

Klaus Hanke

TECHNICAL INFRASTRUCTURE SUMMARY

K Hanke, J-P Burnet, FCC Week 2023, 09/06/2023

		Version: 0.28	Date:	26.05.2023															
Day	Sunday	Monday	Tuesday				Wednesday				Thursday					Friday	Day		
Time	Registration desk	Plenary	Parallel 1	Parallel 2	Parallel 3	Parallel 4	Governance	Parallel 1	Parallel 2	Parallel 3	Parallel 4	Governance	Parallel 1	Parallel 2	Parallel 3	Parallel 4	Governance	Plenary: Summaries	Time
Room	Santosa Suite	Orchard Suite	Orchard Suite	Cromwell 1+2	Cromwell 3+4	Kensington Suite	Cromwell 6	Orchard Suite	Cromwell 1+2	Cromwell 3+4	Kensington Suite	Cromwell 6	Orchard Suite	Cromwer 1+2	Cromwell 3+4	Rensington Suite	Cromwell 6	Orchard Suite	
08:30-09:00		Opening		Physics	50010 1000				•						Electricity.	0.005		Civil Engineering Technical Infrastructures	08:30-09:00
09:00-09:30		CERN Council expectations for FCC FS	Baseline design	Theoretical calculations	Integrate Europe (I)	UK industrial event	4 S	ess	sion	S			Injector (II)	EPOL (and Energy Management	Technology (I)		FCC-ee	09:00-09:30
09:30-10:00		Key note: Physics		(I)			19	pre	ser	ntat	ion	s I						FCC-ee injector FCC-hh & magnet	09:30-10:00
10:00-10:30		perspectives		Coffee	Break (Santos	a Suite)		P ' O						Coffe	e Dreak (Santos	a Suite)			10:00-10:30
10:30-11:00		Coffee Break (Santosa Suite)	O-Wardin C	Physics	50010 11/20				Detector	Future	Communicat		-		0-64	0.005		Coffee Break	10:30-11:00
11:00-11:30		FCC Feasibility Study status	Collimation & Case + FCCIS collective Theoretical effects calculations (II)	Case + Theoretical calculations	Integrate Europe (II)	UK industrial event	1	Iniceto	roqui					Detectors ((I) Transport & Survey	Technology (II)		MDI and EPOL	11:00-11:30
11:30-12:00		Baseline Scenario & Host States				1 and									PED	11:30-12:00			
12:00-12:30		Civil Engineering					1	just	nee	4						J		Closing remarks	12:00-12:30
12:30-13:00				Lunch break (Santosa Suite)	the	mai	n ic	teas				Lunc	h break (Santosa	a Suite)		END	12:30-13:00
13:00-13:30		Lunch break (Santosa Suite)	(<u> </u>		INC	1.10.			1	-							13:00-13:30
13:30-14:00			Machire		FCCIS WP4					1	47	R		6					13:30-14:00
14:00-14:30		ECC Accelerator	Detector Interface	RF Points for FCC-ee	Impact & Sistainability						ESO1	nt l		ontware an omputing Detectors	/ Technologies	FCC-eh			14:00-14:30
14:30-15:00			(1)		0							m .	Z						14:30-15:00
15:00-15:30		Technical Infrastructure		Coffee Break (Santosa Suite	:)				65	A		1	e Brea	k (Santosa Suite))	Scientific Advisory Committee		15:00-15:30
15:30-16:00	Registration	Coffee Break (Santosa Suite)	Machine		ECCIS WP4					目目	1		3						15:30-16:00
16:00-16:30	+ as from 07:30am	PED plenary:	Detector Interface	Integration and Cooling	Impact & Sistainability					<u< td=""><td>11-</td><td>0</td><td>></td><td>tors (</td><td>II) Technologies</td><td>Early Career Researchers</td><td></td><td></td><td>16:00-16:30</td></u<>	11-	0	>	tors (II) Technologies	Early Career Researchers			16:00-16:30
16:30-17:00	on Monday 5 June	Theoretical calculation strategy, iii) Detector	(1)								Bevelopment	opment					16:30-17:00		
17:00-17:30		physics			J		L												17:00-17:30

TECHNICAL INFRASTRUCTURE

RF POINTS

General Lay-out, integration update RF systems

Klaus Hanke

O FCC

Powering of RF systems – Power converters and infrastructure Davide Aguglia

Cooling & ventilation for RF systems, surface and klystron galleries Inigo Martin Melero

RF string or continuous cryomodule, impact on infrastructure and recovery time Vittorio Parma

