

Particle ID and Photon Detector R&D for FCC

Roger Forty (CERN)

DRD4 covers *Photon Detectors and Particle Identification*: kick-off meeting was held last month I will summarize the contributions presented there that may be relevant to the FCC programme (although to be honest they were mostly not "for FCC")

Birth of DRD4

- The ECFA Roadmap on Detector R&D was published in November 2021; its implementation → **Detector R&D collaborations** set up, to be reviewed at CERN, to focus the effort and coordinate funding
- Topics of each *Task Force* that prepared the Roadmap integrated into corresponding DRD collaborations

- **DRD4** covers *Photon Detectors and Particle Identification*, a (large) field that does not have a pre-existing collaboration structure, unlike solid-state (RD50), gaseous detectors (RD51) or calorimeters (CALICE)
- A survey and community kick-off meeting were organized by Peter Krizan and Christian Joram (replacing Neville Harnew who meanwhile retired) towards preparation of the DRD4 Proposal this summer 91 people attended meeting on 16-17 May with 24 contributions presented on the following topics:
 - Photon detector technology: SiPMs (8), Micro-Channel Plate (MCP) detectors (4), PMTs (1)
 - Particle identification: RICH detectors (7), TOF (3), TRD (1)
- Organization of R&D into Working Groups and Joint Projects is now being worked out, ready for proposal

Birth of DRD4

- The ECFA Roadmap on Detector R&D was published in November 2021; its implementation → **Detector R&D collaborations** set up, to be reviewed at CERN, to focus the effort and coordinate funding
- Topics of each *Task Force* that prepared the Roadmap integrated into corresponding DRD collaborations

- **DRD4** covers *Photon Detectors and Particle Identification*, a (large) field that does not have a pre-existing collaboration structure, unlike solid-state (RD50), gaseous detectors (RD51) or calorimeters (CALICE)
- A survey and community kick-off meeting were organized by Peter Krizan and Christian Joram (replacing Neville Harnew who meanwhile retired) towards preparation of the DRD4 Proposal this summer 91 people attended meeting on 16-17 May with 24 contributions presented on the following topics:
 - Photon detector technology: SiPMs (8), Micro-Channel Plate (MCP) detectors (4), PMTs (1)
 - Particle identification: RICH detectors (7), TOF (3), TRD (1)
- Organization of R&D into Working Groups and Joint Projects is now being worked out, ready for proposal

From the Roadmap

- Critical Detector R&D Themes identified:
 - 1. Fast and efficient photon detectors
 - 2. Radiation-hard photosensors
 - 3. RICH/imaging detector development
 - 4. High performance time-of-flight
- R&D will be pursued in *Joint Projects*
 (i.e. bringing together groups to work on topics of common interest) organized under those themes

The first two themes may be combined into a single *Photon detector R&D* theme (since many of the proposals target both fast timing *and* radiation resistance)

 Many aspects of PID and Photon Detector R&D were seen as important for FCC-ee
 Only SiPMs were mentioned for FCC-hh...

R&D themes R&D needs by facility [from Figures 4.1 and 11.1] **DRDT 4.1** Enhance the timing resolution and spectral range of photon PID and **DRDT 4.2** Develop photosensors for extreme environments DRDT 4.3 Develop RICH and imaging detectors with low mass and high **DRDT 4.4** Develop compact high performance time-of-flight detectors Rad-hard Fast timing Spectral range and PDE Radiator materials Compactness, low Xo Rad-hard Fast timing to <10ps level & clock distribution 4.3 TRD 4.3 Scintillating fibres (light yield, rad-hard & timing) Rad-hard Low noise Fast timing Radio purity VUV / cryogenic det op Photocathode ageing & rate capability Fine granularity / large area Spectral range and PDE Magnetic field immunity Photocathode ageing & rate capability Fine granularity / large area Spectral range, PDE and fast timing Must happen or main physics goals cannot be met | Important to meet several physics goals Desirable to enhance physics reach

From the Roadmap

- Critical Detector R&D Themes identified:
 - 1. Fast and efficient photon detectors
 - 2. Radiation-hard photosensors
 - 3. RICH/imaging detector development
 - 4. High performance time-of-flight
- R&D will be pursued in *Joint Projects*
 (i.e. bringing together groups to work on topics of common interest) organized under those themes

The first two themes may be combined into a single *Photon detector R&D* theme (since many of the proposals target both fast timing *and* radiation resistance)

 Many aspects of PID and Photon Detector R&D were seen as important for FCC-ee
 Only SiPMs were mentioned for FCC-hh...

