

EPOL Summary

Jacqueline Keintzel and Guy Wilkinson

On behalf of the FCC-ee EPOL working group

jacqueline.keintzel@cern.ch guy.wilkinson@cern.ch FCC Week 2023 London, United Kingdom June 09, 2023

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

FCC-ee Overview

- Particle Physics:
- Higgs and electro-weak factory
- 4 baseline beam energies and diverse particle physics program
 - 45.6 GeV: Z-pole
 - 80 GeV: W-pair-threshold
 - 120 GeV: ZH-production
 - 182.5 GeV: top-pair-threshold
- High number of statistics

Accelerator Physics:

- 4-fold super-symmetric layout
 - Up to 4 Interaction Points (IPs)
 - 1 RF-section per beam
 - 1 collimation section
 - 1 section for injection and dump
- Nanometer beam size at IPs
- Strong synchrotron radiation

Precision particle physics experiments (Center-of-mass energy determination

Expected Precision

	Quantity	statistics	ΔE_{CMabs}	$\Delta E_{CMSyst-ptp}$	calib. stats.	σE_{CM}
			100 keV	40 keV	$200 \mathrm{keV}/\sqrt(N^i)$	$(84) \pm 0.05 \text{ MeV}$
Z	m _Z (keV)	4	100	28	1	_
	$\Gamma_{\rm Z} ({\rm keV})$	4	2.5	22	1	10
	$sin^2 \theta_W^{\rm eff} imes 10^6 ext{ from } A_{FB}^{\mu\mu}$	2	_	2.4	0.1	_
	$\frac{\Delta \alpha_{QED}(M_Z)}{\alpha_{QED}(M_Z)} \times 10^5$	3	0.1	0.9	_	0.05
WW√	Further clarification ongoing			300 keV	150 keV	
	$m_W(MeV)$ 0.200		(?)	75 keV?		
	Γ _W (MeV)			(75?)	small	OK

- •Large expected luminosity → huge statistics → small statistical error: 4 / 100 keV per Z / W boson
- •Aim to achieve same order of magnitude for systematic errors → Scope of the EPOL working group
- •EPOL: Energy calibration, polarization and monochromatization

arXiv:1909.12245

How to?

Special mode: monochromatization

Detector input

Polarization build-up

Depolarization

Polarimetry

ECM

- Resonances
- Wigglers
- Beam tests

- Resonant depolarization
- Free spin precession

- Polarimeter incl.
- laser, Si-detectors
- e.g. EIC experience

- Systematic errrors
- Statistical errors
- Accurate models

Sessions Overview

Wednesday 13:30 - 15:00

Compton Polarimeter Speaker: Aurelien Martens

> Polarization studies Speaker: Yi Wu

Spin based beam energy measurements
Speaker: Edmund Blomley

Centre-of-mass energy shifts Speaker: Alain Blondel Thursday 08:30 - 10:00

Depolarizer for the FCC-ee Speaker: Ivan Koop

The challenge of E_{CM} calibration above the Z-pole Speaker: Guy Wilkinson

Monochromatization optics for the FCC-ee lattice Speaker: Zhandong Zhang

The roadmap to the final report Speaker: Jacqueline Keintzel

FCC WEEK
09 JUNE 2023

Polarization Build-Up

- Statistically every 10¹⁰ emitted synchrotron photon flips the spin
- Probability depends on the initial spin orientation
- Leads to a natural polarization build-up over time
- Orientation is anti-parallel to the guiding magnetic field

- Maximum theoretical polarization of 92.4 %
- Spin precesses through the lattice → Spin tune

$$v = a * \gamma_{Rel}$$

a ... gyro-magnetic anomaly γ_{Rel} ... Lorentz-factor

What are the advantages of wigglers or a dedicated polarization ring?

Resonances and Misalignments

Large vertical closed orbits reduce polarization level

Polarization studies Speaker: Yi Wu

• What is the maximum allowed orbit for sufficient polarization?

FCC WEEK

09 JUNE 2023

Resonances and Orbit Bumps

- Techniques to improve polarization level studied
- 3 different schemes applied and explored for the FCC

- Based on 4 closed orbit bumps placed in arcs
- Could require BPMs next to arc dipoles

- What is the most effective scheme for the FCC?
- How many BPMs are required, where, with which errors?
- Can this be tested somewhere?

Polarization studies Speaker: Yi Wu

Measuring Polarization

- KARA at KIT, polarization time ~ 10 min at 2.5 GeV
- Polarization measurements via Touschek lifetime change

Spin based beam energy measurements Speaker: Edmund Blomley

Beam Test Polarization and Bumps

- KARA at KIT, polarization time ~ 10 min at 2.5 GeV
- Polarization measurements via Touschek lifetime change

- Possible beam test with:
- Generate strong depolarizing source and orbit bumps
- Find minimum polarization level and how to measure

- What can we learn from KARA?
- Possible long term idea: Is it possible to install a polarimeter?