Present Baseline

- 366 CM (3 types), 1'464 SRF cavities (4 cavities/CM, present assumption):
 - 400 MHz single-cell (Nb/Cu), 4.5 K: 28 CM, 112 cavities (removed after Z)
- > 400 MHz two-cell (Nb/Cu), 4.5 K: 66 CM, 264 cavities

- 800 MHz five-cell (bulk Nb), 2 K: 272 CM, 1'088 cavities
- By machine:
- Collider (ttbar): 188 CM (264 cavities 400 MHz, 488 cavities 800 MHz)
- Booster (ttbar): 150 CM (600 cavities 800 MHz)

TECHNICAL INFRASTRUCTURE

INTEGRATION AND COOLING

Integration update tunnel and arcs, caverns, service caverns, etc. Fani Valchkova

Alcoves requirement and integration, cabling concept Charline Marcel

Accelerator of 91km: 1 alcove every **1,6km** (based on LHC repartition, that seems coherent for the machine)

Total of 56 alcoves all around the machine, 7 by sector

Role of an alcove: host the converters for the magnets of the machine and all the equipment that need to be protected from the radiations present in the tunnel (including power centers) Also serve as escape road and parking area for the transport

Two types of alcoves:

FCC

- "big" alcoves, that are at the end of the straight sections of each point and host the main converters for the magnets (for dipoles and quadrupoles)
- "small" alcoves, that are all along the arc, cover the distribution on 800m each side and host the other converters (for sextupoles)

General layout and update of cooling and ventilation systems for arcs Guillermo Peon

Concept for cooling water (raw water, demineralised water, chilled water)

Raw water distribution and firefighting water in the tunnel

Ventilation, standard operation and special modes

What to do with the FCC Waste Heat ? Heat recovery perspectives - Guillermo Peon Heat Recovery in the Biogas production

Ref.: Mechanism of waste-heat recovery from slurry by scraped-surface heat exchanger in <u>Applied</u> <u>Energy</u>, <u>Volume 207</u>, 1 December 2017, Pages 146-155

The authors claim that recovering heat from slurry can increase the biogas production up to 8.5%. But similar gains can be obtained when recovering heat from other processes.

TECHNICAL INFRASTRUCTURE

ELECTRICITY AND ENERGY MANAGEMENT

3

9

0

6

57

Update of the power demand and energy consumption, grid connection Jean-Paul Burnet

2023		7	۱۸/	н	TT
2025		2	vv		
Beam energy (GeV)		45.6	80	120	182.5
Magnet current		25%	44%	66%	100%
Power ratio		6%	19%	43%	100%
PRF EL (MW)	Storage	146	146	146	146
PRFb EL (MW)	Booster	2	2	2	2
Pcryo (MW)	Storage	1.2	11.5	11.5	27.6
- ()	- ·	0.05		4 5 9	- 40

- Shutdown: reduced power of all infrastructure systems, cryogenics at 20%, cooling at 50%, accelerators OFF.
- Commissioning: All infrastructure systems, and cryogenics at nominal. Start of accelerator systems, Booster ON, Collider at 50% load.
- Physics operation: all systems are ON. The electricity grid is loaded at 100%.
- Downtime: All infrastructure systems, and cryogenics at nominal. Booster and Collider systems are OFF.
- Technical stops: All infrastructure systems, and cryogenics at nominal. Booster and Collider systems are OFF.
- Machine development: all systems are ON. Reduced RF power to 15%, no physics.

New PDL3

RTE preliminary study for grid connection Jean-François Billerot

Electrical distribution concept and layout Charline Marcel

High Voltage network scheme

Innovation is to move the substations under ground

Point X+1

Point X-1

Solution in investigation: underground HV/MV substations

Benefits:

- Power at High Voltage (HV) closer to the main loads
- Avoid a double cabling between surface and underground

Disadvantages:

- Space occupation underground
- Technologies adapted for underground more expensive (and today considered feasible up to 72.5 kV)
- Cooling of the underground galleries

DC Networks for the Powering of the FCC-ee and FCC-hh Manuel Colmenero Moratalla

DC Microgrids for the FCC

FCC

Optimization of the volume of the power converter alcoves

- AC/DC Converters centralized at the surface/technical galleries
- Solid State Transformers (SSTs) for Voltage Conversion
- Losses Transformer + Several LV AC/DC are higher than SST + HV AC/DC
- SST are very modular: easier transport, maintenance and scalability
- Comparative analysis with the AC baseline is difficult due to lack of expertise

Powering of magnet concept and requirements Byamba Wicki

Large number of smaller power supplies (sextupoles, ...) Overall optimisation needed Input for magnets needed

 $+(N_{circ}+1)$

TECHNICAL INFRASTRUCTURE

SAFETY, TRANSPORT, SURVEY

Update of transport concept for personnel and material Roberto Rinaldesi

Transport of accelerator components

Traffic management

A traffic management system will be needed to coordinate the single maneuvers both in normal and emergency conditions of the people and the magnet transport vehicles.