From the Survey

- 47 groups participated in the survey, widely spread
- Note that all photon detector R&D is covered by DRD4, not only that needed for particle ID detectors
 - → applications in calorimetry and fibre trackers requiring photon detection should also be covered (although main focus is on single-photon sensitivity)
- Boundaries with other DRDs are being clarified:
 - dE/dx + dN/dx in gaseous detectors → **DRD1**
 - Timing with solid-state detectors such as LGADs
 → DRD3 even if used for Time-of-Flight (TOF)
 - Scintillating-fibre tracking is included in DRD4
 - Transition Radiation detectors too? (in discussion)
- Not much explicit reference made to FCC in the responses apart from the compact RICH proposal (ARC) Most ongoing R&D activities have nearer-term targets (LS4 upgrades of LHCb/ALICE, the EIC, etc.)

Group interests

Photon detector R&D

Only a single contribution on PMTs

- Vibrant R&D on MCPs and SiPM, in close connection with industry
- Small feature sizes → intrinsically fast

SIPM "sub-pixels" (SPADs)
Single Photon Avalanche Diodes

Photon detector R&D

Only a single contribution on PMTs

- Vibrant R&D on MCPs and SiPM, in close connection with industry
- Small feature sizes → intrinsically fast

SIPM "sub-pixels" (SPADs)
Single Photon Avalanche Diodes

MCP-PMTs

 Under evaluation for LHCb RICH, TORCH, PANDA, HIKE, etc.

MCP with 64 x 64 anode pads (Photek)

R&D to develop an MCP with integrated Timepix4 chip (55 x 55 μ m² pixels)

Roger Forty

Extremely good time resolution < 70 ps, custom pixelisation tailored for individual applications, but important drawbacks related to lifetime and rate capability: R&D ongoing

PID and photodetector R&D for FCC

Large Area Picosecond PhotoDetector

LAPPD57 QE map 365nm 11/20/19

Fused Silica 3.8mm Window (LAPPD #63)

R&D to investigate possible options of low-gain MCPs: MCP-HPD [JINST 13 C12005 2018]

SiPM developments

- + High detection efficiency, low cost
- High noise (DCR), neutron damage
- Many lines being followed towards more integrated sensor + electronics
- Detailed presentation made by FBK

Next-generation development: Backside Illuminated SiPMs

The next-generation of developments, currently being investigated at FBK, is building a backside-illuminated, NUV-sensitive SiPM. Several technological challenges should be overcome.

Clear separation between charge collection and multiplication regions.

Potential Advantages:

- Up to 100% FF even with small cell pitch
- Ultimate Interconnection density: < 15 um
- High speed and dynamic range
- Low gain and external crosstalk
- (Uniform) entrance window on the backside, ideal for enhanced optical stack (VUV sensitivity, nanophotonics)
- Local electronics: ultra fast and possibly low-power.

Radiation hardness:

- The SiPM area sensitive to radiation damage, is much smaller than the light sensitive are
- Assumption: the main source of DCR is field-enhanced generation (or tunneling).

Roger Forty Alberto Gola - Status and perspectives of SiPMs at FBK - TF-4 Community Meeting

SiPM studies for EIC

- A dual-radiator RICH is being studied for the EIC SiPM arrays from various vendors under test
- Substantial increase in the dark count rate with irradiation (10⁹ n_{eq}), largely recovered by annealing (150 hours at 150 °C)

Roberto Preghenella

PID and photodetector R&D for FCC

Particle ID R&D contributions

RICH detectors

- Proximity focusing aerogel development
- Possible combination with TOF measurement
- Environmentally friendly RICH radiator gases (replacement for fluorocarbons)
- Compact RICH with dual aerogel + gas radiators

TOF detectors

- SiPMs detecting Cherenkov light from their entrance window
- DIRC-style: TORCH, and the upgrade of the Belle-II TOP detector

