

Detector requirements from BSM: long-lived signatures

Future Circular Collider Week- 7th June 2023

Sarah Williams (University of Cambridge), on behalf of the FCC-ee LLP group

Introduction

Thanks to Michele Selvaggi whose slides from Monday's plenary session nicely summarise the driving factors from BSM for detector design/performance

FCC-ee Physics landscape

Higgs factory

Top

mtop, Ttop, ttZ, FCNCs

Flavor "boosted" B/D/τ factory:

CKM matrix
CPV measurements
Charged LFV
Lepton Universality
r properties (lifetime, BRs..)

$$\begin{array}{c} B_c \rightarrow \tau \ v \\ B_s \rightarrow D_s \ K/\pi \\ B_s \rightarrow K^*\tau \ \tau \\ B \rightarrow K^* \ v \ v \\ B_s \rightarrow \phi \ v \ v \ \dots \end{array}$$

QCD - EWK

most precise SM test

$$\begin{aligned} \mathbf{m}_{\mathrm{Z}}\,,\,\mathbf{\Gamma}_{\mathrm{Z}}\,,\,\mathbf{\Gamma}_{\mathrm{inv}}\\ \sin^2\!\theta_{\mathrm{W}}\,,\,\mathbf{R}^{\mathrm{Z}}_{\,\,\prime},\,\mathbf{R}_{\mathrm{b}},\,\mathbf{R}_{\mathrm{c}}\\ \mathbf{A}_{\mathrm{FB}}^{\,\,\mathrm{b,c}}\,,\,\mathbf{r}\,\,\mathrm{pol.} \\ \\ \alpha_{\mathrm{S}}\,, \end{aligned}$$

 m_w, Γ_w

BSM

feebly interacting particles

Heavy Neutral Leptons (HNL)

Dark Photons Z_D

Axion Like Particles (ALPs)

Exotic Higgs decays

1

BSM

feebly interacting particles

Large decay volume

High radial segmentation
- tracker

- calorimetry - muon

impact parameter resolution for large displacement

+ timing

- I will summarise the "longlived" side of BSM studies ongoing.
- Nicolo (up next) will discuss prompt BSM

Reminder: whilst I will not discuss this today, we should not forget the importance of understanding detector requirements for long-lived signatures at FCC-hh – for example see slides by S. Farrington here and S. Kulkarni here...

FCC-ee Detector requirements

Higgs factory

track momentum resolution (low X_o)

IP/vertex resolution for flavor tagging

PID capabilities for flavor tagging

jet energy/angular resolution (stochastic and noise) and PF

Flavor

"boosted" B/D/τ factory:

track momentum resolution (low X_0)

IP/vertex resolution

PID capabilities

Photon resolution, pi0 reconstruction

QCD - EWK

most precise SM test

acceptance/alignment knowledge to 10 µm

luminosity

Long-lived signatures at colliders

LLPs that are semi-stable or decay in the sub-detectors are predicted in a variety of BSM models:

- Heavy Neutral Leptons (HNLs)
- RPV SUSY
- ALPs
- Dark sector models

The range of unconventional signatures and rich phenomenology means that understanding the impact of detector design/performance on the sensitivity of future experiments is key!

LLPs @ FCC-ee

- Targeting precision measurements of EWK/Higgs/top sector of SM.
- Unique sensitivity to LLPs coupling to Z or Higgs.
 - No trigger requirements.
 - Excellent vertex reconstruction and impact parameter resolution can target low LLP lifetimes (this can drive hardware choices).
 - Projections often assume background-free searches (should check these assumptions).

Detector concepts for FCC-ee

See **HECATE** article for discussion on gains in sensitivity with additional instrumentation on the cavern walls

CLD ("CLIC-like Detector")

IDEA ("Innovative Detector for Electron-positron Accelerator")

Full silicon vertex-detector+ tracker 3D high-granularity calorimeter Solenoid outside calorimeter

Silicon vertex detector Short-drift chamber tracker. Dual-readout calorimeter (solenoid inside) ...Plus new proposals ... (easy to test in FCCSW setup)

Note: all studies in this talk use the IDEA detector card in Delphes

We have exciting prospects to optimize detector design with LLP searches in mind!

