Design of the Interaction Region for Concurrent e-p and p-p Operation

<u>Tiziana von Witzleben</u>, Kevin Daniel Joel André, Massimo Giovannozzi, Bernhard Holzer, Max Klein, Gustavo Perez Segurana, Jörg Pretz

The FCC-eh Collider

▶ New layout of the FCC-hh collider:

FCC-hh ring: overview of the new layout

New FCC-hh ring layout: arc and insertion optics

Possible layout of the FCC [1]

The FCC-eh Collider

► New layout of the FCC-hh collider:

FCC-hh ring: overview of the new layout

New FCC-hh ring layout: arc and insertion optics

- High precision microscope for inner hadron structure
- Deep inelastic scattering physics
- Collisions of 50TeV protons with 60GeV electrons
- ► Center of mass energy: $\sqrt{s} = 3.5 \text{ TeV}$
- ► Peak Luminosity: $10^{34} \text{cm}^{-2} \text{s}^{-1}$

Possible layout of the FCC [1]

The energy recovery linac (ERL)

- The electrons are accelerated over three turns to 60GeV

Courtesy to K.D.J. André [2].

Parameter	${f Unit}$	Electron	Proton
Beam energy	GeV	60	50000
Beam current	mA	20.0	640.0
Bunch population	10^{10}	3.1	10.0
Normalised emittance at IP	mm.mrad	20.0	2.2
Betatron function at IP	cm	7.3	30.0
Beam size at IP	$\mu\mathrm{m}$	3.5	
RMS bunch length σ_z	cm	0.06	8.00
Installed RF voltage	GV	21.2	48×10^{-3}
Beam-beam parameter ξ	10^{-4}	1.1×10^{4}	1.7
Luminosity	${\rm cm}^{-2}.{\rm s}^{-1}$	7.9×10^{33}	

Table with the main parameters of the FCC-eh [2].

- ► The remaining electrons have a phase advance of 180° when entering the linac again
- > 97.92% of the energy can be recovered

Mini-beta Insertion

Due to Liouville's theorem the phase space of the beam is conserved blowup of the betafunction before the IP

Phase space diagram [4]

- - ► Betafunction at a distance l before a symmetry point ß*:

$$\beta(l) = \beta^* + \frac{l^2}{\beta^*}$$

- Find optimal β^* : $\frac{d\beta(s)}{d\beta^*} = 1 \frac{l^2}{\beta^{*2}} = 0$
- Smallest beta at a distance I for: $\beta^* = l$

The electron interaction region (optimized by K.D.J André)

- Optimized to minimize the synchrotron radiation power
- An electron doublet is used for round electron beams
- Two dipoles are used to bend the electrons
- The protons pass the electron magnets with a scaling factor of $\frac{60 \text{ GeV}}{50 000 \text{ GeV}} \approx 0.0012$

Impact of the electron IR on the proton beam dynamics

Local correction of the proton orbit:

Introduction of a beta-beat of about 1.5% in the proton optics. They are corrected locally at the dispersion suppressors.

Both effects can be corrected.

Concurrent Operation of e-h and h-h

- Concurrent operation implies 3 beams at the IR
- The two protons need to be separated at the e-p interaction point
- How will this IP be used?

Possible layout of the FCC [1]

Concurrent Operation of e-h and h-h

- Concurrent operation implies 3 beams at the IR
- The two protons need to be separated at the e-p interaction point

Distance [m]

► How will this IP be used?

Option 1: only e-p interaction in this IP

Option 2: e-p and p-p interaction alternate in this IP

Possible layout of the FCC [1]

Option 1: only e-p interaction in this IP

- Separate apertures for the proton beams
- Shift the IP position by ¼ of the bunch distance
- The spectating proton beam crosses with a strong angle (~7mrad)
- L* can be lowered and optimized for the e-p data acquisition
- Lower L* allows a lower B*

$$L = \frac{N_1 \cdot N_2 \cdot n \cdot f}{4\pi \sigma_{\chi} \sigma_{y}} \sim \frac{1}{\beta^*}$$

Luminosity for round beams

Schematic of an optional LHeC interaction region. Courtesy to K.D.J. André [2]

Colliding proton beam Non-colliding proton beam Electron beam

Drawback: no h-h collision possible in this IP

Option 2: e-p and p-p interaction alternate in this IP

- ► The two proton beams share the same aperture
- Separation of the two proton beams with the use of orbit bumps
- ► Further separation in the shared aperture with the use of asymmetric optics for the protons

Separation of 9σ

Schematic of an optional LHeC separation scheme [3]

Option 2: e-p and p-p interaction alternate in this IP

Proton Beam Optics at IP2

8000

150 m β_x^* B1 β_y^* B1 β_y^* B2

5000

2000

1000

D1 IP D1

Position [m]

Betafunction before a drift space of the length l with minimum betafunction B*:

$$\beta(l) = \beta^* + \frac{l^2}{\beta^*}$$

- ► A high ß* of the spectating proton beam at the IP keeps it at a smaller beam size in the shared aperture
- Use asymmetric proton beam optics to maximize the distance between the beams in the shared aperture
- ► A low B* of the colliding beam increases the Luminosity

$$L = \frac{N_1 \cdot N_2 \cdot n \cdot f}{4\pi \sigma_{\chi} \sigma_{y}} \sim \frac{1}{\beta^*}$$

Luminosity for round beams

Asymmetric proton beam optics for the LHeC.