TR detectors

Solid-state detection of Transition Radiation

GaAs sensor + Timepix3 readout chip

Particle ID R&D contributions

RICH detectors

- Proximity focusing aerogel development
- Possible combination with TOF measurement
- Environmentally friendly RICH radiator gases (replacement for fluorocarbons)
- Compact RICH with dual aerogel + gas radiators

TOF detectors

- SiPMs detecting Cherenkov light from their entrance window
- DIRC-style: TORCH, and the upgrade of the Belle-II TOP detector

TR detectors

Solid-state detection of Transition Radiation

GaAs sensor + Timepix3 readout chip

Particle ID for FCC-ee

- Experiments designed for Higgs Factories have traditionally concentrated on precision tracking + particle-flow calorimetry
- Recent increased interest for adding charged-hadron separation
 - identify $H \rightarrow bb$, cc, ss and $W \rightarrow ud$, cs decays
 - measure more precisely Z couplings to quarks $R_{\rm b}$, $R_{\rm c}$, $A_{\rm FB}$ etc.
 - exploit flavour physics enabled by the huge statistics at the Z
- Momentum range required = $\sim 1-40 \text{ GeV/}c$
- Cluster counting in gaseous trackers (→ DRD1)
 Requires (modest) TOF to cover overlap region
- RICH technique is also well suited, in particular for those experiments with silicon trackers
 How to fit a RICH detector in a 4π experiment? → ARC concept, first <u>presented</u> at FCC week of 2021
 Before that, show briefly the TOF contributions

Time-of-Flight R&D

- Fast silicon detectors (LGAD, for the endcaps) and LYSO crystals
 + SiPM (barrel) used for the *Timing Layers* of the ATLAS/CMS
 Phase II upgrades
- Targeting 30 ps resolution, may degrade to ~ 60 ps due to radiation damage by the end of HL-LHC: acceptable for the required pileup rejection, but of limited use for TOF particle ID
- Can reach improved timing precision by coupling SiPM to a Cherenkov radiator—even the resin used as entrance window Proposed as part of a combined aerogel RICH + TOF system

Time-of-Flight R&D

- Fast silicon detectors (LGAD, for the endcaps) and LYSO crystals
 + SiPM (barrel) used for the *Timing Layers* of the ATLAS/CMS
 Phase II upgrades
- Targeting 30 ps resolution, may degrade to ~ 60 ps due to radiation damage by the end of HL-LHC: acceptable for the required pileup rejection, but of limited use for TOF particle ID
- Can reach improved timing precision by coupling SiPM to a Cherenkov radiator—even the resin used as entrance window Proposed as part of a combined aerogel RICH + TOF system

Time-of-Flight R&D

- Fast silicon detectors (LGAD, for the endcaps) and LYSO crystals
 + SiPM (barrel) used for the *Timing Layers* of the ATLAS/CMS
 Phase II upgrades
- Targeting 30 ps resolution, may degrade to ~ 60 ps due to radiation damage by the end of HL-LHC: acceptable for the required pileup rejection, but of limited use for TOF particle ID
- Can reach improved timing precision by coupling SiPM to a Cherenkov radiator—even the resin used as entrance window Proposed as part of a combined aerogel RICH + TOF system

TORCH

- TORCH uses a DIRC-like solution to push TOF beyond the current state-of-the-art towards 10 ps resolution per track over large areas
- Adopted for the Upgrade II of LHCb, to be installed in LS4 LHCb-TDR-023

- High resolution is achieved by combining the timing of ~ 30 photons per track, with modest timing precision required per photon ~ 70 ps achieved using custom MCP photon detectors NIMA 1050 (2023) 168181
- Prototype has been built and tested in beam last year with > 3000 channels, to validate the concept
- Previously <u>presented</u> at 11th FCC-ee workshop with idea of possible application to FCC-ee
- However, LHCb performance (K-π separation) up to $\sim 10 \text{ GeV}/c$) relies on 10 m flight path: difficult to achieve in an FCC-ee experiment → momentum coverage would be more limited but may still be interesting

TORCH

- TORCH uses a DIRC-like solution to push TOF beyond the current state-of-the-art towards 10 ps resolution per track over large areas
- Adopted for the Upgrade II of LHCb, to be installed in LS4 LHCb-TDR-023