FCC-ee LLP group: past and present

- Following a <u>Snowmass LOI</u>, an LLP white paper was recently published in <u>Front. Phys. 10:967881 (2022)</u> which included case studies with the official FCC analysis tools.
- These initial studies motivate further optimization of experimental conditions and analysis techniques for LLP signatures.

Searches for long-lived particles at the future FCC-ee

C. B. Verhaaren¹, J. Alimena^{2*}, M. Bauer³, P. Azzi⁴, R. Ruiz⁵, M. Neubert^{6,7}, O. Mikulenko⁸, M. Ovchynnikov⁸, M. Drewes⁹, J. Klaric⁹, A. Blondel¹⁰, C. Rizzi¹⁰, A. Sfyrla¹⁰, T. Sharma¹⁰, S. Kulkarni¹¹, A. Thamm¹², A. Blondel¹³, R. Gonzalez Suarez¹⁴ and L. Rygaard¹⁴

¹Department of Physics and Astronomy, Brigham Young University, Provo, UT, United States, ²Experimental Physics Department, CERN, Geneva, Switzerland, ³Department of Physics, Durham University, Durham, United Kingdom, ⁴INFN, Section of Padova, Padova, Italy, ⁵Institute of Nuclear Physics, Polish Academy of Sciences, Kracow, Poland, ⁶Johannes Gutenberg University, Mainz, Germany, ⁷Cornell University, Ithaca, NY, United States, ⁸Leiden University, Leiden, Netherlands, ⁹Université Catholique de Louvain, Louvain-la-Neuve, Belgium, ¹⁰University of Geneva, Geneva, Switzerland, ¹¹University of Graz, Graz, Austria, ¹²The University of Melbourne, Parkville, VIC, Australia, ¹³LPNHE, Université Paris-Sorbonne, Paris, France, ¹⁴Uppsala University, Uppsala, Sweden

This talk will highlight progress on these studies in multiple areas (building on and extending studies discussed by G. Ripellino and S. Kulkarni in <u>January physics workshop</u>) and identify technical challenges for next steps!

Summary of snowmass studies + ongoing activities

Physics scenario	FCC-ee signature	Studies for snowmass	Ongoing work
Heavy neutral leptons (HNLs)	Displaced vertices	Generator validation and detector-level selection studies for eevv. First look at Dirac vs Majorana	 Update eeνν studies for winter23 samples. First look at μμνν channel (prompt +LLP) First look at μνjj (prompt+LLP) First look at eνjj including Dirac vs majorana (prompt)
Axion-like particles (ALPs)	Displaced photon/lepton pair	Generator-level validation for a→γγ at Z-pole run.	No studies ongoing -> Opportunities to get involved:)
Exotic Higgs decays	e.g. Z X_{SM} X	Theoretical discussion and motivation for studies at ZH-pole	 Reco-level studies (inc. vertexing) for h→ss→bbbb

Prompt vs long-lived

Depending on the masses/couplings all three scenarios can have both prompt and/or long-lived signatures, so there's lots of complementarity with the next talk! We should optimize detector layout/reconstruction techniques to maximise

coverage!

arXiv:2210.17110

Beam pipe ~ 1.5 cm

Taken from <u>slides</u> by Paolo Giacomelli at FCC week 2022

Current workflow

Typical workflow

Sample generation of models • MadGraph5_aMC@NLO for parton-level e+e • PYTHIA for parton shower and hadronisation

Sensitivity to studied model

- Use FCCAnalysis software to analyse centrally generated EDM4HEP files, though some signal files produced privately.
- Dedicated <u>LLP tutorial</u> prepared by Juliette Alimena enables full workflow.
- Current limitations include scalability of code (hopefully now understood) and limited MC statistics (more on that later).

Caveat: #IPs for FCC-ee

Discussion on possible impact of Cavern size in slides here.

In the Physics+Performance meeting on 22/5 - announcement that 4 IPs should be the new baseline:

2 x Integrated Luminosity ->
 Increase x-sec limit by factor of 2
 in background-less limit.

None of our results are yet updated to this new baseline, but we plan to update results in the coming week(s).

