

Flavour Programme

Jernej F. Kamenik

Univerza v Ljubljani

Institut "Jožef Stefan"

Zoom/London 06/06/2023

Scope of Flavour Physics

• Flavour is one of most puzzling aspects of SM ad hoc

figure by W. Altmannshofer

- strong suppression of flavor changing processes within SM
 - ⇒ allows to probe deep UV dynamics

EU Strategy Update 2020 1910.11775

Scope of Flavour Physics @ FCC(-ee)

- Flavour physics reach with O(10¹³) Z decays (10⁸ W, 10⁶ Higgs, top)
 - rare decays of c- and b-hadrons and CP violation in the heavyquark sector
 - rare (т) lepton decays
 - rare Z, (W, h, t) decays
- In the context of ultimate potential of the LHCb upgrade and Belle II experiments.

Working point	Lumi. / IP $[10^{34} \text{ cm}^{-2}.\text{s}^{-1}]$	Total lumi. (2 IPs)	Run time	Physics goal
Z first phase	100	$26 \text{ ab}^{-1} / \text{year}$	2	
Z second phase	200	$52 \text{ ab}^{-1} / \text{year}$	2	150 ab^{-1}

Particle production (10 ⁹)	B^0 / \overline{B}^0	B^+ / B^-	$B_s^0 \ / \ \overline{B}_s^0$	$\Lambda_b \ / \ \overline{\Lambda}_b$	$c\overline{c}$	$\overline{\tau^-/ au^+}$
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	300	300	80	80	600	150

Future flavor physics landscape: possible scenarios

Mandate of Flavour Physics Group

with Gino Isidori

- identify key topics and observables (extensive and focused primarily on FCC-ee)
- propose new benchmark measurements
 (interface with exp. groups detector requirements, exp. reach)
- project requirements and feasibility of precision calculations (i.e. EM/EW corrections, lattice QCD)

- identify key topics and observables (extensive and focused primarily on FCC-ee)
- propose new benchmark measurements
 (interface with exp. groups detector requirements, exp. reach)
- project requirements and feasibility of precision calculations (i.e. EM/EW corrections, lattice QCD)

Interface with other working groups:

- Flavor of Higgs interactions ($h \to \bar{f}f'$, CPV, ...)
- top-quark as a probe of flavor (V_{tx} , CPV, LFU)
- Flavor at high p_T (CKM from W decays, FCNC Z decays, ...)

- identify key topics and observables
 (extensive and focused primarily on FCC-ee)
- propose new benchmark measurements
 (interface with exp. groups detector requirements, exp. reach)
- project requirements and feasibility of precision calculations (i.e. EM/EW corrections, lattice QCD)

Interface with other working groups:

- Flavor of Higgs interactions ($h \to \bar{f}f'$, CPV, ...)
- top-quark as a probe of flavor (V_{tx} , CPV, LFU)
- Flavor at high p_T (CKM from W decays, FCNC Z decays, ...)

- 1 Leptonic and semileptonic b decays
- 2 Rare leptonic and semileptonic b decays
- 3 CPV in b decays and mixing
- 4 Tau physics
- 5 Charm physics
- 6 Flavour @ high-pT

- 1 Leptonic and semileptonic b decays
- 2 Rare leptonic and semileptonic b decays
- 3 CPV in b decays and mixing
- 4 Tau physics
- 5 Charm physics
- 6 Flavour @ high-pT

1 Leptonic and semileptonic b decays

- Traditionally focused on CKM ($|V_{cb}| \& |V_{ub}|$) extraction
 - Ultimate $|V_{ub}|$ precision possible with $B \rightarrow \pi l \nu$ and $B_s \rightarrow K l \nu$
- Projected statistics @ FCC-ee motivate precision tests of LFU see also Ho et al., 2212.02433
 - Leptonic decays $(B_{u,c} \rightarrow \mu \nu, \tau \nu)$ theoretically cleaner compared to exclusive semileptonic decays

$$\begin{split} Br(B^- \to \tau^- \bar{\nu}(\gamma))_{\rm SM} &= 1.13(1) \times 10^{-4} \left(\frac{f_B}{0.2 {\rm GeV}}\right)^2 \left(\frac{|V_{ub}|}{4 \times 10^{-3}}\right)^2 \\ &\left[\frac{\Gamma(B^+ \to \tau^+ \nu)}{\Gamma(B_c^+ \to \tau^+ \nu)}\right]_{SM^*} = 0.782 \left|\frac{V_{ub} f_B}{V_{cb} f_{B_c}}\right|^2 \\ &\left[\frac{\Gamma(B \to \mu \nu)}{\Gamma(B \to \tau \nu)}\right]_{\rm SM} \simeq \frac{m_\mu^2 [1 - (m_\mu/m_B)^2]^2}{m_\tau^2 [1 - (m_\tau/m_B)^2]^2} (1 + \mathcal{O}(\alpha \log m_\tau/m_\mu)) \end{split} \qquad \begin{array}{c} \text{See also} \\ \text{Amhis et al., 2105.13330} \\ \text{Zheng et al., 2007.08234} \end{array}$$

