

EXPERIMENTAL OVERVIEW ON MC EVENT GENERATORS (AND A BIT OF RESUMMATION)

PARTON SHOWERS AND RESUMMATION 2023

ОСТ. 6^{тн}, 2022

SIMONE AMOROSO (DESY)

MONTE CARLOS BEFORE THE LHC

LO+PS State-of-the-art: Alpgen/Madgraph +Pythia/Herwig

NLO+PS only appearing in those years

Can we even use MC?

Strong push for data-driven methods for backgrounds

STANDARD MODEL AT THE LHC: THEN

Standard Model Production Cross Section Measurements

10% precision for top, Higgs, dibosons

- %-level precision for DY
- Thanks to established LO/NLO automation and NLO-merging techniques

EXOT-2016-38

HOW WELL DO MC GENERATOR WORKS ?

THE LHC:	
Particle	
Higgs boson	7.7 ו
Top quark	275
Single top quark	50 r
Z boson	2.8
W boson	12
Bottom quark	~40

VERYTHING FACTORY"

Produced in 139 fb⁻¹ at $\sqrt{s} = 13$ TeV

millions	
millions	
millions	
billions	290 millions leptonic
billions	3.7 billions leptonic
trillions	

From A. Hoecker @ EPS 2019

STANDARD MODEL AT THE LHC: NOW

Standard Model Production Cross Section Measurements

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-009/

%-level measurements of Higgs, VV, top and %% precision on W, Z

Many first measurements of high-multiplicity processes

Refined NLOPS and first **NNLOPS** simulations

Precision is the new LHC buzzword

GENERATORS USAGE IN ATLAS/CMS - 2015/16

number of samples by generator

based on Run-2 MC campaign for 2016 data

CMS

based on Run-2 MC campaign for 2015 data

ATLAS

number of events by generator

GENERATORS USAGE IN CMS - 2023

THE Z-BOSON TRANSVERSE MOMENTUM

The Z boson transverse momentum is a special observable for LHC physics

- Purely leptonic quantity, can be measured with the highest accuracy

- No QCD radiation from the final state
- Ideal benchmark and testing ground for highest accuracy calculations

ATLAS FULL PHASE-SPACE Z P_T at 8 TeV

ATLAS-CONF-2023-013

- Angular coefficients decomposition to avoid lepton fiducial cuts
- %-level precision on normalized cross-section
- Well described by (many) analytic resummations of $log(q_T/m)$

Z PT AND STRONG COUPLING EXTRACTION

The position of the Sudakov peak can be used for a precision extraction of the strong coupling

$\alpha_s(m_Z) = 0.11828^{+0.00084}_{-0.00088}$

DYTURBO N4LL matched to MCFM $o(\alpha_s^3)$

Largest uncertainties from PDFs and MHO

Experimental uncertainty	+0.00044	-0.00044
PDF uncertainty	+0.00051	-0.00051
Scale variations uncertainties	+0.00042	-0.00042
Matching to fixed order	0	-0.00008
Non-perturbative model	+0.00012	-0.00020
Flavour model	+0.00021	-0.00029
QED ISR	+0.00014	-0.00014
N4LL approximation	+0.00004	-0.00004
Total	+0.00084	-0.00088

ATLAS-CONF-2023-015

W BOSON PT AND THE W-MASS

- 2 permill shift in lepton p_T corresponds to ~10 MeV in m_W

p_T [GeV]

W-mass measurement at LHC sensitive to the description of the W boson p_T

EXTRAPOLATING P_T FROM Z TO W $p_T^W = R_{W/Z} \cdot p_T^Z$ ² ^{1.04} ^β 1.03 **ATLAS** Simulation LHCb 1.7 fb^{-1} $\sqrt{s}=7$ TeV, pp $\rightarrow W^{\pm}+X$, pp $\rightarrow Z+X$ After fit Data 1.02 Δm_w~ 9 MeV POWHEGPYTHIA (ref.) HERWIG 1.01 **POWHEGHERWIG** PYTHIACT09MCS PYTHIANNPDF31 DYTURBO 0.99 0.98 $---\mu_{F}$ ---- LO PDF W⁺ — Total W⁺ --- m_c --- LO PDF W⁻ — Total W⁻ 0.97

0.96[□]

5

10

Exploit the well measured $Z p_T$ to get the best possible description of W p_T

LHCb-PAPER-2021-024

Crucial to estimate residual effects which decorrelate between W and Z

Model for Z p_T from fitting a flexible MC prediction (Pythia8, Resbos, ...) to data

15

20

STDM-2014-18

25

30

35

p^{w,z} [GeV]