Lowest-risk baseline: 90.7 km ring, 8 surface points, 4-fold superperiodicity, possibility of 2 or 4 IPs
Whole project now adapted to this placement

Taken from slides from M. Benedikt on Monday

Heavy Neutral Leptons (HNL) at FCC-ee

Snowmass review: arXiv:2203.08039

Front. Phys. 10:967881 (2022

- Right- handed (sterile) neutrinos could provide an explanation for neutrino masses, the baryon asymmetry in the universe and dark matter.
- For small mixing angles with their LH counterparts- long-lived.
- Obvious benchmark for LLP searches with displaced vertices.

$$\lambda_N = \frac{\beta \gamma}{\Gamma_N} \simeq \frac{1.6}{U^2 c_{\text{dec}}} \left(\frac{M}{\text{GeV}}\right)^{-6} \left(1 - (M/m_Z)^2\right) \text{cm}.$$

 c_{det} = 1 (majorana) or $\frac{1}{2}$ (dirac)

arXiv:2210.17110

i.e. LLPs when couplings and masses are small!

HNL searches at FCC-ee Tera-Z run

Front. Phys. 10:967881 (2022

Searches for displaced HNL decays are most efficient at the Z-pole run (larger luminosity and cross-section from $Z\rightarrow N\nu$ decays). Benefit from:

- Low SM backgrounds with displaced vertex.
- Small beam pipe radius.
- Clean experimental conditions.

For N→WI decays, depending on the W decay final states include II'vv or Ivjj

HNL sensitivity study: N→eeν

Note: ongoing investigation show these distributions look different with the 2023 samples (in backup)

Front. Phys. 10:967881 (2022

Initial study developed an event selection to reduce the backgrounds:

- 2 electrons with a veto on additional photons, jets, muons.
- p^{Miss}> 10 GeV to reduce the Z→ee background with instrumental missing momentum.
- Electron |d₀|>0.5 mm

Also studied angular distributions sensitive to majorana vs Dirac nature of HNLs...

Ongoing HNL studies: N→µjj

Nicolo Valle, Giacomo Polesello

Target decay $N \rightarrow \mu jj$ in HNL mass range 5 to 85 GeV with scan over $|U|^2$. Aim for prompt analysis at high (>50 GeV) HNL mass, with Long-lived analysis at low HNL mass (longer lifetime)

- Develop pre-selection (1 muon with p> 3
 GeV, >= 3 tracks, E_{miss}>5 GeV).
- Detailed study of jet reconstruction algorithms for truth vs reco-level distributions.

Preliminary proto-analysis requiring muon $|d_0|$ >1mm. Investigating further selection requirements using vertex fitter. Further discussion in recent physics+performance meeting <u>here</u> and in next talk!

Ongoing HNL studies: N→μμν

Lorenzo Bellagamba

Early studies of sensitivity with $N\rightarrow \mu\mu\nu$ channel looking for DV

Optimise search based on the distance from the 2-muon decay vertex to the IP

DV reconstruction efficiency a promising area for further improvements?

Exotics Higgs decays

Magdalena Vande Voorde, Giulia Ripellino

First simulation and sensitivity studies for Higgs decays to long-lived scalars

- Extend SM with additional scalar.
 - Probe h→ss→bbbb in events with 2 displaced vertices, tagged by Z

- Look at events with at least one scalar within acceptance region 4mm<r<2000mm- all except longest and shortest lifetimes.
- Aim to develop event selection and perform early sensitivity study.

For further details see <u>presentation</u> by Magda at topical ECFA WG1-SRCH meeting

Exotics Higgs decays

Magdalena Vande Voorde, Giulia Ripellino

Studied two options of DV reconstruction implemented in FCCAnalysis framework with additional constraints inspired by ATLAS DV analysis (link here)

- SV finder of LCFI+ algorithm (<u>https://arxiv.org/abs/1506.08371</u>)
- Add vertex merging to recover some
 DVs from scalars, but need to
 understand goodness of fit results (more
 discussion <u>here</u>)

