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Figure 3: Determination of Us (</ ) at various different orders in the QCD perturbative expansion, using the MSHT20
PDF set. The filled area represents missing higher order uncertainties estimated through scale variations, the vertical
error bars include experimental and PDF uncertainties.

Table 1: Summary of the uncertainties for the determination of Us (</ ).

Experimental uncertainty +0.00044 -0.00044
PDF uncertainty +0.00051 -0.00051

Scale variations uncertainties +0.00042 -0.00042
Matching to fixed order 0 -0.00008
Non-perturbative model +0.00012 -0.00020

Flavour model +0.00021 -0.00029
QED ISR +0.00014 -0.00014

N4LL approximation +0.00004 -0.00004

Total +0.00084 -0.00088

quoted uncertainty. The inclusion of NLO electroweak corrections yields a shift on Us(</ ) of +0.00006,
uncertainties related to missing electroweak higher orders are considered negligible.

Uncertainties related to the numerical approximation or the incomplete knowledge of some of the coefficients
required for N4LL accuracy of ?T-resummation are estimated to contribute at the level of ±0.00004, with
the largest contribution coming from the numerical approximation of the cusp anomalous dimension at
five loops [39], and from the incomplete knowledge of the hard-collinear contributions at four loops [42].
Uncertainties due to the numerical approximation of the four loop splitting functions are already included
in the MSHT20 PDF uncertainties.

A summary of the uncertainties in the determination of Us(</ ) is shown in Table 1.

The goodness of fit is assessed by computing the value of the j
2 function with the theory predictions
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I will not present a historical introduction to the field (please see Andrea Banfi’s 
Mount Rushmor of resummation from last year!) … 

… but let me note that Italy is the motherland of resummation (and Milano its 
hometown)!
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Outline
1) αs from event shapes in e+e− 

• hadronization effects in the three-jet region 

• Sudakov shoulders 

2) energy-energy correlators  

3) αs from transverse momentum spectrum in pp → Z +X 

4) non-global observables 

• subleading non-global logarithms (NGLs) 

• superleading logarithms (SLLs)
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αs from event shapes in e+e− 



A long-standing discrepancy
N3LL + NNLO computations 
with hadronization corrections 
determined from fit to data a 
precise values of αs  ~4σ lower 
than world average. 

Fitted hadronization corrections 
are sizable and larger than 
hadronization models of parton 
shower MCs.
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FIG. 44: Summary of determinations of ↵S(m
2

Z) from seven subfields. The yellow (light shaded) bands and dotted lines
indicate the pre-average values of each subfield. The dashed line and blue (dark shaded) band represent the final ↵S(m

2

Z)

world average [March’22 update of the PDG’21 results [1]].

lower values, and would allow one to quote a reduced theoretical uncertainty since this additional source of
uncertainty would be completely removed. Further improvements could come from a better understanding of
nonperturbative effects. Some progress is also likely to come in the category e+e� jets & shapes where the
calculation of power corrections in the 3-jet region [393, 394] could have a sizeable impact, and improve fits of
the coupling from event shapes. In fact, the region used in the fits are dominated by events with an additional
hard emission, therefore the applicability of nonperturbative power corrections computed in the two-jet limit
has been questioned and a treatment of these corrections in the three-jet region is certainly more appropriate.
The impact of this on ↵S(m2

Z) in this category has still to be assessed. For the hadron collider category it is an
open discussion how to deal with correlations between PDF parameters and ↵S(m2

Z) in the cases, where a full
fit is not performed simultaneously. In view of many more NNLO results to come we can expect some advances
here. Particularly, NNLO for 3-jet production will enable to perform fits of ↵S(m2

Z) from ratios with at least
partial cancellation of some uncertainties. Some doubts were raised whether this reduction in uncertainty also
holds for the PDF dependence of such ratio predictions. Moreover, for predictions of ratios of cross sections, the
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Renormalon corrections and !s

We have estimates of the effects of the shape function and renormalon corrections from prior 
analyses:
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order ↵s(mZ) (with ⌦1) ↵s(mZ) (with ⌦1(R�, µ�))

NLL0 0.1071(60)(05) 0.1059(62)(05)

N2LL0 0.1102(32)(06) 0.1100(33)(06)

N3LL0 (full) 0.1117(16)(06) 0.1123(14)(06)

TABLE IV. Central values for ↵s(mZ) at various orders with
theory uncertainties from the parameter scan (first value
in parentheses), and experimental and hadronic uncertainty
added in quadrature (second value in parentheses). The bold
N3LL0 value is our final result.

