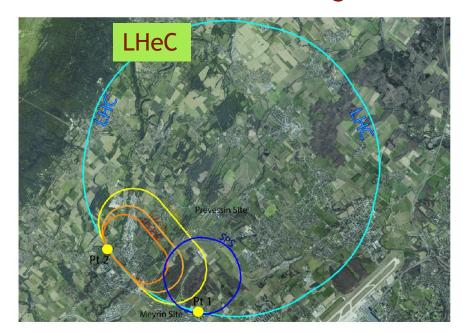
Physics and design of the eh detector

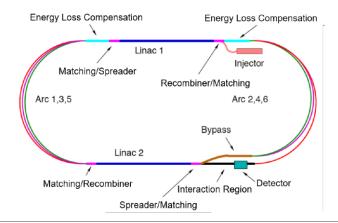
Peter Kostka, Alessandro Polini, <u>Yuji Yamazaki</u> (Kobe University) 8 Jun 2023 The FCC Conference 2023 in London


aaaa (remote presentation)

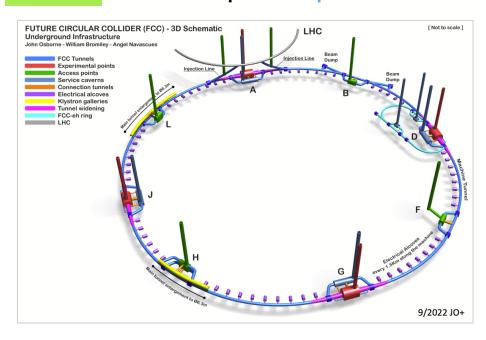
This talk

- ep/eA physics, collision kinematics and detector requirements
 - for DIS and for Higgs / EW / Top / BSM physics
- Detector for FCC-eh: extension from LHeC baseline detector
 - IP and Magnet
 - Central tracker and beam pipe
 - (Calorimetry, Muon System, Forward/backward detectors, LHeC version, in backup)
- Challenges and possible improvements for FCC-eh

The LHeC and FCC-eh accelerators


- Electrons from dedicated Energy Recovery Linac (ERL)
- Hadrons from LHC/FCC rings

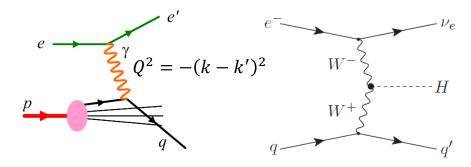
LHeC baseline:


50 GeV(e) \times 7 TeV (p) 2.76 TeV/nucl. (A)

- $\sqrt{s} = 1.18 (p) \text{ or } = 0.74 (A) \text{ TeV}$
- $10^{33} 10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$
- Electrons via 3-track ERL
 ~1/4 of LHC circumference

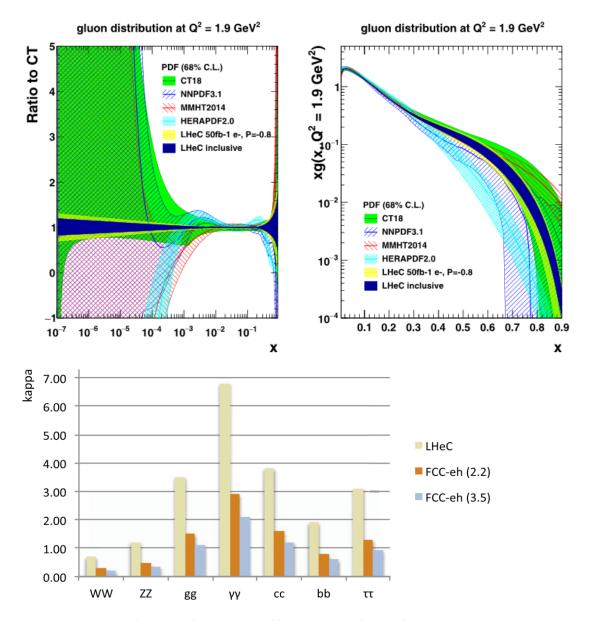
FCC-eh

CDR: 8 point FCC: point D

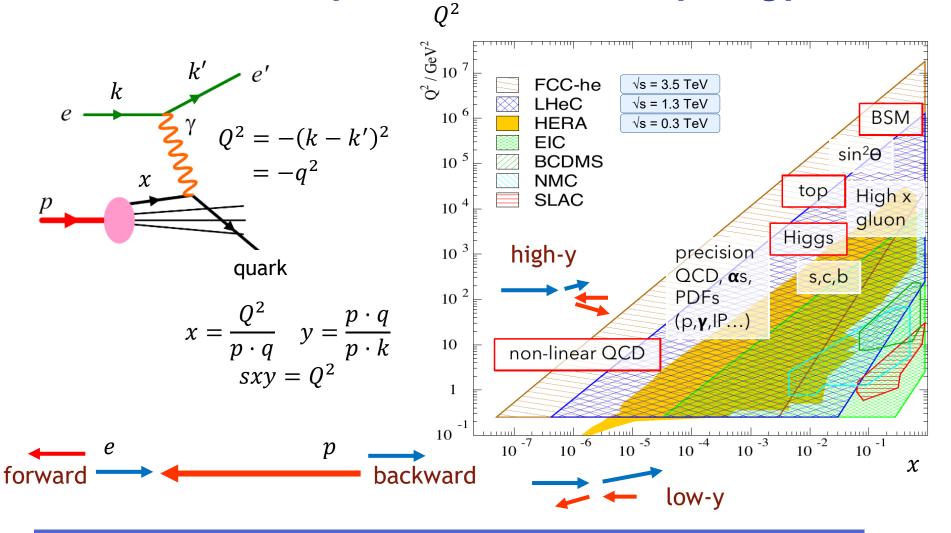


60 GeV(e) × 20 - 50 TeV (p) 7.9 - 19.7 TeV/nucl. (A)

- $\sqrt{s} = 2.2 3.5 (p) \text{ or } 1.4 2.2 (A) \text{ TeV}$
- $10^{34} \text{ cm}^{-2} \text{s}^{-1}$


High-energy ep/eA collisions

- Structure of nucleon and nuclei through DIS
- Higgs couplings
- Precision EW and QCD physics
- BSM physics
 - Leptoquarks, heavy neutrinos, ...