Exotics Higgs decays

Magdalena Vande Voorde, Giulia Ripellino

Type	Parameter	Value
Track Selection	$\operatorname{Min}p_T$	1 GeV
	$ \operatorname{Min} d_0 $	$2 \mathrm{\ mm}$
Vertex Reconstruction	V^0 rejection	True
	$\mathrm{Max}\ \chi^2$	9
	$\max M_{inv}$	$40~{ m GeV}$
	$\text{Max } \chi^2 \text{ added track}$	5
	Vertex merging	False
Vertex Selection	$\min r_{DV-PV}$	4 mm
	$\max r_{DV-PV}$	$2000~\mathrm{mm}$
	$Min M_{charged}$	1 GeV

m_s , $\sin \theta$	Before selection	Pre-selection	$70 < m_{ll} < 110 \text{ GeV}$	$n_DVs \ge 2$
20 GeV, 1e-5	44.3 ± 0.0295	29.8 ± 0.363	28.9 ± 0.358	3.55 ± 0.125
20 GeV, 1e-6	44.3 ± 0.0295	30.4 ± 0.367	29.7 ± 0.363	22.4 ± 0.315
20 GeV, 1e-7	44.3 ± 0.0295	36.3 ± 0.401	35.6 ± 0.397	0.531 ± 0.0485
60 GeV, 1e-5	13.1 ± 0.00474	8.38 ± 0.105	8.12 ± 0.103	$0 \ (\leq 0.103)$
60 GeV, 1e-6	13.1 ± 0.00474	8.34 ± 0.104	8.09 ± 0.103	6.43 ± 0.0917
60 GeV, 1e-7	13.1 ± 0.00474	9.69 ± 0.113	9.45 ± 0.111	4.10 ± 0.0732

All but 2 considered signals could be excluded at 95% CL in background-free search.

Conclusions/outlook

- Lots of exciting studies ongoing to understand sensitivity of FCC-ee to LLPs.
 - Typically ~ background-free analyses- checking these assumptions against different detector configurations/reconstruction techniques is important as well as considering signal acceptance
 - Aim for discovery need to study detector implications for our ability to characterise the new physics, not just uncover it (more to come).
- Big challenge with MC statistics need to implement filtering in samples to get sufficient statistics for luminosity (high-priority- raised in FCC SW forum).

Lets be optimistic- LLP searches are a "win-win" for FCC-ee (if they exist...) lets ensure we are prepared to measure them!

Proof that this hasn't been the only sunny week in London this year.

Lots of thanks!

.... for the great work of everyone who has contributed to this talk

- Juliette Alimena (DESY)
- Rebeca Gonzalez Suarez (Uppsala)
- Giulia Ripellino (KTH)
- Magdalena Vande Vorde (KTH)
- Daniel Beech (University of Cambridge)
- Sarah Williams (University of Cambridge)
- Dimitri Moulin (University of Geneva)
- Pantelis Kontaxakis (University of Geneva)
- Anna Sfyrla (University of Geneva)
- Suchita Kulkarni (University of Graz)
- Giacomo Polesello (INFN)
- Nicolo Valle (INFN)
 Interested?
- Lorenzo Bellagamba (INFN)
 Get in touch- we are a friendly group!

FCC-ee LLP masters thesis projects

- Sissel Bay Nielsen (University of Copenhagen, 2017)
- Rohini Sengupta (Uppsala University, 2021)
- Lovisa Rygaard (Uppsala University, 2022)
- Tanishq Sharma (University of Geneva, 2022)
- Magdalena Vande Voorde (Uppsala University, 2023)
- Daniel Beech (University of Cambridge, 2023)
- Dimitri Moulin (University of Geneva, 2023)

...and more along the way!

Backup: FCC-ee

The high luminosities and clean experimental environment (no underlying event) make FCC-ee a natural laboratory to study LLPs through:

- Unconventional signatures (including displaced vertices).
- Exotic Higgs decays.