• Differential LFU tests with inclusive semileptonic decays ($B \rightarrow X_c \mu \nu, \tau \nu$) see e.g. Ligeti, Luke & Tackmann, 2112.07685

- 1 Leptonic and semileptonic b decays
- 2 Rare leptonic and semileptonic b decays
- 3 CPV in b decays and mixing
- 4 Tau physics
- 5 Charm physics
- 6 Flavour @ high-pT

2 Rare leptonic and semileptonic b decays

- Rare *b*-hadron decays to taus
 - Partly motived by current intriguing exp. situation in rare & see e.g.
 See e.g.
 Capdevilla et al., 1712.01919
 Buttazzo et al., 1706.07808
 - Possibly large NP effects predicted in motivated BSM models
 see e.g. Bauer et al., 2110.10698
 - FCC-ee (unique) probe of SM predictions for $B \to [K^{(*)}] \tau^+ \tau^-$ see e.g. Li & Liu, 2012.00665
 - Complete kinematical reconstruction yields access to angular observables, tau polarization

 J.F.K. et al., 1705.11106
- FCC statistics allow to contemplate time-dependent (CPV) studies with rare (semi)leptonic decays - unique new window to CPV

see Fleisher et al., 2212.09575, 1709.04735, 1303.3820 Descotes-Genon, Novoa-Brunet, Vos, 2008.08000

2 Rare leptonic and semileptonic b decays

- Rare b-hadron decays to neutrinos
 - Belle II expected to measure SM rates of $B \rightarrow K^{(*)}\nu\nu$
 - FCC-ee statistics could allow for unique probes into CP nature of these decays via (time dependent/integrated) CP asymmetries

Descotes-Genon, et al., 2208.10880

• Example: time-integrated decay CP asymmetry

2 Rare leptonic and semileptonic b decays

- Rare b-hadron decays to neutrinos
 - Belle II expected to measure SM rates of $B \to K^{(*)} \nu \nu$
 - FCC-ee statistics could allow for unique probes into CP nature of these decays via (time dependent/integrated) CP asymmetries
- Rare (semi)leptonic $b \to d$ transitions $B \to [\pi, \varrho]$ $[l^+l^-, \tau^+\tau^-]$
 - Challenging backgrounds (even from other rare B decays)
- LFV B decays will remain statistics dominated SM null-probes
 - Special theoretical interest in semi-taunic modes $B \to [h] l^+ \tau^-$

- 1 Leptonic and semileptonic b decays
- 2 Rare leptonic and semileptonic b decays
- 3 CPV in b decays and mixing
- 4 Tau physics
- 5 Charm physics
- 6 Flavour @ high-pT

3 CPV in b decays and mixing

- Determination of CKM phase angle γ from $B \to D$ K decays
 - Tiny theoretical uncertainty in SM $|\delta\gamma| \lesssim \mathcal{O}(10^{-7})$

Brod and Zupan, 1308.5663

- Measurements of φ_s from studies of $B_s \to \varphi \psi$, $B_s \to \varphi \varphi$, etc. could challenge current theory uncertainties
 - Potentially interesting new CPV probes: $B_s \rightarrow D_s K$ decays

Theoretical x-checks needed

Aleksan, Oliver and Perez, 2107.05311, 2107.02002

Mixing induced semileptonic charge asymmetries

$$a_{\rm fs} = \frac{\Gamma(\bar{B}_q^0 \to B_q^0 \to f) - \Gamma(B_q^0 \to \bar{B}_q^0 \to \bar{f})}{\Gamma(\bar{B}_q^0 \to B_q^0 \to f) + \Gamma(B_q^0 \to \bar{B}_q^0 \to \bar{f})}$$

Can experimental sensitivity reach SM theory predictions?

$$a_{\rm fs}^{s, {\rm SM}, 2015} = (2.22 \pm 0.27) \cdot 10^{-5}$$
 $a_{\rm fs}^{d, {\rm SM}, 2015} = (-4.7 \pm 0.6) \cdot 10^{-4}$