All measured with small pile-up and well-controlled detector

redundant kinematics from e and jet:
 also for calibration

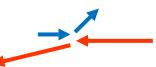
Figure 106. Summary of uncertainties of Higgs couplings from ep for the seven most abundant decay channels, for the LHeC (gold), the FCC-eh at 20 TeV of proton energy (brown) and for $E_p = 50$ TeV (blue).

DIS kinematic plane and event topology

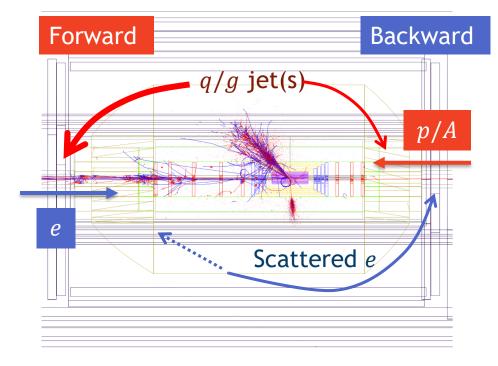
- low-y parton
 - high-x, high Q²

QCD radiation between scattered parton and proton remnant

- Assymetric energy flow
 - particles go to incoming proton direction (forward), e to backward
- But they go to **everywhere** in practice, especially in small angles

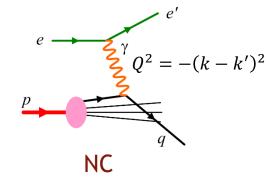

Processes & Challenges (1): Neutral Current (NC) $ep \rightarrow eX$

 $low-x / low-Q^2$ events

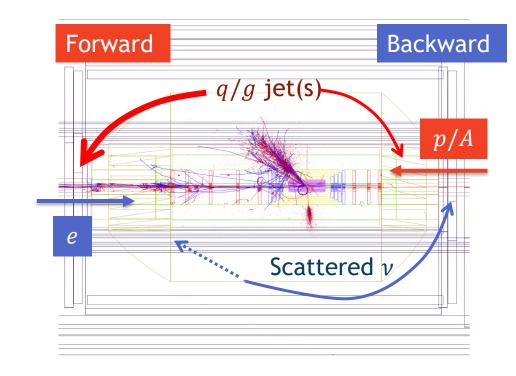


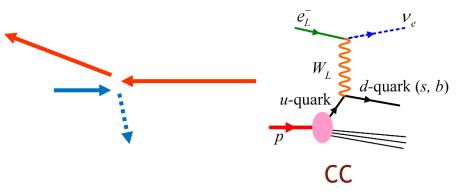
- Scattered electron (e) towards small angle (< 179°)
- Hadrons (X) go to forward (low-y) OR backward (high-y)
- High-y = small energy e to be distinguished with π^{\pm}/π^0 from photoproduction events $\gamma p \to X$
- b/c tagging for decomposing pdf beyond $\eta = 3$

 $high-x / high-Q^2$ events

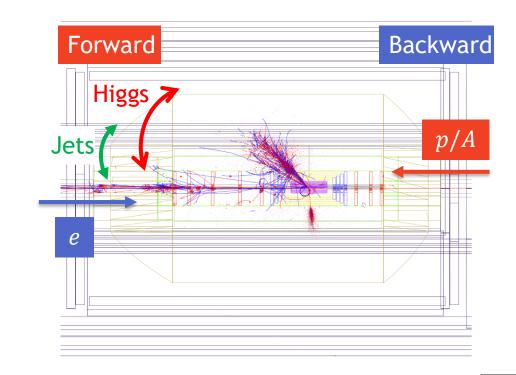


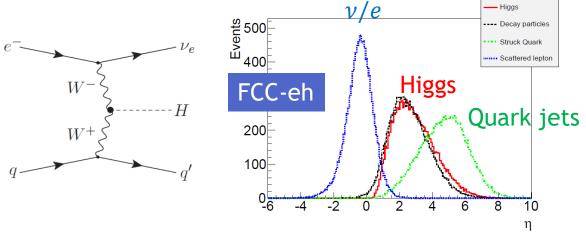
- electrons almost everywhere
- very high-energy jets (O(TeV)) also everywhere, especially in forward


An NC (leptoquark) event at LHeC

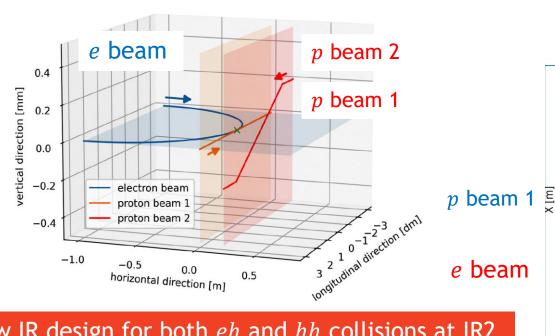

- Hermetic and thick EM and Hadron calorimetry
 - Fine granularity for e/π separation (esp. backward = e direction)
- Fine-pitch + small X_0 tracking for vertexing
 - for heavy-flavour tagging (esp. forward)

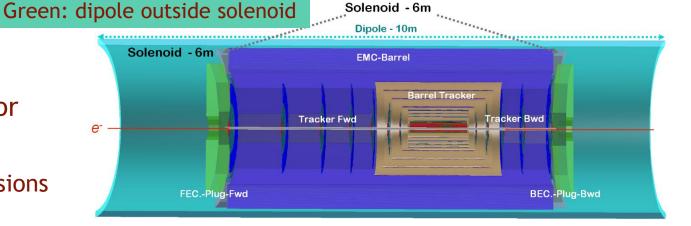
Processes & Challenges (2): Charged Current (CC) $ep \rightarrow \nu X$