Phase	Run duration (years)	Centre-of-mass energies (GeV)	Integrated luminosity (ab ⁻¹)	Event statistics
FCC-ee-Z	4	88–95	150	3×10^{12} visible Z decays
FCC-ee-W	2	158–162	12	10 ⁸ WW events
FCC-ee-H	3	240	5	10 ⁶ ZH events
FCC-ee-tt(1)	1	340–350	0.2	tt threshold scan
FCC-ee-tt(2)	4	365	1.5	$10^6 t\bar{t}$ events

Taken from FCC: physics opportunities (CDR volume 1)

Backup: Ongoing HNL studies: winter 2023 production

Sarah Williams, Daniel Beech

FCCAnalyses: FCC-ee Simulation (Delphes)

MC Statistics of spring 2021 campaign

Sample	Integrated Iumi/ ab ⁻¹
p8_ee_Zee_ecm91	0.01
p8_ee_Zbb_ecm91	0.15
p8_ee_Ztautau_ecm91	0.01
p8_ee_Zuds_ecm91	0.05
p8_ee_Zcc_ecm91	0.19

Improvements/changes in winter2023 samples have a visible difference on shape, and MC statistics still present significant limitations (under discussion).

- For small couplings and light ALPs → LLP signature.
- Initial validation of signal samples and kinematic distributions presented- more to come in future.

Backup: Ongoing HNL studies: N→ejj

Dimitri Moulin, Anna Sfyrla, Pantelis Kontaxakis

Study semi-leptonic final state to probe majorana vs dirac nature of HNL

- Use dijet + electron invariant mass as a probe for HNL mass.
- Observed some issues with default delphes jet collections- required rerunning jet reconstruction at analysis level to improve truth/reco comparisons.
- Next steps: develop full event selection and look at sensitive variables.
- -> thinking about reconstruction techniques is important!

Backup: further details on exotics Higgs studies

Magdalena Vande Voorde, Giulia Ripellino

Truth-level sensitivity analysis

- Selected events that has ≥ 1 scalar with decay length 4 mm < d < 2000 mm
 - $m_s = 20$ GeV, $\sin \theta = 1e-7$ is too long-lived and $m_s = 60$ GeV, $\sin \theta = 1e-5$ is too short lived
 - All the other signal samples has ≥ 4 events!

Mass of Scalar	Mixing angle	Mean proper	Cross Section	Branching Ratio	Expected events	Expected selected
m_S [GeV]	$\sin \theta$	lifetime $c\tau$ [mm]	σ [pb]	$BR(h \to ss)$	at 5 ab^{-1}	events
20	1×10^{-5}	3.4	8.858×10^{-6}	6.27×10^{-4}	44.29	40.03
20	1×10^{-6}	341.7	8.858×10^{-6}	6.27×10^{-4}	44.29	43.31
20	1×10^{-7}	34167.0	8.858×10^{-6}	6.27×10^{-4}	44.29	1.57
60	1×10^{-5}	0.9	2.618×10^{-6}	1.85×10^{-4}	13.09	0.01
60	1×10^{-6}	87.7	2.618×10^{-6}	1.85×10^{-4}	13.09	12.98
60	1×10^{-7}	8769.1	2.618×10^{-6}	1.85×10^{-4}	13.09	8.62

Number of expected events given by

$$N = L \times \sigma$$
 with $L = 5 ab^{-1}$ and $\sigma = \sigma_{ZH} \times BR(h \to ss) \times BR(s \to b\bar{b})^2 \times BR(Z \to l^+l^-)$

Old baseline results

Backup: further details on exotics Higgs studies

Magdalena Vande Voorde, Giulia Ripellino

Efficiency studies

	20 GeV, 1e-5	20 GeV, 1e-6	20 GeV, 1e-7
Before selection	1.0	1.0	1.0
Pre-selection	0.672	0.687	0.819
$ 70 < m_{ll} < 110 \; \mathrm{GeV} $	0.653	0.670	0.803
$n_DVs \ge 2$	0.080	0.505	0.012
	60 GeV, 1e-5	60 GeV, 1e-6	60 GeV, 1e-7
Before selection	1.0	1.0	1.0
Pre-selection	0.640	0.637	0.740
$ 70 < m_{ll} < 110 \; \mathrm{GeV} $	0.620	0.618	0.722
$n_DVs \ge 2$	0.0	0.491	0.313

	WW	ZZ	ZH
Before selection	1.0	1.0	1.0
Pre-selection	0.131	0.026	0.059
$\mid 70 < m_{ll} < 110 \; \mathrm{GeV} \mid$	0.006	0.086	0.047
$n_DVs \ge 2$	0.0	0.0	0.0