B. Perturbative Uncertainty from the Scan

To examine the robustness of our method of determin-
ing the perturbative uncertainty by the random scan, we
consider the convergence and overlap of the results at
di↵erent perturbative orders. Fig. 5 shows the spread of
best-fit values at NLL0, N2LL0 and N3LL0. The left panel,
Fig. 5(a), shows results from fits performed in the Rgap
scheme, which implements a renormalon subtraction for
⌦1, and the right-panel, Fig. 5(b), shows results in the
MS scheme without renormalon subtractions. Each point
in the plot represents the outcome of a single fit, and dif-
ferent colors correspond to di↵erent orders in perturba-
tion theory. Not unexpectedly, fits in the Rgap scheme
show generally smaller theory uncertainties.

In order to estimate correlations induced by theoreti-
cal uncertainties, each ellipse in the ↵s-2⌦1 plane is con-
structed following the procedure discussed in Sec. IV.
Each theory ellipse constructed in this manner is inter-
preted as an estimate for the 1-� theoretical uncertainty
ellipse for each individual parameter (39% confidence for
the two parameters), and is represented by a dashed el-
lipse in Fig. 5. The solid lines represent the combined
(theoretical plus experimental) standard uncertainty el-
lipses at 39% confidence for two parameters, obtained
by adding the theoretical and experimental error matri-
ces from the individual ellipses, where the experimental
ellipse corresponds to ��

2 = 1. Fig. 5 clearly shows
a substantial reduction of the perturbative uncertainties
when increasing the resummation accuracy, and given
that they are 39% confidence regions for two parameters,
also show good overlap between the results at di↵erent
orders.

The results for ↵s(mZ) and ⌦1 from the theory scan at
di↵erent perturbative orders are collected in Tabs IV and
V. Central values here are determined from the average
of the maximal and minimal values of the theory scan,
and are very close to the central values obtained when
running with our default parameters. The quoted per-
turbative uncertainties are one-parameter uncertainties.

In Tab. III above we also present ↵s(mZ) results with
no power corrections and either using resummation or
fixed-order perturbative results. Without power correc-
tions there is no fit for ⌦1, so we take the central value
to be the average of the maximum and minimum value
of ↵s(mZ) that comes from our parameter scan. Our

order ⌦1 [GeV] ⌦1(R�, µ�) [GeV]

NLL0 0.533(154)(18) 0.582(134)(16)

N2LL0 0.443(119)(19) 0.457(83)(19)

N3LL0 (full) 0.384(91)(20) 0.421(60)(20)

TABLE V. Central values for ⌦1 at the reference scales
R� = µ� = 2GeV and for ⌦1 and at various orders. The
parentheses show theory uncertainties from the parameter
scan, and experimental and hadronic uncertainty added in
quadrature, respectively. The bold N3LL0 value is our final
result.

estimate of the uncertainty is given by the di↵erence be-
tween our result and the maximum fit value. For the
fixed order case, since there is only one renormalization
scale, we know that the uncertainties from our parame-

ter variation for eH , s
eC
2 , ✏

low
2 and ✏

low
3 are uncorrelated.

So, we take the fit value for ↵s(mZ) with the default
parameters as our result and add the uncertainties from
variations of these parameter in quadrature to give the
total uncertainty.
An additional attractive result of our fits is that the ex-

perimental data is better described when increasing the
order of the resummation and fixed-order terms. This
can be seen by looking at the minimal �

2
/dof values

for the best-fit points, which are shown in Fig. 5. In
Figs. 5(c) and 5(d) we show the distribution of �2

min/dof
values for the various ↵s(mZ) best-fit points. Figure 5(c)
displays the results in the Rgap scheme, whereas Fig. 5(d)
shows the results in the MS scheme. In both cases we
find that the �

2
min values systematically decrease with

increasing perturbative order. The highest-order analy-
sis in the MS scheme leads to �

2
min/dof values around

unity and thus providing an adequate description of the
whole dataset, however one also observes that account-
ing for the renormalon subtraction in the Rgap scheme
leads to a substantially improved theoretical description
having �

2
min/dof values below unity essentially for all

points in the random scan. Computing the average of
the �

2
min values we find at N3LL0 order for the Rgap

and MS schemes 0.988 and 1.004, respectively (where the
spread of values is smaller in the Rgap scheme). Likewise
for N2LL0 we find 1.00 and 1.02, and for NLL0 we find
1.09 and 1.14. These results show the excellent descrip-
tion of the experimental data for various center-of-mass
energies. They also validate the smaller theoretical un-
certainties obtained for ↵s and ⌦1 at N2LL0 and N3LL0

orders in the Rgap scheme.