40

HIGHER ORDER MODELS

Only Pythia, Herwig and Powheg gave a W/Z p_T ratio in agreement with data

ATLAS 5/13 TEV W (AND Z) P_T WITH LOW PILE-UP DATA

- 1-2% experimental precision in 7 GeV bins
- None of the considered prediction describes all distributions

Essential to validate future p_T models for W-boson mass

Test of new NNLOPS simulations and of log(q_T/m) behavior

THE Z PT AT NNLOPS

<u>SMP-20-003</u>

NNLOPS FOR DIBOSONS

NNLOPS FOR HEAVY QUARKS

Finally fixing the (mis)modeling of the top quark p_T at NLOPS

TOP-20-006

NNLOPS FOR HEAVY QUARKS

HOW NARROW A WIDTH IS ENOUGH?

Fully off-shell matched calculations being benchmarked by experiments

Matching at NLD QCD + EW

- At the level at which we start worrying about NNLO QCD effects, we also cannot ignore NLO EW
- QED initial and final-state radiation already included with showers/Photos (sufficient?)
- NLO QCD+EW matching to showers available in Powheg for selected processes Possibly still needs optimizations, alternative codes would be welcome
- How far are we from NNLO QCD + NLO EW + PS ?

EW SUDAKOV CORRECTIONS

- Electroweak Sudakovs important at high energy (reach negative tens of percent)
- Sherpa allows for them to be included in an approximated approach within its MEPS@NLO QCD merging
- Additive, multiplicative or exponentiated prescription to evaluate uncertainties
- Conveniently available as weights on top of the QCD-merged prediction

ARE MASS EFFECTS UNDER CONTROL?

- Sherpa FONLL-like merging of 4FS/5FS ME used in new ATLAS samples of $DY/t\bar{t}$

Heavy Flavors important contribution to DY,H p_T and background to i.e. $h \rightarrow bb$ Modelled with MC with massless quarks, as shower contribution not small CMS, 8 TeV, Z boson p_{\perp} , at least one *b*-jet

UNCERTAINTIES

- A prediction is only as good as its uncertainty
- Need to incorporate uncertainties on theoretical predictions in the likelihood
- Often just propagate (and fit) scales as if they were physical parameters
- Can lead to very wrong results
- No clear solution, but any progress would be welcome

MHD UNCERTAINTIES - RESUMMATION

- Use known structure of resummation at higher orders to parametrise it in terms of nuisance parameters giving rise to a pattern of correlations
- Size of these nuisance parameters ambiguous, but not important if they are constrained by data

MHO UNCERTAINTIES - PARTON SHOWER

- independently the each DGLAP splitting as well as non-singular terms
- can provide a more realistic correlation model in likelihood analysis

Pythia8 allows for a similar decomposition into nuisance parameters by varying

CMS now propagates these weights in all Pythia MC samples such that they

HADRONISATION IN JET MEASUREMENTS

- Jet energy measurements depend on the simulated hadron content of jets
- 1-2% differences depending on the hadronisation model
- Differences mostly from Kaon and Baryon fractions

- One of the largest sources of jet energy uncertainties, unclear if can be reduced by further tuning

COMPUTING ASPECTS

- We don't just need better generators, we also need to run them at scale
- Public, fast, scalable
- Small fraction of negative weighted events
- Fast and efficient reweighting at least for scale and PDF variations
- Simple and efficient biasing in phase space (to populate tails)
- Support for heterogeneous computing (?)

dσ / dmax(H_T,p^V) [pb / GeV] Sherpa 2.2.1 10^{7} ATLAS Generator Level Sliced set-up $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 10^{6} $pp \rightarrow ee + jets$ Sherpa 2.2.11 Differential enh. + Cross-section 10⁴ Sherpa 2.2.11 Analytic enh. 10² 10^{-2} 10^{-4} 10 $\frac{s_w^2}{\langle w \rangle^2}$ 3 Fraction of legative weights 0.3 0.2 400 600 200 800 1000 1200 1400 0 $max(H_T,p_T^V)$ [GeV]

PMGR-2021-01

HL-LHC COMPUTATIONAL CHALLENGES

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

SUMMARY

- And many still need to propagate to the experiments
- Enormous progress on the hard process calculations, for the future we will need to match it for the remaining bits N3LOPS for selected processes: Drell-Yan, Higgs, top(?)
 - Uncertainties, uncertainties, uncertainties, ...

Last 15 years have seen huge progress in Monte Carlo event generators From LOPS to NLOPS (including off-shell and EW matching) and now NNLOPS

These developments have been/are essential for the LHC physics program

Better shower accuracy/control, mass effects treatment, non-perturbative models