- High resolution is achieved by combining the timing of ~ 30 photons per track, with modest timing precision required per photon ~ 70 ps achieved using custom MCP photon detectors NIMA 1050 (2023) 168181
- Prototype has been built and tested in beam last year with > 3000 channels, to validate the concept
- Previously <u>presented</u> at 11th FCC-ee workshop with idea of possible application to FCC-ee
- However, LHCb performance (K-π separation) up to $\sim 10 \text{ GeV}/c$) relies on 10 m flight path: difficult to achieve in an FCC-ee experiment → momentum coverage would be more limited but may still be interesting

TORCH

- TORCH uses a DIRC-like solution to push TOF beyond the current state-of-the-art towards 10 ps resolution per track over large areas
- Adopted for the Upgrade II of LHCb, to be installed in LS4 LHCb-TDR-023

- High resolution is achieved by combining the timing of ~ 30 photons per track, with modest timing precision required per photon ~ 70 ps achieved using custom MCP photon detectors NIMA 1050 (2023) 168181
- Prototype has been built and tested in beam last year with > 3000 channels, to validate the concept
- Previously <u>presented</u> at 11th FCC-ee workshop with idea of possible application to FCC-ee
- However, LHCb performance (K-π separation) up to $\sim 10 \text{ GeV}/c$) relies on 10 m flight path: difficult to achieve in an FCC-ee experiment → momentum coverage would be more limited but may still be interesting

Highly polished quartz radiator (surface roughness < 0.5 nm)

V. Cairo et al.

Compact RICH detector for FCC-ee

- Earlier examples of RICH detectors at e⁺e⁻ colliders include those of DELPHI and SLD: large radial dimensions, challenging photosensors
- To be concrete, new proposed design is based on the current CLD experiment concept for FCC-ee N. Bacchetta *et al.*, arXiv:1911.12230
- Target a radial depth of 20 cm, and material budget of few % X₀ Such aggressive parameters necessary for it to be accepted...

Tracker would need to be re-optimized using 10% less radial space Already studied in Appendix B of note (to reduce cost of calorimeter)

V. Cairo et al.

Compact RICH detector for FCC-ee

- Earlier examples of RICH detectors at e⁺e⁻ colliders include those of DELPHI and SLD: large radial dimensions, challenging photosensors
- To be concrete, new proposed design is based on the current CLD experiment concept for FCC-ee N. Bacchetta *et al.*, arXiv:1911.12230
- Target a radial depth of 20 cm, and material budget of few % X₀ Such aggressive parameters necessary for it to be accepted...

Adapted version of SLD CRID

Tracker would need to be re-optimized using 10% less radial space Already studied in Appendix B of note (to reduce cost of calorimeter)

ARC: Array of RICH Cells

- Challenge to arrange optical elements so that Cherenkov light focused onto a single sensor plane, as the detector radial thickness is reduced
- Concept inspired by the compound-eye of an insect: tile the plane with many separate cells, each with its own mirror and sensor array
- Use spherical focusing mirrors: focal length = radius-of-curvature/2 \rightarrow select radius-of-curvature $R \approx 30$ cm for radiator thickness of 15 cm

Simulate tracks from IP crossing detector uniformly over acceptance and ray trace Cherenkov photons to sensor plane:

Ring radii = $R \cdot \theta_{\rm C}/2$ ≈ 1 cm (3.6 cm) for gas (aerogel)

https://www.findlight.net/blog/2019/01/23/artificial-compound-eyes/

Radiator gas parameter scan

- Original concept was pressurized Performance studied varying the gas type and pressure
- Outcome: new baseline is for unpressurized C₄F₁₀, allows material budget to be minimized
- C_4F_{10} at atmospheric pressure gives good momentum range for K- π separation, with acceptable photon yield for the parameters assumed
- Xenon at 2 bar may provide similar performance, if fluorocarbons unacceptable
- Optimal point may change in the presence of background

ARC simulation

Event display of $B_s \rightarrow D_s K$ decay in Z event in ARC Track density is sparse, typically only single track/cell