C. Experimental Fit Uncertainty

Next we discuss in more detail the experimental un-
certainty in ↵s(mZ) and the hadronization parameter ⌦1

as well as the combination with the perturbative uncer-
tainty done to obtain the total uncertainty.
Results are depicted in Fig. 6 for our highest order
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FIG. 4. The evolution of the value of ↵s(mZ) adding components of the calculation. An additional ⇠ 8% uncertainty from not
including power corrections is not included in the left two points.

by ⇠ 50%. Due to this smaller perturbative uncertainty
it becomes clear that the theoretical cross section has
a di↵erent slope than the data, which can be seen, for
example, at Q = mZ for 0.27 < C < 0.35. This leads
to the increase in the �

2
/dof for the “N3LL0 no power

corr.” fit, and makes it quite obvious that power correc-
tions are needed. When the power correction parameter
⌦1 is included in the fit, shown by the third entry in
Tab. III and the result just to the right of the vertical
dashed line in Fig. 4, the �

2
/dof becomes 1.004 and this

issue is resolved. Furthermore, a reduction by ⇠ 50%
is achieved for the perturbative uncertainty in ↵s(mZ).
This reduction makes sense since some of the perturba-
tive uncertainty of the cross section is now absorbed in
⌦1, and a much better fit is achieved for any of the vari-
ations associated to estimating higher order corrections.
The addition of ⌦1 also caused the fit value of ↵s(mZ) to
drop by another 8%, consistent with our expectations for
the impact of power corrections and the estimate made in
Ref. [12]. Note that the error bars of the first two purely
perturbative determinations, shown at the left hand side
of the vertical thick dashed line in Fig. 4 and the last two
entries in Tab. III, do not include the ⇠ 8% uncertainties
associated with the lack of power corrections.

The remaining corrections we consider are the use of
the R-scheme for ⌦1 which includes the renormalon sub-
tractions, and the inclusion of the log-resummation ef-
fects associated to the hadron mass e↵ects. Both of these
corrections have a fairly small impact on the determi-
nation of ↵s(mZ), shifting the central value by +0.5%
and � 0.3% respectively. Since adding the � 0.3% shift
from the hadron mass corrections in quadrature with the
' 1.2% perturbative uncertainty does not change the
overall uncertainty we will use the R-scheme determi-

↵s(mZ) �2/dof

N3LL0 + hadron 0.1119(13)(06) 0.991

N3LL0 with ⌦1(R,µ) 0.1123(14)(06) 0.988

N3LL0 with ⌦1 0.1117(16)(06) 1.004

N3LL0 no power corr. 0.1219(28)(02) 2.091

O(↵3
s) fixed order

no power corr.
0.1317(52)(03) 1.486

TABLE III. Comparison of C-parameter tail fit results for
analyses when we add various components of the theoreti-
cal result (from the bottom to top). The first parentheses
gives the theory uncertainty, and the second is the experi-
mental and hadronic uncertainties added in quadrature for
the first three rows, and experimental uncertainty for the last
two rows.

nation for our main result. This avoids the need to fully
discuss the extra fit parameter ✓(R�, µ�) that appears
when hadron masses are included. Further discussion
of the experimental uncertainties and the perturbative
uncertainty from the random scan are given below in
Secs. VB and VD, and a more detailed discussion of
the impact of hadron-mass resummation is given below
in Sec. VE.

The values of ⌦1 obtained from the fits discussed above
can be directly compared to the ⌦1 power correction ob-
tained from the thrust distribution. Values for ⌦1 from
the C-parameter fits are given below in Secs. VB and VD
and the comparison with thrust is considered in Sec. VII.
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Hadronization effects are large ~ 9% !
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Event-shape distributions
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Figure 24: Left: The thrust distribution as measured by the ALEPH experiment at LEP I [218].
The inset shows the region relevant for the αs determination. Right: Sample collider events. The
two-jet configuration on the left has a large thrust T ≈ 0.98, while the multi-jet event on the right
has T ≈ 0.65 (note that a completely spherical event has T = 1/2). The red dashed line indicated
the thrust vector.

The classic example of an event-shape variable at e+e− colliders is the thrust T . To

obtain the thrust of an event one first finds the axis where most of the momentum of the

particles in the event flows. The thrust unit vector "nT points along this axis and the value

of T of an event is then given by the ratio of the momentum flowing along this axis over

the total momentum so that T = 1 corresponds to an event where all particles fly exactly

along the same direction. The precise definition reads

T =
1

Ptot
max
!nT

∑

i

|"nT · "pi| . (9.1)

The sum runs over all particles in the event and Ptot =
∑

i |"pi|. For massless particles Ptot

is equal to the center of mass energy Q of the collision. One immediately sees that the

thrust remains the same if one splits a given momentum "pi into two collinear momenta, or

emits an additional very soft particle: thrust is an infrared safe observable.