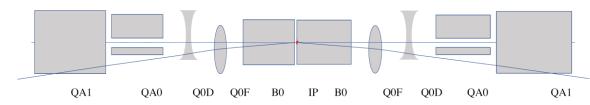

- Final state: a jet (like high-x / high- Q^2 NC), but w/o scattered e
 - Kinematics should be reconstructed only from the hadronic system angle and missing p_T
- This also helps for:
 - QCD studies with jets
 - including photoproduction $(e \rightarrow e'\gamma, \gamma p \rightarrow X)$
 - detector cross-calibration using NC DIS:
 - two energies and angles (*e* and hadronic system): over-constrained
- Hermeticity (esp. forward)
- \blacksquare good HadCal resolution (e/h etc.)
 - tracking should help (particle flow algorithm)



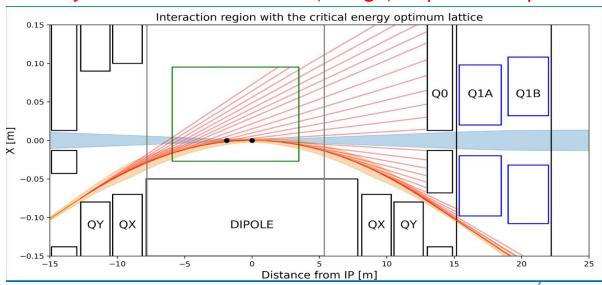
Processes & Challenges (3) Higgs / EW / top / BSM


- Higgs
 - Thru WW fusion in CC or ZZ in NC:
 - need to detect forward "VBF jet"
 - Precise coupling to $b\bar{b}$, $c\bar{c}$, and $\tau\tau$:
 - Need very good flavour tagging in <u>forward</u> direction
 - Jet resolution for mass reconstruction
- EW and top physics
 - similar mass range:similar requirement for flavour and jets
- BSM physics
 - high-mass \rightarrow large-x events
- generic detector for high-Q² NC/CC should also serve for these processes





Machine-detector interface: IP and magnets (from LHeC)


- Dipole magnet integrated in the detector to bend electron beam
 - Beam-2 p and e brought in head-on collisions
 - Beam-1 in a different plane
- Detector needs to be away and shielded from the synchrotron radiation fan

Synchrotron radiation fan (orange) - optimised optics

courtesy Daniel Hanstock from his master thesis

LHeC: New IR design for both eh and hh collisions at IR2

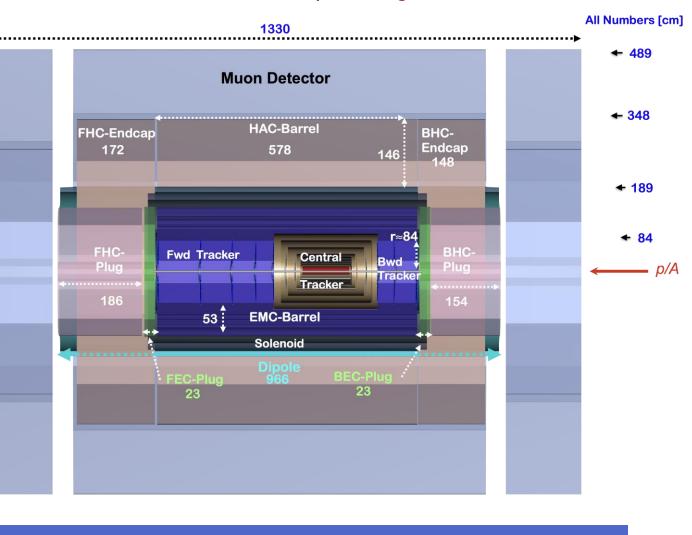
The baseline LHeC detector

Place for compensating solenoids not shown

Covering from 1 to 179 degrees

 All-silicon tracker with extended forward wheels

Covering wide η with small X_0


- EM calorimeter
- fine segment EM calo
- LAr (barrel) or Si-Pb / Si-W
- Solenoid and dipole
- HCAL

Good resolution for HCAL

- Fe/Pb-sci. or Si-W
- Si-W (endcap forw.)

rad-hard for very forward Calo

- Muon system
 - embedded in return yoke
- + Forward/backward detectors along beamline



Aiming for compact, modular and very hermetic detector Fulfilling the requirements

Detector design for FCC-eh – extension of the LHeC detector

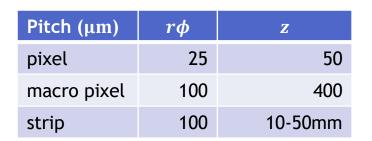
- Proton 20 and 50 TeV, electron 60 GeV
 - Almost no change in low-mass event propertlies (e.g. Higgs)
 while new high-mass objects would be detected in <u>very forward rapidities</u>
- Design for LHeC with extended volume / layers will serve also for FCC-eh

- Forward/Central: scales in $\sim \log E_{had}$ for calo

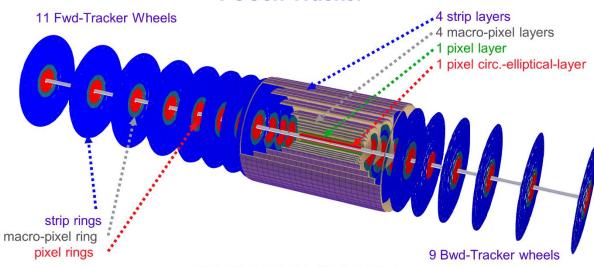
Total length $13.3 \rightarrow 20.4$ m Radius $4.9 \rightarrow 7.2$ m

Central tracker also with (possibly tilted) wheels

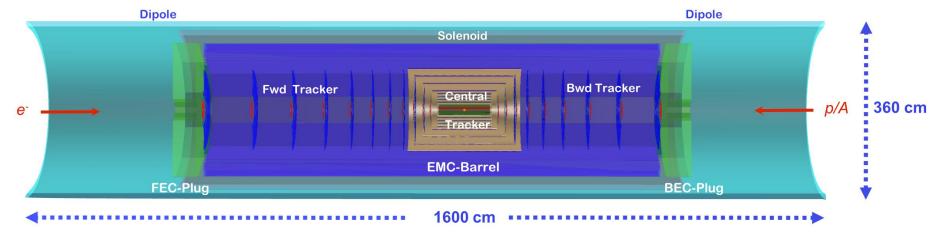
Fwd tracker $4 \rightarrow 8$ disks Bwd $2 \rightarrow 6$ disks