Summary & Outlook

- An electron interaction region has been optimized to minimize the synchrotron radiation power
- ► The local impact of the electron magnets on the proton beam orbit and optics can be corrected in the new FCC-hh lattice
- ➤ 2 schemes to separate the proton beams have been designed for the LHeC → they can be adapted for the FCC-eh
- Outlook: implement both separation schemes into the new h-h lattice
- ► Tracking simulations to investigate the impact of the proton beams on each other

08 June 2023 T. von Witzleben

Thank you for your attention.

Background Slides

Sources

- ▶ [1] A. Abramov, W. Bartmann, M. Benedikt, R. Bruce, M. Giovannozzi, G. Perez Segurana, T. Risselada, F. Zimmermann CERN, "Updated FCC-hh layout under thebaseline scenario", Oral Contribution FCC Scientific Advisory Committee, 28 April 2023
- ► [2] K. Andre, "Lattice design and beam optics for the energy recovery linac of the large hadron-electron collider," Ph.D. dissertation, University of Liverpool, 2022, http://livrepository.liverpool.ac.uk/3161486/
- ► [3] T.von Witzleben, K. D. J. André, R. De Maria, B. Holzer, M. Klein, J. Pretz, M. Smith, "Beam Dynamics for Concurrent Operation LHeC and the HL-LHC", IPAC 2023
- ▶ [4] K. Wille, "Introduction to Accelerator Physics"

Mini-beta Insertion

Due to Liouville's theorem the phase space of the beam is conserved blowup of the betafunction before the IP

Phase space diagram [4]

Betafunction at a distance l before a symmetry point B*:

 $\beta(l) = \beta^* + \frac{l^2}{\beta^*}$

- Find optimal β^* : $\frac{d\beta(s)}{d\beta^*} = 1 \frac{l^2}{\beta^{*2}} = 0$
- ▶ Smallest beta at a distance I for: $\beta^* = l$

How does this affect our collider?

► The beam-size is defined as:

$$1\sigma_u(s) = \sqrt{\varepsilon\beta(s)} = \sqrt{\varepsilon\beta^*}$$

at the IP with u=x,y

Using the formula for the betafunction in a drift:

$$\beta(l) = \beta^* + \frac{l^2}{\beta^*}$$

► For the FCC- hh collider with β^* = 0.3 and L* = 40m this yields:

$$\beta(40) = 0.3m + \frac{40m^2}{0.3m} = 5333.56m$$

▶ How far can we go in betastar with a drift of 15m?

$$\beta(20) = \beta^* + \frac{20m^2}{\beta^*} = 5333.64m$$

$$\beta^* = 0.074m$$

$$L = \frac{N_1 \cdot N_2 \cdot n \cdot f}{4\pi\sigma_x \sigma_y} \left[cm^{-2} s^{-1} \right]$$

Proportional impact on the luminosity

- The development of ERLs has been recognized as one of the five main axis of accelerators R&D in support of the European Strategy for Particle Physics (ESPP).
- The ERL Roadmap Panel, chaired by Max Klein and Andrew Hutton, has done a tremendous job with broad and active participation. PERLE & bERLinPro projects were recognized as one of the "essential pillars of the ERL development," with milestones to be achieved by the next ESPP in 2026.

ESPP R&D Accelerator RoadMap:

https://arxiv.org/ftp/arxiv/papers/2201/2201.07895.pdf

Walid Kaabi, "PERLE: a novel facility for ERL development and applications in multi-turn configuration and high-power regime", IPAC 2023

Optimization Scheme for the electrons

Courtesy K.D.J. André [2]

Optimizations for different focusing schemes of the LHeC

Chosen interaction region for the FCC-eh

Synchrotron radiation at the IP of the LHeC

LHeC interaction region for Concurrent

e-p and p-p Operation [3]

Possible layout of the LHeC. Showing existing infrastructures in grey, the HL-LHC upgrade in blue and the ERL in yellow. [P. Agostini et al., "The Large Hadron-electron Collider at the HL-LHC," J. Phys. G: Nucl. Part. Phys., vol. 48, no. 11, p. 110 501, 2021, doi:10.1088/1361-6471/abf3b]

Possible separation scheme of the LHeC [3]

LHeC interaction region for Concurrent e-p and p-p Operation [3]

x -300, -325, -350 µrad sep 3.0, 3.25, 3.5 mm	1-	ليستستسام	•
---	----	-----------	---

