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Physics motivation

» Considerable interest in the flavour community in b— s¢7¢~ and b — ¢/ 7
transitions

» b — sUU transitions are complementary probes (¢ and v share a weak doublet)
» SM predictions are clean:

» Dominant uncertainties from hadronic form-factors and CKM elements

> No long-distance contributions from (in)famous charm loops

> Sensitive to a variety of NP scenarios e.g. Z’, leptoquarks etc.
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> In the SM, C¥ = —6.35(7) and C}J =0 [1,2,3,4]
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Experimental state-of-the-art

» FCC-ee provides a (possibly unique) opportunity for semileptonic flavour physics
» A beauty/charm factory at the Z gets the best of both LHCb and B-factories

> et—e™

> In the SM b — suw BF predictions are O(107°)

» Not yet seen experimentally

» From the underlying b — svv transition we can study:

collision, high production rate, access to high mass states, hermetic detector

Decay B-factories | FCC-ee | Current Limit SM prediction
BT — K*vp v v <1.6x107° | (4.04+0.5) x 107°
Bt — K*tup v v <4.0x107° | (9.841.1) x 107°

30 Kuw v v <2.6x107° | (3.7£0.4) x 1076
B — K*%p v v <1.8x107° | (9.241.0) x 107°
B? — ¢puw X v <54x1073 | (9.9+0. 7) x 1076
AV — A% X v -

» Decays with intermediate vectors are consierably easier experimentally
» single track is hard, final state neutral needs good Kg/ A9 reco
> intermediate scalars are much cleaner for theory

» Decays with intermediate scalars are cleaner for theory

» With 2 neutrinos in the final state, decays are (probably) impossible at the LHC 3/28



Event topology

We have studied the prospects for B — K*°v% and B? — ¢vw
» Use the thrust axis for Z° — ¢g to define event hemispheres

» Due to missing energy in the signal decay the two hemispheres have different energy

distributions

b_hobrow
Wusf axs

Plane normal to thrust axis
defines the hemispheres
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Energy in each hemisphere
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Event-level MVA

» Background sample from inclusive Z° — ¢, ¢¢, bb using PDG branching fractions

» Input variables are the event energy distributions and vertex information
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> Powerful seperation - cut at 0.6 has > 90% signal efficiency and ~ 90% background
rejection
» Very similar for the B — ¢vv mode
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Analysis-level MVA

» Train a second BDT on variables related to the candidate properties:
> Intermediate candidate kinematics
> Intermediate candidate topology
» The nominal B-meson energy (Z mass minus Erec)

» Use multivariate splines to build efficiency maps across the (BDT1, BDT2) plane
» Then maximise the FOM, S/+/S + B, as a function of the BDT cuts for a range of
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Signal estimate

» Signal expectation is computed as

[ S =Nz B(Z = b0)2 5 B(B — Yui) BY = f) €y chores ]

» Background expectation computed as

B = Z Nz B(Z = f) elére 6léDT57
fe{bb,ce,qq}

assuming

> 3 x 1012 Z0 in FCC-ee operation (needs updating to 2 x 101?)
» known / predicted production fractions and branching ratios
> analysis efficiencies
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B? — K*%vw Efficiency and Sensitivity

For optimal cuts at the
SM prediction:

> Signal efficiency ~ 10%
> bb efficiency ~ 107°

> (C efficiency ~ 1076

> g efficiency ~ 1078

» S/B ratio ~ 1:20

» Sensitivity ~ 0.5%

i —— Sensitivity (FCC-ee)
351 P e Current Limit
: SM Prediction
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BY — ¢uv Efficiency and Sensitivity

For optimal cuts at the
SM prediction:

>

vVvYVvyVvVvyYyy

Signal efficiency ~ 11%
bb efficiency ~ 107°

cc efficiency ~ 1078

qq efficiency ~ 107°
S/B ratio ~1:9
Sensitivity ~ 1.3%
CEPC at ~ 1.8% [5]
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PID requirements of the detector

» For serious flavour analysis at FCC-ee - hadronic PID separation is vital

» Our analysis assumes perfect PID

> Naively investigate this by making random swaps (no momentum dependence)
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» K-7 separation of 20 would have negligible impact on the sensitivity
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Vertexing requirements of the detector

» For serious flavour analysis at FCC-ee - precision vertexing is essential
» Our analysis assumes perfect vertex seeding
» Naively investigate this by making random swaps