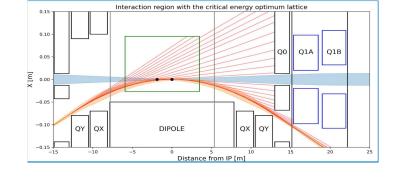

HadCal:

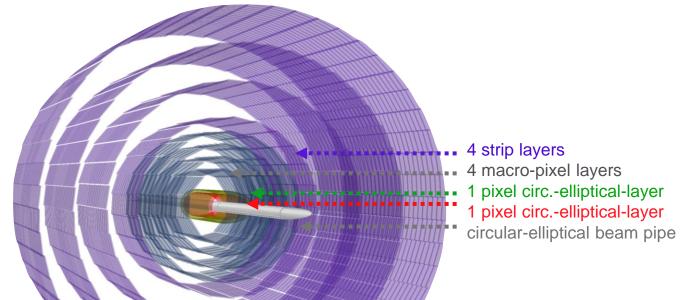
12-15 interaction lengths

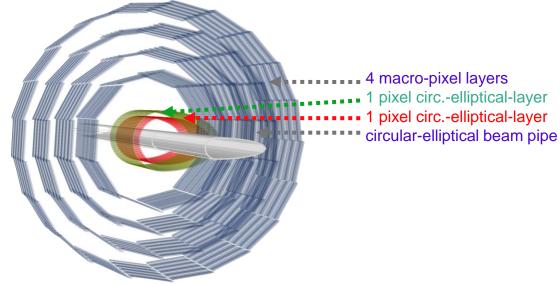

Most demanding: forward detectors

Central tracker extension for FCC-eh


- More layers in Forward / Backward
 - 6m (LHeC) to 9.2m in length, rapidity coverage $5.3 \rightarrow 5.6$
 - # of forward disk: $4 \rightarrow 7$ or 8
- Planar (cost) and inclined (performance) options being considered
 - Inclined option: < 10% of X_0 achieved all over
- Area of rapid development:
 the final design would be further optimised




Overall length 9.2m, Radius 84cm



Barrel sensors and beampipe (version LHeC)

- Elliptical beampipe to accommodate synchrotron radiation fan
- Innermost layers are bent (developed for ALICE)

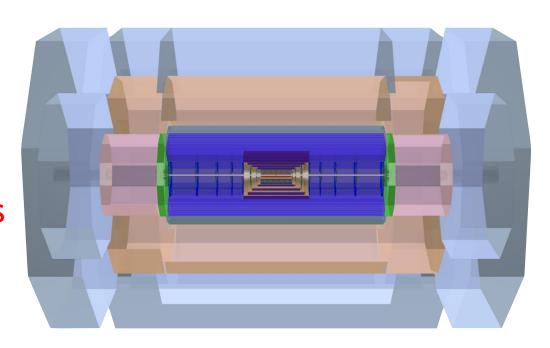
Efforts from DRDS 8.3 (ultra-light stable high precision mechanics, Machine-detector interfaces) should be persued

Detector challenges for FCC-eh

The 2021 ECFA Detector Research and Development Roadmap Fig. 3.1 (for solid state det.)

Officially the detector is thought to be relatively "easy"

- cross section 1/1000 of pp collisions: radiation ~ lower by > 2 digits
- almost no pile-up

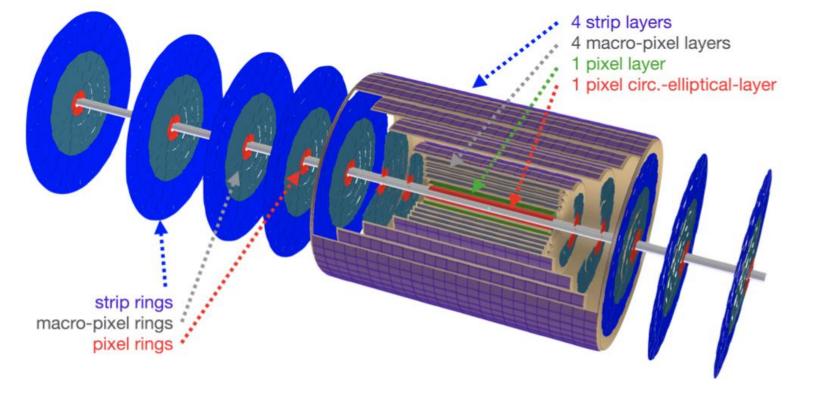

But there are many points of improving, worth joint efforts with ee/hh teams

- New development on mechanics & MDI
- Better resolution for jets by barrel Calo: CC precision
- Imaging calorimeter for backward (e/π separation), forward (energy flow for $\eta > 3$)
- Targeting track resolution at $5\mu m$ or better, also in as forward region as much
- Tracker closer to the beam pipe, with secondary vacuum vessel
- Rad-hard technology for very forward detectors e.g. Zero-degree Calo (50 TeV neutrons)
- •

hh collisions at the FCC-eh IP

- The eh detector is optimised for precision measurement
- low-pileup pp collisions for precision SM physics at the FCC-eh IP may perform better
 - with higher acceptance to lower p_T (moderate B field)
 - with high- η detectors chosen for precision rather than radiation
 - ... and detectors will be better calibrated through DIS events
- Physics from pp at the FCC-eh detector
 - QCD measurements with calibrated detector are interesting
 - EW and top measurements:
 maybe not much items left after FCC-ee and eh runs?
 There may well be benefits in ep: to be studied.

A symmetrized LHeC detector


Summary

- A short review on DIS kinematics and detector challenges for FCC-eh
 - Most requirements quite similar to that for LHeC
 - Forward detectors are more demanding
- A version of the FCC-eh baseline detector
 - extension of the LHeC detector, which performs well also for FCC-eh
- The detector does not have to be ready today
 - more ambitious options for precision e.g. E resolution, calorimeter imaging, low- X_0 tracker, timing and PID ...
 - and with less impact to environment: reduced cost, power consumption ...

