
SM prediction:

▶ Signal efficiency ∼ 10%

▶ bb efficiency ∼ 10−5

▶ cc efficiency ∼ 10−6

▶ qq efficiency ∼ 10−8

▶ S/B ratio ∼ 1 : 20

▶ Sensitivity ∼ 0.5%
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B0
s → ϕνν Efficiency and Sensitivity

For optimal cuts at the
SM prediction:

▶ Signal efficiency ∼ 11%

▶ bb efficiency ∼ 10−6

▶ cc efficiency ∼ 10−8

▶ qq efficiency ∼ 10−9

▶ S/B ratio ∼ 1 : 9

▶ Sensitivity ∼ 1.3%

▶ CEPC at ∼ 1.8% [5]
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PID requirements of the detector

▶ For serious flavour analysis at FCC-ee - hadronic PID separation is vital

▶ Our analysis assumes perfect PID

▶ Naively investigate this by making random swaps (no momentum dependence)

B0 → K∗0νν
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B0
s → ϕνν
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▶ K-π separation of 2σ would have negligible impact on the sensitivity
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Vertexing requirements of the detector

▶ For serious flavour analysis at FCC-ee - precision vertexing is essential

▶ Our analysis assumes perfect vertex seeding

▶ Naively investigate this by making random swaps

B0 → K∗0νν
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B0
s → ϕνν
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▶ Need < 0.2mm resolution to mitigate vertex mis-id
▶ But this is already above the requirements for vertex precision anyway
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q2 distribution and reweighting

▶ Our simulation uses phase space (PHSP) generation models

▶ We need to reweight the q2 distribution to match the latest theory predictions (from
MR and OS)

B0 → K∗0νν
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Summary and Outlook

▶ We are now at fairly advanced stages (we have an almost complete paper draft)

▶ Sensitivity to b → sνν BFs of O(1%)

▶ Need to finish the pheno interpretation (sensitivity to Wilson coeffs)

▶ In parallel considering neutral modes not shown here
▶ Precise vertexing is vital

▶ Average flight distance of a B0 at FCC-ee is ∼ 3mm
▶ Our analysis assumes both the production (PV) and decay (SV) vertices of the B are

perfectly seeded
▶ Need resolution O(100− 200µm) to mitigate vertex mis-id

▶ Powerful particle identification is required
▶ Sensitivity begins to rapidly degrade for separation < 2σ

Thanks to the authors of Ref. [6] for the inspiration and example codes
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Searches at B-factories

▶ Searches at B-factories use B-mesons produced via e+e− → Υ(4S) → B+B−

▶ Event is tagged either inclusively or using specific hadronic or semileptonic decays of
the other B.

▶ Belle II results: BR( B+ → K+νν̄) < 4.1× 10−5 at 90% C.L. [arXiv:2104.12624].
▶ Expect to reach ∼ 10% precision on B+/B0 with 50 ab−1

[arXiv:1808.10567]

▶ FCC-ee is the only foreseen experiment that can improve Belle-II measurement
in the (far) future (apart from maybe CEPC)!
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Some places we cheat

Relevant for detector design

▶ Use the same vertexing procedure developed for B+
c → τ+ντ (see this talk for

details) which assumes perfect vertex seeding
→ implies we will have excellent vertex resolution

▶ We also truth match the kaon and pion daughters to have the correct mass
hypothesis (with the reconstructed momentum)
→ implies we will have excellent PID

▶ When we get a bit more advanced it would be nice to understand the impact of
relaxing these requirements.

▶ Also assume the K∗0 in the signal mode is pure K∗(892)0

None of this is particularly relevant for the event level MVA we have trained so far (and
show today) but it will be important for the next stage MVA
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Charged energy in each hemisphere

▶ More discrmination power in the minimum energy hemisphere (signal side) due to
missing energy in the signal decay
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Neutral energy in each hemisphere

▶ More discrmination power in the minimum energy hemisphere (signal side) due to
missing energy in the signal decay
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Charged multiplicity in each hemisphere

▶ More discrmination power in the minimum energy hemisphere (signal side) due to
missing energy in the signal decay
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Neutral multiplicity in each hemisphere

▶ More discrmination power in the minimum energy hemisphere (signal side) due to
missing energy in the signal decay
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Stage 1 Inputs

▶ The total reconstructed energy in each hemisphere,

▶ The total charged and neutral reconstructed energies of each hemisphere,

▶ The charged and neutral particle multiplicities in each hemisphere,

▶ The number of charged tracks used in the reconstruction of the primary vertex,

▶ The number of reconstructed vertices in the event,

▶ The number of candidates in the event

▶ The number of reconstructed vertices in each hemisphere,

▶ The minimum, maximum and average radial distance of all decay vertices from the
primary vertex.
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Stage 1 BDT
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Stage 2 BDT
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Stage 2 Inputs

▶ The intermediate candidate’s reconstructed mass

▶ The number of intermediate candidates in the event

▶ The candidate’s flight distance and flight distance χ2 from the primary vertex

▶ The x, y and z components of the reconstructed candidate’s momentum

▶ The scalar momentum of the candidate

▶ The transverse and longitudinal impact parameter of the candidate

▶ The minimum, maximum and average transverse and longitudinal impact parameters
of all other reconstructed vertices in the event

▶ The angle between the intermediate candidate and the thrust axis

▶ The mass of the primary vertex

▶ The nominal B candidate energy, defined as the Z mass minus all of the
reconstructed energy apart from the candidate children
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Backgrounds
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Spline Drop Off
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