Zoom on hits in sensor of one cell Concentric rings from the two radiators

ARC cell simulated with Geant4

Alvaro Tolosa Delgado

ARC performance

- Resolution optimized, now using
 1300 similar hexagonal cells
- Optical layout has been optimized via a standalone ray-tracing study: adjusting the position, curvature and tilt of mirrors and sensors for each of the 39 unique cells Martin Tat
- Geometry has been described in Key4hep in collaboration with the FCC software group
 Gerardo Ganis et. al
- Details will be presented by Alvaro Tolosa Delgado in the PED: Software and Computing session this afternoon
- \rightarrow Excellent K-π separation predicted over momentum range 2–50 GeV/c

From standalone simulation, including 2T B-field Martin Tat

(to be followed up with the full Geant4 simulation)

Roger Forty PID and photodetector R&D for FCC 17

Conclusions

- R&D on Particle ID and Photodetectors is very active, and will hopefully be further nurtured within the new **Detector R&D Collaboration** (DRD4) that is being set up to implement the ECFA Roadmap
- *Photon detector* developments concentrate on solid-state (SiPM) and vacuum-based detectors (MCP) with excellent timing resolution, which are likely to have applications in FCC experiments
 - **SiPM**: reducing the dark count rate with cooling and/or annealing, making them more radiation resistant (important for FCC-hh), and developing possible digital SiPM with integrated electronics
 - MCP: improving the lifetime and rate capability, increasing efficiency, reducing the cost
- Particle ID detector R&D is currently focused on nearer-term applications, for RICH/DIRC/TOF
 - **Time-of-flight** important for FCC-ee, to complement dE/dx or cluster counting in gaseous trackers: various lines under development, using LGADs, fast crystals, SiPM + radiator, TORCH
 - RICH detectors are ideal for hadron separation at high momenta, R&D underway for applications in LHCb/ALICE upgrades and EIC, dedicated design for an FCC-ee experiment (ARC) is progressing
- Support from the FCC community is important for the long-term strength of the R&D collaboration

Additional slides

Working point	Lumi. / IP $[10^{34} \text{ cm}]$	$^{-2}.\mathrm{s}^{-1}$] Total	lumi. (2 IPs	Run tim	e Ph	ysics goal
Z first phase	100		$ab^{-1}/year$	2		
Z second phase	200	52	${ m ab^{-1}/year}$	2	1	$50 { m ab}^{-1}$
Particle produc	tion (10^9) B^0 / \overline{B}^0	B^{+} / B^{-}	$B_s^0 \ / \ \overline{B}_s^0$	$\Lambda_b \ / \ \overline{\Lambda}_b$	$c\overline{c}$	τ^-/τ^+
Belle I	I 27.5	27.5	n/a	n/a	65	45
FCC-e	e 1000	1000	250	250	1000	500

	Decay mode/Experiment	Belle II $(50/ab)$	LHCb Run I	LHCb Upgr. (50/fb)	FCC-ee
	EW/H penguins				
	$B^0 \to K^*(892)e^+e^-$	~ 2000	~ 150	~ 5000	~ 200000
1	$\mathcal{B}(B^0 \to K^*(892)\tau^+\tau^-)$	~ 10	_	_	~ 1000
	$B_s \to \mu^+ \mu^-$	n/a	~ 15	~ 500	~ 800
	$B^0 o \mu^+\mu^-$	~ 5	_	~ 50	~ 100
	$\mathcal{B}(B_s \to \tau^+ \tau^-)$				
	Leptonic decays				
	$B^+ \to \mu^+ \nu_{mu}$	5%	_	_	3%
	$B^+ \to au^+ u_{tau}$	7%	_	_	2%
4	$B_c^+ o au^+ u_{tau}$	n/a	-	-	5%
	CP / hadronic decays				
	$B^0 o J/\Psi K_S \; (\sigma_{\sin(2\phi_d)})$	$\sim 2.*10^6~(0.008)$	41500 (0.04)	$\sim 0.8 \cdot 10^6 \ (0.01)$	$\sim 35 \cdot 10^6 \ (0.006)$
	$B_s \to D_s^{\pm} K^{\mp}$	n/a	6000	~ 200000	$\sim 30 \cdot 10^6$
	$B_s(B^0) \to J/\Psi \phi \ (\sigma_{\phi_s} \ \mathrm{rad})$	n/a	96000 (0.049)	$\sim 2.10^6 \ (0.008)$	$16 \cdot 10^6 \ (0.003)$