BACKUP

Detector design studies for LHeC and FCC-eh

- Detector designs for future highest-energy ep/eA colliders
 - very detailed studies in LHeC CDR 2012 LHeC Study Group, 2012 J. Phys. G: Nucl. Part. Phys. 39 075001
 - for FCC-eh detector in FCC CDR vol. 3 EPJ Special Topics 228, 755-1107(2019)
- CDR update in 2020 (P Agostini et al 2021 J. Phys. G: Nucl. Part. Phys. 48 110501) motivated by:
 - Accelerator design optimisation (ERL $60 \rightarrow 50$ GeV, higher lumi etc.)
 - Physics (e.g. Higgs), technology advancement + variation
 - Low-E FCC-eh detector design also presented
- OFFSHELL-2021 The virtual HEP conference on Run4@LHC
 - Accepted as a contribution with a reviewed paper, published in EPJC <u>Eur.Phys.J.C 82 (2022) 1, 40</u>
 - Extension to hh collisions discussed
- Further development in IP design in 2021/2022 for concurrent eh/hh operation

Inner Tracker

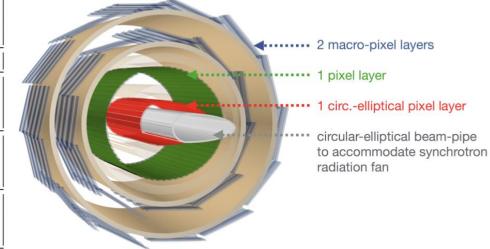
Rapidity to ~5

 $r_0 = 60 \text{ cm}$

impact resolution 5-10 μm

40.7 m² Si

LHeC Trackers


 $\begin{array}{ll} \eta_{\rm max}, \eta_{\rm min} \\ {\rm Wheels} \\ {\rm Modules/Sensors} \\ {\rm Total~Si~area} & [{\rm m}^2] \\ {\rm Read-out-Channels} & [10^6] \\ {\rm pitch}^{r-\phi} & [\mu{\rm m}] \\ {\rm pitch}^z & [\mu{\rm m}] \end{array}$

[%] [%]

Average X_0/Λ_I

incl. beam pipe

LHeC Tracker Part	$\mid \mid \eta_{ ext{max}}$	η_{min}	#Layers _{Barrel}
$\begin{array}{c c} & \text{pix} \\ \textbf{Inner Barrel} & \text{pix}_{\text{macro}} \\ & \text{strip} \end{array}$	3.3 2. 1.3	-3.3 -2. -1.3	$\begin{bmatrix} 2\\4\\4 \end{bmatrix}$
			#Rings _{Wheels}
$\begin{array}{c c} & & \text{pix} \\ \textbf{End Caps} & \text{pix}_{macro} \\ & & \text{strip} \end{array}$	4.1/-1.1 2.3/-1.4 2./-0.7	1.1/-4.1 1.4/-2.3 0.7/-2.	2 1 1-4
$\begin{array}{c} \text{pix} \\ \textbf{Fwd Tracker} \ \text{pix}_{\text{macro}} \\ \text{strip} \end{array}$	5.2 3.4 3.1	2.6 2.2 1.4	2 1 4
$\begin{array}{c} & \text{pix} \\ \textbf{Bwd Tracker} \ \text{pix}_{\text{macro}} \\ \text{strip} \end{array}$	-2.6 -2.2 -1.4	-4.6 -2.9 -2.5	2 1 4
Total $\eta_{ m max/min}$	5.2	-4.6	

Electromagnetic Calorimeter

Barrel Calorimeters

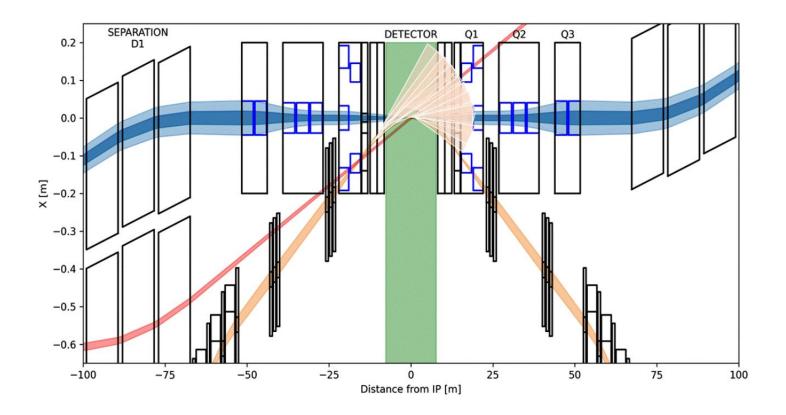
Calo (LHeC)	EMC	HCAL		
	Barrel	Ecap Fwd	Barrel	Ecap Bwd
Readout, Absorber	Sci,Pb	Sci,Fe	Sci,Fe	Sci,Fe
Layers	38	58	45	50
Integral Absorber Thickness [cm]	16.7	134.0	119.0	115.5
$\eta_{\mathrm{max}},\eta_{\mathrm{min}}$	2.4, -1.9	1.9, 1.0	1.6, -1.1	-1.5, -0.6
$\sigma_E/E = a/\sqrt{E} \oplus b$ [%]	12.4/1.9	46.5/3.8	48.23/5.6	51.7/4.3
Λ_I / X_0	$X_0 = 30.2$	$\Lambda_I = 8.2$	$\Lambda_I = 8.3$	$\Lambda_I = 7.1$
Total area Sci [m ²]	1174	1403	3853	1209

LHeC Calorimeters

Complete coverage to +- 5 in (pseudo)rapidity

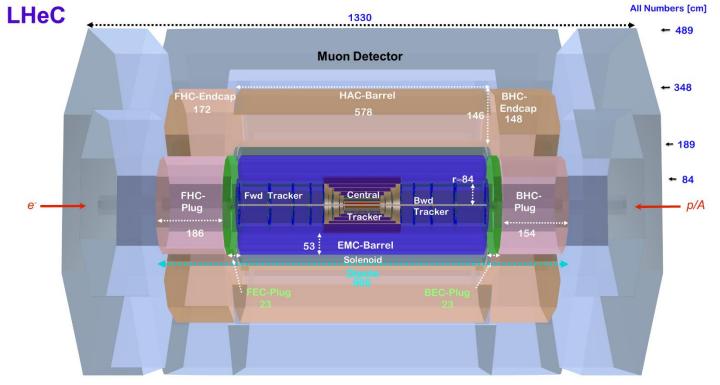
Central Region: 2012: LAr, 2020 Sci/Fe option.

