Detector-related Sessions:

Introduction

FCC Week 2023

London, June 5-9, 2023

Mogens Dam, NBI Felix Sefkow, DESY

Opening Remarks

Detectors in the feasibility study:

- support the implementation of the Roadmap for Detector R&D
- to stay informed, register at <u>https://indico.cern.ch/event/957057/page/27294-implementation-of-the-ecfa-detector-rd-roadmap</u>
- see also workshops in the framework of the ECFA study <u>https://indico.cern.ch/event/1044297/page/28993-wg3-group-activities</u>
- develop detector concepts to guide the R&D and establish the link between technologies and physics performance
- the "D" in MDI

Detector Sessions

This session:

10:35

11:41

	Speaker: Gabriella Gaudio (INFN-Pavia)
10:57	Si tracking and vertexing R&D for FCC Speaker: Prof. Daniela Bortoletto (University of Oxford (GB))
1	•

Calorimetry R&D for FCC-ee and FCC-hh

 11:19
 Particle ID and Photodetector R&D for FCC

 Speaker: Roger Forty (CERN)

Gaseous detector R&D for FCC

Speaker: Dr Maksym Titov (IRFU, CEA Saclay, Université Paris-Sacl

This afternoon:

15:30 → 17:00 **PE&D: Detectors (II)**

Convener: Paolo Giacomelli (INFN Sezione di Bologna)

15:30	Tracking system requirements ALICE-3 versus FCC-ee Speaker: Didier Claude Contardo (Centre National de la Recherche Scientifique (FR))
16:00	Si detector development for ALICE ITDS3 and ALICE-3 Speaker: Magnus Mager (CERN)
16:30	Detector activities and plans in the US

Speaker: Srini Rajagopalan (Brookhaven National Laboratory (US))

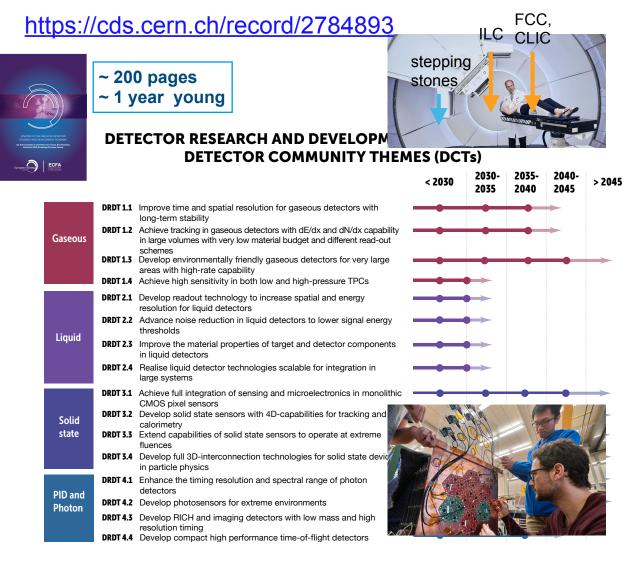
Joint Sessions

This afternoon:

PE&D: Software and Computing / Detectors → 15:00 13:30

13:30	Status of software for detector studies
	Speaker: Brieuc Francois (CERN)

- peaker: Brieuc Francois (CERN)
- 13:50 **IDEA vertex and drift chamber in Key4hep** Speaker: Armin Ilg (University of Zurich)
- **RICH full sim implementation in Key4hep** 14:10 Speaker: Alvaro Tolosa Delgado (CERN)
- 14:30 IDEA Dual readout calorimeter in Key4hep ¶ Speaker: Sang Hyun Ko (Seoul National University (KR))
- 14:45 FCC-ee TileCal simulation and reconstruction Speaker: Michaela Mlynarikova (CERN)


Tuesday: IR design and background studies

MDI (I) Convener: John Seeman (SLAC)						
M. Boscolo (INFN)	MDI overview					
F. Palla (INFN)	Mechanical integration of the IDEA detector in the IR					
A. Ing (Un. Zurich)	IDEA VXD implementation in full simulation					
F.Fransesini(INFN)	Mechanical model of the MDI					
L. Brunetti (CNRS)	Towards mechanics and optics evaluation of the vibration effects for the MDI					
MDI (II) Convener: Manuela Boscolo (INFN-LNF)						
H. Nakayama (KEK)	SuperKEKB MDI lessons					
G. Broggi (CERN&Sap.&INFN)	Beam Losses in the MDI					
K. Andre (CERN)	Synchrotron radiation background studies					
A. Ciarma (INFN)	Synchrotron radiation background studies Detector background simulations					

Back-up

ECFA Detector Roadinap Sumnary

Relating Technology R&D to Major Drivers from Facilities

		D finished and real onstruction can start			ILC	FCC, CLIC	
				stepping stones	↓	Ļ	
Quantum	DRDT 5.2 DRDT 5.3	Promote the development of advanced qua Investigate and adapt state-of-the-art de technologies to particle physics Establish the necessary frameworks and exploration of emerging technologies Develop and provide advanced enabling ca	velopments in quantum mechanisms to allow			→	-
Calorimetry	DRDT 6.2	Develop radiation-hard calorimeters with energy and timing resolution Develop high-granular calorimeters with r for optimised use of particle flow method Develop calorimeters for extreme radiatic environments	multi-dimensional readout		*	>)
Electronics	DRDT 7.2 DRDT 7.3 DRDT 7.4	Advance technologies to deal with greatly Develop technologies for increased intelli Develop technologies in support of 4D- a Develop novel technologies to cope with required longevity Evaluate and adapt to emerging electroni technologies	gence on the detector nd 5D-techniques extreme environments and		•		
Integration	DRDT 8.2 DRDT 8.3	Develop novel magnet systems Develop improved technologies and syst Adapt novel materials to achieve ultraligh precision mechanical structures. Develop Interfaces. Adapt and advance state-of-the-art syste including environmental, radiation and be	t, stable and high Machine Detector ems in monitoring		•		
Training	DCT 1 DCT 2	Establish and maintain a European coordinate instrumentation Develop a master's degree programme in ins					

Detector R&D Themes (DRDTs) and Detector Community Themes (DCTs). Here, except in the DCT case, the final dot position represents the target date for completion of the R&D required by the latest known future facility/experiment for which an R&D programme would still be needed in that area. The time from that dot to the end of the arrow represents the further time to be anticipated for experiment-specific prototyping, procurement, construction, installation and commissioning. Earlier dots represent the time-frame of intermediate "stepping stone"

projects where dates for the corresponding facilities/experiments are known. (Note that R&D for Liquid Detectors will be needed far into the future, however the DRDT lines for these end in the period 2030-35 because developments in that field are rapid and it is not possible today to reasonably estimate the dates for projects requiring longer-term R&D. Similarly, dotted lines for the DCT case indicate that beyond the initial programmes, the activities will need to be sustained going forward in support of the instrumentation R&D activities).