The system shall:

- · Be informed of all the vehicles running in the tunnel.
- Record in real-time any maneuver taking place in the tunnel (possible use of RFID technology).
- Manage the vehicles crossing in correspondence of the small laybys according to a predefined priority hierarchy. Example:
 - Normal conditions: magnet transport has priority with respect to people transport;
 - Emergency conditions: people transport has priority with respect to magnet transport.

Update on material logistic concept Benedikt Oliver Müller

Material flow simulation with Plant Simulation

Simulation procedure and simulation tool

	Summer on the	Scenario	2s2v	2s4v	4s2v	4s4v
	Summary	KPI	Value	Value	Value	Value
	General	Overall simulation time [h]	5928*	5496*	2760*	2760*
Da	Magnat transport	Transport time [h]	5424	4584	2304	2280
	wagnet transport	Magnets transported per day and shaft	20	23	23	23
	Magnet aligning and	Aligning and connecting time [h]	5904*	5472*	2736*	2736*
	connecting	Magnets aligned and connected per day and shaft	18*	19*	19*	19*
	Transporters waiting at	No. of times waiting for magnet	865	2440	865	1223
	shaft for crane with	Accumulated total waiting for crane time [hh:mm:ss]	735:21:59	3149:32:22	741:48:04	1734:48:20
	magnet	Avg waiting for crane time [hh:mm:ss]	0:51:00	1:17:27	0:51:27	1:25:07
	Transporter waiting for	No. of encounters	0	2449	0	1221
	other transporters to pass	Accumulated total encounter waiting time [hh:mm:ss]	0:00:00	2664:00:52	0:00:00	1866:18:18
• 1	by	Avg encounter waiting time [hh:mm:ss]	0:00:00	1:05:21	0:00:00	1:31:56

s = shafts v = vehicles per shaft

 Magnet transport frequency is as high as magnet lowering frequency

Low underground buffer utilization

Radiation protection studies for the FCC-ee Giacomo Lavezzari

External dose:

- Z: values between 0.1 µSv/h and 1 µSv/h
 - no intervention constraints
- Residual dose rate inside the arc tunnel • W, H: values below 0.1 µSv/h
 - ttbar: relevant residual dose rates after short decay times: from 10 to 20 µSv/h. Impact on interventions to be considered.

Internal dose:

Evaluation concerns the arcs only. Contributions from the straight sections (experiments, collimators, beamstrahlung) are not yet estimated and will come in addition.

f**or 1 hour** of 0 m³/h are sufficient

EXTERNAL DOSE INTER DOSE DOS OPERATIONAL OBJEC

- Strong dependence on the recycling factor
- Major contributions to activity from short-lived emitters: Ar-41, C-11, N-13
- ttbar can reach 10⁶ MBq/year per release point without aerosol filters
- For Z, W, H, the release varies from 10² to 10⁵ MBq/year per release point without aerosol filters.

Released activity via water circuits:

Not addressed here → water circuit model required

Materials activation:

- No relevant activation of tunnel walls and soil.
- Accelerator materials: critical activation only during ttbar. Below clearance limits after ~4-5 years after ttbar operation.
- There is an uncertainty on the evolution of the current legislative limits until FCCee goes into operation

Overview of safety systems and evacuation study in the FCC tunnel Andre Henriques

Cryo release

Fire safety

○ FCC

Evacuation simulations

In a few seconds (4 - 10s) the O₂ levels reach limit at the evac path and for several meters

Geodesy and survey update Benjamin Weyer

Primary Surface Geodetic Network

Geoid modelling

Implementation of P-SGN

- IGN and Swisstopo got an agreement to build the pillars
 - Point B: Choulex
 - Point D: Nangy
 - Point F: Etaux
 - Point G: Charvonnex
 - Point H: Cercier
 - Point J: Dingy en Vuache
 - Point L: Dardagny
 - New CORS: Jussy

Thank you for your attention

Big thanks to all speakers and chairpersons of the Infrastructure Sessions