boosted b's/ τ 's at FCC-ee

out of reach

at LHCb/Belle

See S. Monteil, FCC CDR overview '19

ARC vessel

- Should be as lightweight as possible: propose to use carbon-fibre composite sandwich with foam core
- Initial concept was for pressurized radiator gas up to 4 bar Related R&D already underway for lightweight cryostats
- Finite-element analysis made for 4 bar pressure, over the gas volume of ~ 10 m³ → maximum deflection of walls under pressure: 4 mm (barrel), 7 mm (endcap) with a safety factor 2
- Achieved with 20 mm-thick walls, for a remarkably low material budget: $2.7\% X_0$ (per wall)
- Subsequent studies indicated that an unpressurized radiator may be sufficient (depending on the sensor PDE) → material can be further reduced, currently assume 10 mm-thick walls
- R&D needed to ensure leak tightness of CF walls (liner-less), out-of-autoclave curing to avoid need of large autoclave, etc.
 Also to develop suitable lightweight spherical mirrors

Radiator gas R&D

- Baseline choice is C₄F₁₀ due to its excellent chromatic properties
 → optimizes resolution (~ 1 mrad is the target)
- However, fluorocarbons have high global warming potential (GWP \sim 9000 for C₄F₁₀) and even though one would aim for a leak-less system, it may be prudent to investigate alternatives
- Replacing the gas radiators with a mixture of $C_5F_{10}O$ and N_2 may allow refractive index to be tuned to that of C_4F_{10} Greg Hallewell, RICH2022 $C_5F_{10}O$ is one of the Novec family of gases (#5510), GWP < 1 However, long term Novec supply is also in question...
- **Xenon** is not a greenhouse gas, and stays in gas phase at room temperature up to over 20 bar However, lower refractive index (n = 1.0007) so would need higher pressure than C_4F_{10} , and somewhat worse dispersion Pressurized **argon** is also discussed as an option
- For such new gas choices, **R&D** needed to ensure suitability e.g. level of scintillation, compatibility with materials, etc.

Dispersion is also reduced if photosensor is sensitive to lower (visible) wavelengths

Use of aerogel as a "filter" in front of the photosensor works in this direction

ARC photosensor R&D

- Photosensor performance is crucial for this concept: needs to be compact, low material budget, high efficiency, mm-scale pixellization, cheap (~ 8m² active area, 8M pixels)
- **SiPM**s look like the ideal candidate, but not yet well established in RICH detector instrumentation (single-photon detection)
- Level of acceptable dark-count rate should be established, will probably require cooling → potential issue with liquefying radiator gas
 - Note that radiation dose expected is low at FCC-ee so major concern at LHC of increase of DCR with irradiation should not be an issue
- Nevertheless, assume cooling will be required → sensor + electronics mounted on cooling plate with CO₂ circulation
- Need to insulate from gas volume, while allowing Cherenkov light through: use **aerogel** as an excellent thermal insulator

Aerogel R&D

- Silica aerogel can withstand high pressure, tunable refractive index n = 1.01-1.10, v. low **thermal conductivity**: ~ 0.015 W/m·K
- For 1 cm thickness, assuming $\Delta T = 70\,$ K, heat transmitted through a 25 x 25 cm² tile is only a few watts < heat from the electronics
- Propose use both as a secondary Cherenkov radiator (suitable for low momentum tracks) and as thermal insulation around sensors Photons from the gas radiator have to pass through aerogel → some loss from scattering, but also shifts towards visible
- High clarity, large area aerogel tiles developed by Belle for ARICH (other recipes also available): assume clarity $C = 0.005 \, \mu \text{m}^4/\text{cm}$ $n = 1.03 \rightarrow \theta_C \approx 240 \, \text{mrad}$
- Aerogel photons focused by same mirror as those from gas onto same sensor plane → concentric rings if track above both thresholds
- **R&D** issues: developing larger, thinner tiles, testing use as thermal insulator (suitable mounting, joints, etc.), compatibility with gas, etc.

Transmittance vs wavelength