Forward Region: dense, high energy jets of few TeV

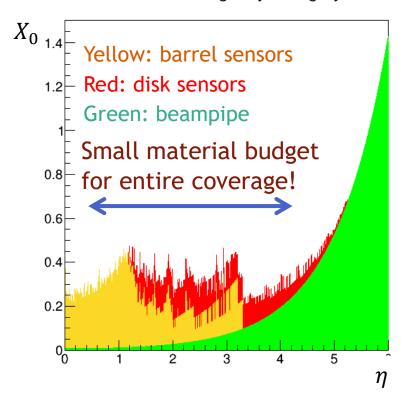

H → bb and other reactions demand resolution of HFS

Backward Region: in DIS only deposits of E < E_e

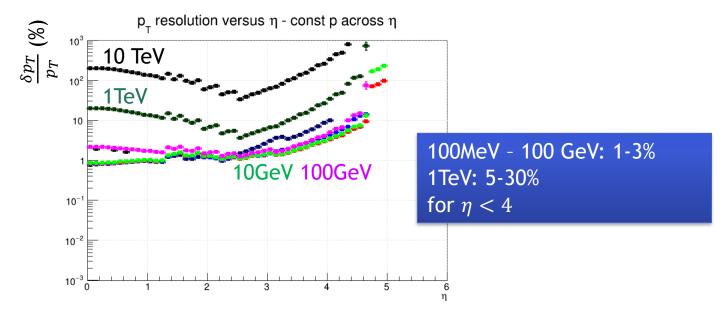
Forward/Backward Calorimeters


Calo (LHeC)	FHC Plug Fwd	FEC Plug Fwd	$\begin{array}{c} \operatorname{BEC} \\ \operatorname{Plug} \operatorname{Bwd} \end{array}$	BHC Plug Bwd
Readout, Absorber	Si,W	Si,W	Si,Pb	Si,Cu
Layers	300	49	49	165
Integral Absorber Thickness [cm]	156.0	17.0	17.1	137.5
$\eta_{ m max},\eta_{ m min}$	5.5, 1.9	5.1, 2.0	-1.4, -4.5	-1.4, -5.0
$\sigma_E/E = a/\sqrt{E} \oplus b$ [%]	51.8/5.4	17.8/1.4	14.4/2.8	49.5/7.9
Λ_I/X_0	$\Lambda_I = 9.6$	$X_0 = 48.8$	$X_0 = 30.9$	$\Lambda_I = 9.2$
Total area Si [m ²]	1354	187	187	745

arXiv:2007.14491


Radiation environment

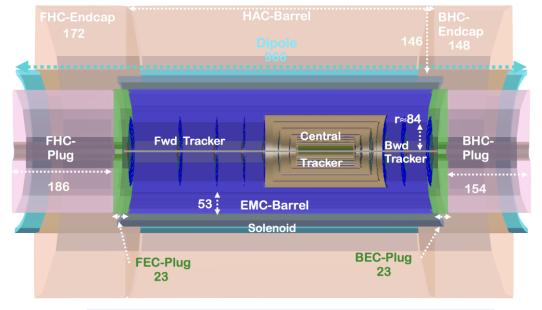
- The luminosity: similar to LHC $(0(10^{34} \text{ cm}^{-2} \text{s}^{-1}))$
- Total cross section: < 1/200
- → Expected # of interactions / second: 1/1000 of the LHC pp
 - # of pileups per bunch $\langle \mu \rangle \simeq 0.1$ No need for pile-up correction Can use PFA and calorimeter variables without correction (e.g. missing p_T , rapidity gap...)
 - # of integrated dose in forward region $\ll 10^{14}~1 {\rm MeV}~n_{eq}$
- LHeC detector technology is based on HL-LHC upgrade, but
 - that developed for less severe environment (e.g. ILC) is also applicable
 - More aggressive options for performance and price can be used
 e.g. very thin Si detector with integrated readout

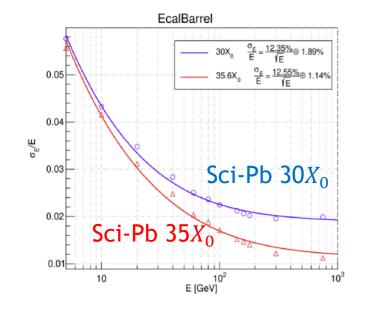


Central tracker: performance

Radiation Length by Category

- Possible further improvements
 - backward beam pipe with smaller diameter (SR fan thinner there)
 - innermost layer in vacuum?