Spin based beam energy measurements
Speaker: Edmund Blomley

sector 1 (one quarter)

Resonant Depolarization

- Independent depolarizers per beam
- Varying exciting frequency
- Exciting frequency = spin tune = depolarization

45GeV, ν s=0.075, $\sigma\delta$ =0.00038, w=1.5*10^-4, ε '=2*10^-8 Z-pole Average ICS-polarimeter rate 1000 events/turn -5.002-0.0010.001 0.002 Depolarizer Detuning

Depolarizer for the FCC-ee Speaker: Ivan Koop

- Where is the best location for the depolarizers?
- Can they be combined with other hardware?

Depolarizer Detuning

Polarization from Polarimeter

Colliding Bunches Polarization

Depolarizer for the FCC-ee Speaker: Ivan Koop

- •Take away message:
- Longitudinal polarization could spoil measurements and must be < 10-5
- Depolarizers must also act on colliding bunches → Consider closed-orbit bumps to avoid impact at IP
- To be measured also with polarimeters
- What could be the impact of kickers acting on colliding bunches?
- Which depolarizer and polarimeter design is the most suitable for pilot and colliding bunches?

Polarimeter

• Can we extract the beam energy from the polarimeters?

Compton Polarimeter Speaker: Aurelien Martens

What are the advantages of more than 1 polarimeter per beam?

Polarimeter

• Where is the best integration point for the polarimeters?

Compton Polarimeter Speaker: Aurelien Martens

ECM Energy Shifts

- · Beam energy depends on
 - Pilots: Synchrotron radiation, impedance losses, ...
 - Colliding: Synchrotron radiation, impedance losses, beamstrahlung, ...
- Center-of-mass energy depends on
 - Opposite sign dispersion at the IP, collision offsets, ...

Center-of-mass energy shifts Speaker: Alain Blondel

$$|\Delta\sqrt{s}| = 96 |u_0| [\text{keV/nm}]$$

for
$$\Delta D^* = 1 \mu m$$
, $\sigma_E/E = 0.13\%$

• How can we go from the found resonant frequency to the beam energies to the center-of-mass energy?

ECM Calibration Above the Z-pole

• What must be included in reliable energy models at all energy stages?

The challenge of E_{CM} calibration above the Z-pole Speaker: Guy Wilkinson

$$E_{cm} = 125 \text{ GeV}$$

RDP in principle possible, however:

v_s = 142.12 +/- 0.19 far away from

half integer resonance

-> possible energy assymmetry with

150 MeV boosts

RDP not possible; $m_H \sim 10 \text{ MeV}$

RDP only possible for spin modulation index:

$$B = \frac{v_0 \sigma_E}{Q_S} < 1.5$$

$$E_{cm} = 340 - 350 \text{ GeV}$$

RDP not possible; m, ~ 3 MeV

Monochromatization

62.5 GeV beam energy → peak of Higgs-production

Monochromatization optics for the FCC-ee lattice Speaker: Zhandong Zhang

- For minimization of collision energy spread -> monochromatization via dispersion -> optics designed
- What is the most suitable way for monochromatization and what is the trade-off with luminosity?

0.105 m horizontal dispersion in assymmetric optics

0.001 m vertical dispersion in symmetric optics

Outlook

The roadmap to the final report Speaker: Jacqueline Keintzel

- Presently aimed to achieve 4 / 100 keV systematic uncertainty at the Z- / W- modes -> EPOL
- Many questions aimed to be answered until the end of the feasibility study, for example:
 - What is the most efficient way for polarization and depolarization needs?
 - What can be gained from one polarimeter per beam and IP? At which cost?
 - Can we test e.g. orbit bumps at KARA?
 - What are the systematics energy shifts between pilot bunches and colliding ones?

• ...

Regular EPOL meetings:

indico.cern.ch/category/8678/
Typically every second Thursday 16:30-18:30

Any help is welcome!

Mailing list:

fcc-ee-PolarizationAndEnergyCalibration@cern.ch

Self-subscription from:

https://e-groups.cern.ch/e-groups/EgroupsSearch.do

Thank you!

EPOL Summary

Jacqueline Keintzel and Guy Wilkinson

On behalf of the FCC-ee EPOL working group

jacqueline.keintzel@cern.ch guy.wilkinson@cern.ch FCC Week 2023 London, United Kingdom June 09, 2023

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.