B® - K*%up BJ = ¢vv
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P> Need < 0.2 mm resolution to mitigate vertex mis-id
> But this is already above the requirements for vertex precision anyway
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q? distribution and reweighting

» Our simulation uses phase space (PHSP) generation models
> We need to reweight the ¢2 distribution to match the latest theory predictions (from
MR and OS)
B® = K*'wp B — ¢vv

LQCD+LCSR LQCD+LCSR

—— PHsP

—— PHSP

B(B2-¢uv)

0.0 25 5.0 75 10.0 125 15.0 17.5
q? [GeV]
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Summary and Outlook

We are now at fairly advanced stages (we have an almost complete paper draft)
Sensitivity to b — svv BFs of O(1%)
Need to finish the pheno interpretation (sensitivity to Wilson coeffs)

In parallel considering neutral modes not shown here
Precise vertexing is vital
> Average flight distance of a B? at FCC-ee is ~ 3mm
» Our analysis assumes both the production (PV) and decay (SV) vertices of the B are
perfectly seeded
> Need resolution O(100 — 200 um) to mitigate vertex mis-id
Powerful particle identification is required

> Sensitivity begins to rapidly degrade for separation < 20

vyvyVvVyYyYyy

v

Thanks to the authors of Ref. [6] for the inspiration and example codes
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Searches at B-factories

> Searches at B-factories use B-mesons produced via et e™ — T(4S) — BT B~
» Event is tagged either inclusively or using specific hadronic or semileptonic decays of
the other B.
> Belle Il results: BR( BT — K1) < 4.1 x 107° at 90% C.L. [arXiv:2104.12624].
> Expect to reach ~ 10% precision on BT /B with 50 ab™" [arXiv:1808.10567]
®  BaBar hadronic = SM prediction
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» FCC-ee is the only foreseen experiment that can improve Belle-1l measurement
in the (far) future (apart from maybe CEPC)!
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Some places we cheat

Relevant for detector design

> Use the same vertexing procedure developed for B — 71 v, (see this talk for
details) which assumes perfect vertex seeding
— implies we will have excellent vertex resolution

» We also truth match the kaon and pion daughters to have the correct mass
hypothesis (with the reconstructed momentum)
— implies we will have excellent PID

» When we get a bit more advanced it would be nice to understand the impact of
relaxing these requirements.

> Also assume the K*° in the signal mode is pure K*(892)°

None of this is particularly relevant for the event level MVA we have trained so far (and
show today) but it will be important for the next stage MVA
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Charged energy in each hemisphere

» More discrmination power in the minimum energy hemisphere (signal side) due to
missing energy in the signal decay
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Neutral energy in each hemisphere

» More discrmination power in the minimum energy hemisphere (signal side) due to
missing energy in the signal decay
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Charged multiplicity in each hemisphere

» More discrmination power in the minimum energy hemisphere (signal side) due to
missing energy in the signal decay
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Neutral multiplicity in each hemisphere

» More discrmination power in the minimum energy hemisphere (signal side) due to
missing energy in the signal decay
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Stage 1 Inputs

The total reconstructed energy in each hemisphere,

The total charged and neutral reconstructed energies of each hemisphere,

The charged and neutral particle multiplicities in each hemisphere,

The number of charged tracks used in the reconstruction of the primary vertex,
The number of reconstructed vertices in the event,

The number of candidates in the event

The number of reconstructed vertices in each hemisphere,

VVYyVVyVYyVYY

The minimum, maximum and average radial distance of all decay vertices from the
primary vertex.
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Stage 1 BDT
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Stage 2 BDT
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Stage 2 Inputs

vVVvVyVvyVvyVvyYYyvyy

vy

The intermediate candidate's reconstructed mass

The number of intermediate candidates in the event

The candidate’s flight distance and flight distance x? from the primary vertex
The x, y and z components of the reconstructed candidate’s momentum

The scalar momentum of the candidate

The transverse and longitudinal impact parameter of the candidate

The minimum, maximum and average transverse and longitudinal impact parameters
of all other reconstructed vertices in the event

The angle between the intermediate candidate and the thrust axis
The mass of the primary vertex

The nominal B candidate energy, defined as the Z mass minus all of the
reconstructed energy apart from the candidate children
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Spline Drop Off
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