3 CPV in b decays and mixing

Charles et al., 2006.04824

• Projections of NP reach - $B_{d,s}$ mixing $M_{12}=\left(M_{12}\right)_{\mathrm{SM}} imes\left(1+h_{d,s}\,e^{2i\sigma_{d,s}}\right)$

- 1 Leptonic and semileptonic b decays
- 2 Rare leptonic and semileptonic b decays
- 3 CPV in b decays and mixing
- 4 Tau physics
- 5 Charm physics
- 6 Flavour @ high-pT

4 Tau physics

Partially motivated also by current flavour anomalies

Allwicher, Isidori & Selimovic, 2109.03833 Feruglio, Paradisi & Pattori, 1705.00929

- Charged current mediated leptonic decays
 - Expect ultimate exp. precision on LFU ratio $\frac{\Gamma(\tau \to e \nu \bar{\nu})}{\Gamma(\tau \to \mu \nu \bar{\nu})}$
 - Theoretical work needed to go beyond 10-3 relative precision
- Charged current mediated semi-leptonic modes ($|V_{us}|, \alpha_s$)
 - Potentially interesting inclusive $\tau \to X \nu$ measurement
 - + hadronic moments
- LFV τ decays will remain statistics dominated SM null-probes

- 1 Leptonic and semileptonic b decays
- 2 Rare leptonic and semileptonic b decays
- 3 CPV in b decays and mixing
- 4 Tau physics
- 5 Charm physics
- 6 Flavour @ high-pT

5 Charm physics

- CPV in radiative charm decays
 - theoretically related to $\Delta A_{\it CP}$ (currently only measurement of CPV see e.g. in charm sector)
- Study of rare $D \rightarrow [\pi, \varrho] \nu \nu$
 - complementary to rare semileptonic K decays

see e.g. Fajfer et al., 2305.13851

- Purely radiative $D \rightarrow \gamma \gamma$ decay
 - needed for SM prediction of $D \rightarrow \mu\mu$

- 1 Leptonic and semileptonic b decays
- 2 Rare leptonic and semileptonic b decays
- 3 CPV in b decays and mixing
- 4 Tau physics
- 5 Charm physics
- 6 Flavour @ high-pT

6 Flavour @ high-pT

- Exploiting large statistics of Z, W, h @ FCC-ee
 - Measurement of $|V_{cb}|$ at 0.4% precision from $W \to j_b j_c$

M.-H. Schune, FCC PE Workshop 2020

Direct probes of Z and h FCNCs

J.F.K. et al., 2306.xxxxx

$$\mathcal{L} \supset g_{sb}^L(\bar{s}_L\gamma_\mu b_L)Z^\mu + g_{sb}^R(\bar{s}_R\gamma_\mu b_R)Z^\mu + y_{sb}(\bar{s}_L b_R)h + y_{bs}(\bar{b}_L s_R)h + \text{h.c.},$$

Non-vanishing in SM

$$\mathcal{B}(Z \to bs) = (4.2 \pm 0.7) \times 10^{-8},$$

 $\mathcal{B}(h \to b\bar{s}) = (2.7 \pm 0.5) \times 10^{-7}$

- could probe SM Z-FCNCs
- complementary to rare b-decays

6 Flavour @ high-pT

- Exploiting large statistics of Z, W, h @ FCC-ee
 - Measurement of $|V_{cb}|$ at 0.4% precision from $W \rightarrow j_b j_c$

M.-H. Schune, FCC PE Workshop 2020

Direct probes of Z and h FCNCs

J.F.K. et al., 2306.xxxxx

$$\mathcal{L} \supset g_{sb}^L(\bar{s}_L\gamma_\mu b_L)Z^\mu + g_{sb}^R(\bar{s}_R\gamma_\mu b_R)Z^\mu + y_{sb}(\bar{s}_L b_R)h + y_{bs}(\bar{b}_L s_R)h + \text{h.c.},$$

Direct Higgs measurements competitive with meson mixing

Conclusions

- FCC-ee could be a powerful and competitive probe of flavour physics beyond current experimental programs
- Effort underway to understand exp. precision with which rare decays of c- and b-hadrons and CP violation in heavy-quark sector & LFV processes could be measured

 Less explored areas in scope of FCC-ee,-hh include flavour studies using top decays, spectroscopy, quarkonium physics & flavor conversion @ high-p_T

> Descotes-Genon et al., 2303.07521 Faroughy et al., 2209.01222 J.F.K. et al., 1808.00964