Calorimetry

- High-performance barrel ($|\eta| < 2.8$)
 - Baseline: LAr EM inside solenoid with shared cryostat
 - R&D ongoing to make the barrel layer thinner, also cryostat (goal: a few % of X_0)
 - Plastic scintillator for good e/h for HadCal
- Fine-segmented plugs with compact shower with Si sensor
 - technology developed for ILC / FCC-ee
- "warm" option
 - Sci-Pb → modular (easy install inside the L3 magnet)
 - Comparable performance: LAr still advantageous for resolution, segmentation, radiation stability

Baseline configuration		η coverage	angular coverage	
EM barrel + small η endcap	LAr	$-2.3 < \eta < 2.8$	$6.6^{\circ} - 168.9^{\circ}$	
Had barrel+Ecap	Sci-Fe	(~ behind EM barrel)		
EM+Had very forward	Si-W	$2.8 < \eta < 5.5$ $0.48^{\circ} -$		
EM+Had very backward	Si-Pb	$-2.3 < \eta < -4.8$	-179.1°	

LAr (~25 X_0) 8.47/ $\sqrt{E} \oplus 0.32\%$ Sci-Pb (30 X_0) 12.55/ $\sqrt{E} \oplus 1.89\%$

Calorimeter extension for HE-LHeC / FCC-eh

- Solenoid and dipole outside barrel EM calorimeter, similarly as LHeC
- Endcap plugs should be thicker by order of a few Λ_I for $7 \rightarrow 20 \rightarrow 50$ TeV steps
 - 9.6 →12.7 Λ_I (forward endcap) for 7 → 20 TeV
- Challenging: shower separation in very forward rapidity regions

ALICE FoCal pixel ALPIDE (MAPS) test beam data (from FoCAL TDR CERN-LHCC-2020-009)

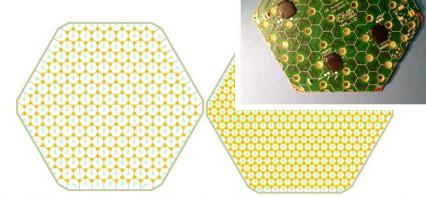


Figure 2.4: Drawing of hexagonal 8" silicon wafers, with layout of large, 1.18 cm², sensor cells (left), and small, 0.52 cm², cells (right).

CMS HGCAL 6-inch module cell size 1.18/0.52 cm² (from TDR)

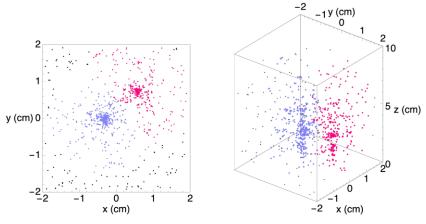
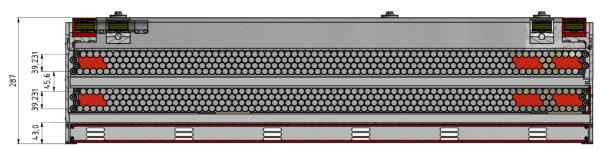
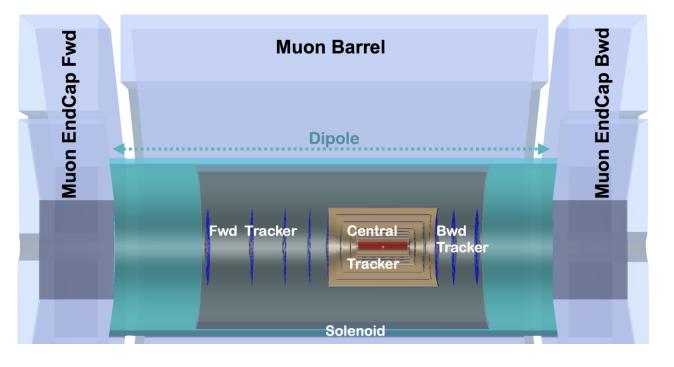
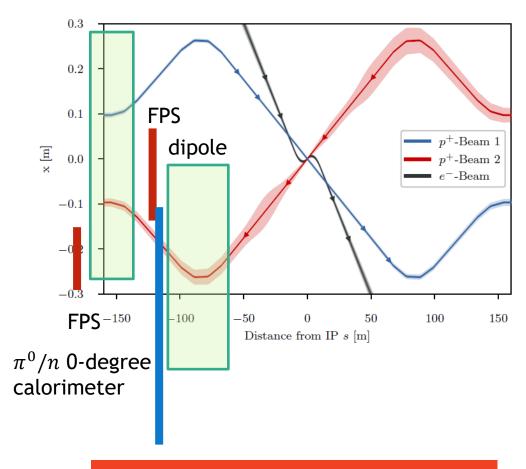




Fig. 54: Different projections of a single-event measurement (hit pixels) of two electrons of $E = 5.4 \,\text{GeV}$ from a test beam in the pixel prototype. The left panel shows the transverse distribution summing longitudinally over all layers, the right panel shows a side view of the same event. The hits that are within 15 mm of either of the two shower centers are colored in blue and red; the black points indicate hits that are further from the shower center.

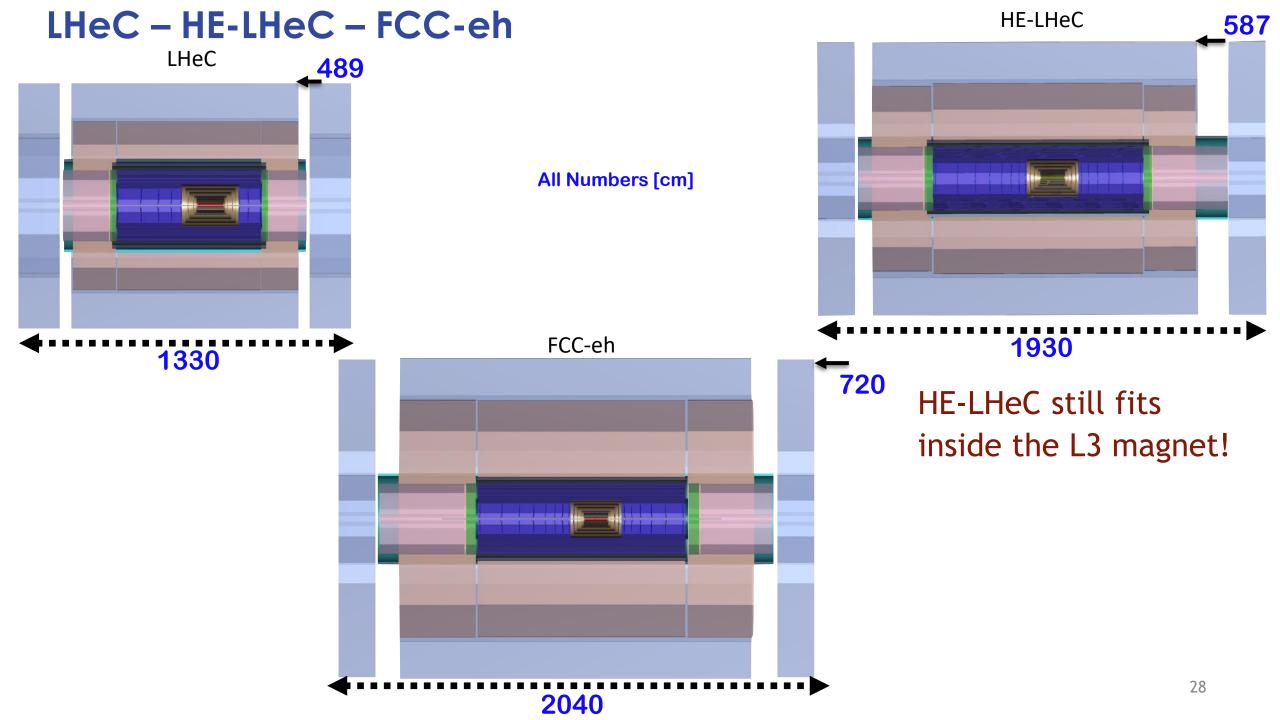
Muon system

- Baseline: no dedicated magnetic field (solenoid return thru iron only)
 - Momentum by central tracker
 - Good tagging + fast trigger
 - 3-stations, each with \geq double layer
- HL-LHC technology serves for that
 - Very thin RPC (1mm gas gap) for higher rate capability and timing (<1ns)
 - sMDT: $\phi = 1.5$ cm drift tubes for precise position measurement
- Possible extensions
 - Dedicated forward toroid or outer solenoid

ATLAS Phase-I RPC-MDT assembly

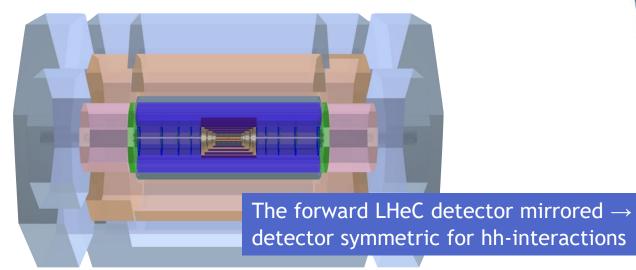

sMDT Multilayer 2

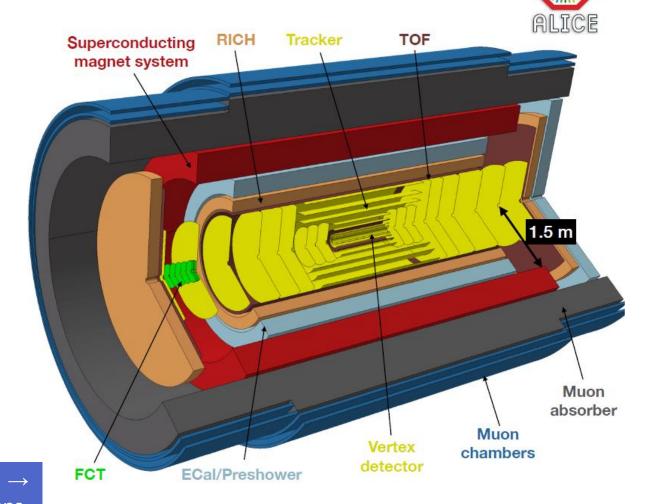
sMDT Multilayer 1


thin-RPC Triplet

Around zero-degrees

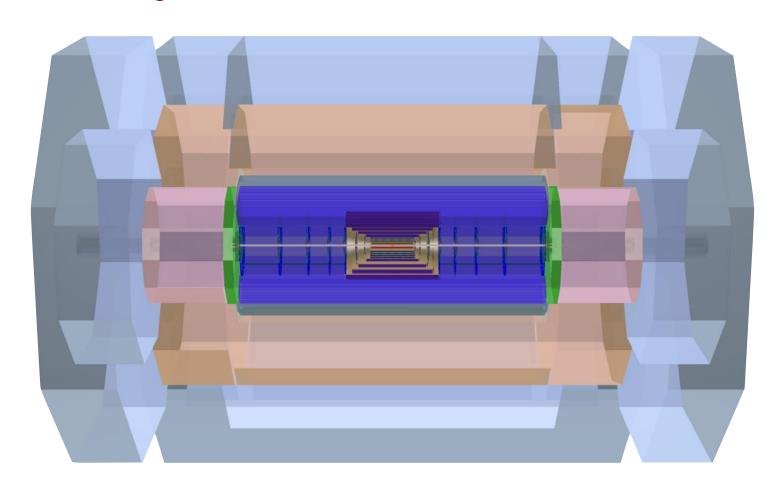
- Backward e tagger + photon tagger
 - for photoproduction and luminosity $(ep \rightarrow ep\gamma)$
- Forward Proton spectrometer following the LHC design apart from stations close to IP
- IP design (eh-only scheme 2020) allows to place a ZDC
 - Transvers size ± 30 cm: shower leak moderate
 - Aperture very big: 0.35 mrad or 2.4 GeV in p_T
- ZDC Technology candidate: Si-W
 - Need < 1mm resolution for p_T resolution \ll 100 MeV for 7 TeV neutron i.e. very fine segmentation (e.g. ALICE FoCal)
 - Radiation dose: O(10MGy) or more
 - Much less than LHC, possibility to use silicon


IP design 2020 and the candidate places for forward detectors


Running the LHeC detector for hh collisions

The LHeC detector is very similar to:

- the general purpose LHC detectors
 - covering beyond $|\eta| < 5$
 - even more if symmetrised
- ... and the proposed ALICE3 detector
 - the tracker under similar concept
 - even more if adding outer subsystems
 - TOF also desired for LHeC



from https://indico.cern.ch/event/1063724/, talk "ALICE 3 overview" by M. van Leeuwen

The symmetrised LHeC

- Barrel tracker enlarged (already in baseline LHeC detector)
- Bonus: more acceptance to small angle for electron
 - for low-Q² / low-x