Thrust and a number of other event shapes have been measured with exquisite precision

by the LEP experiments at CERN. As an example, Figure 24 shows the thrust distribution

as measured by the ALEPH experiment at LEP [218]. One immediately observes that

most events have large thrust. This is not surprising: the lowest order in perturbation

theory consists of a back-to-back quark anti-quark pair and has T = 1. Contributions

which involve large-angle radiation are suppressed by the coupling constant αs. Most

events therefore consist of two narrow jets formed by the qq̄ pair and its accompanying

soft and collinear radiation. The typical mass of the jets at large thrust is M2
J ∼ Q2(1 −

T ) and perturbative corrections to the thrust distribution are enhanced by logarithms of

M2
J/Q

2 ∼ (1 − T ) which need to be resummed. One can analyze the two-jet region using

SCET and can derive a factorization theorem for the cross section; this quantity can be

written in terms of a hard function, two jet functions and a soft function [219–221]. Using

the RG methods we discussed in Section 6 the thrust distribution was resummed up to

N3LL accuracy in [222], two orders in logarithmic accuracy higher than what had been

achieved with traditional methods, and matched to NNLO fixed order results [223, 224].

– 111 –

⌧ ⇡ 0 ⌧ ⇡ 1/2

Thrust T = 1−τ measures momentum along thrust axis, broadening B 
transverse momentum, jet masses MH, MD measure invariant mass in 
hemispheres.
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• Peak region: strongly affected by hadronisation 
• Tail region: used in fit for αs, resummation + matching + fitted 

hadronisation 
• Far-tail region: strongly affected by higher-order QCD
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Resummation and treatment of hadronization are based on the 
factorization theorem 

  

obtained in the limit τ → 0.  

For values τ ≫ ΛQCD/Q  one can multipole expand Snp . In this limit 
hadronisation correponds to a shift of the perturbative distribution.

Factorization 

9

Γ(1)(ξ1, ξ2) = ΓC
1 (ξ1)δ(1 − ξ2) + δ(1 − ξ1)Γ

C
2 (ξ2) + δ(1 − ξ1) δ(1 − ξ2)Γ

S . (57)

ΓH ({n}, x1, x2, s, µ) =
αs

4π
Γ(1) =

αs

4π
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(58)

C4,10 =
〈

H4 (Γ
c)4ΓG(Γc)6 ΓG Γ⊗ 1

〉

, (59)

Cr,n =
〈

H4 (Γ
c)rΓG(Γc)n−r

ΓG Γ⊗ 1
〉

, (60)

Si(ni)Sj(nj) = Si(nP )Sj(nP ) = Si+j(nP ) . (61)

In [?] it was shown that this implies the following relation

Si+j(nP )Sp({pi, pj}) |Mm〉 = Sp({pi, pj})SP (nP ) |Mm〉 . (62)

1

τ

dσ

dτ
= H · J ⊗ J ⊗ S ⊗ Snp (63)
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Two or three jets?
• The αs fit region extends over the full three-jet region and it has been 

questioned (e.g. by Salam ‘17)  whether it is appropriate to use 
hadronization based on an analysis of the two-jet limit at higher values. 

• Perhaps the ``shift’’ depends on the values of τ and C.  

• New: analysis of hadronisation in 3-jet region 
• C-parameter in the symmetric 3-jet limit Luisoni, Monni, Salam ’20 
• General formula + analytic results for C and τ Caola, Ferrario Ravasio, 

Limatola, Melnikov, Nason ‘21+ Ozcelik ’22 
• Numerical evaluation for other event shapes + αs fit Nason, Zanderighi 

‘23

10



Hadronisation in the three-jet region

• Renormalon-type computation. A model, but based on QFT: 
• Power corrections identified will be present, but there could be other sources. 
• True hadronisation will be less universal than predicted by the model. 

• Caola et al. compute with photon instead of gluon in the final state 
• For hadronization associated purely with soft function (no recoil, no collinear 

contributions), one can reconstruct one-emission QCD result as sum of dipoles.
11
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Figure 4: An example of a virtual, a real gluon emission and a real qq̄ emission graph

contributing to the large-nf correction to the process �⇤ ! qq̄�. The right graph, with a

g ! qq̄ splitting, must be included, since the sum over final state quark flavour leads to a

factor of nf .

blob insertion in the gluon propagator represents the inclusion of all corrections given by

a fermion loop, as represented by the recursive graphic equation

= + . (A.2)

The linear power corrections arise in eq. (A.1) from the leading term in the small-�

expansion of ⌃(v;�), that leads to

⌃(v) ⇡ ⌃b(v)�


d⌃(v;�)

d�

�

�=0

8
<

:
1

b0,f↵s(µ)

Z µC

0

d�

⇡
arctan

⇡b0,f↵s(µ)

1 + b0,f↵s(µ) log
�2

µ2
C

9
=

; , (A.3)

where µC = µeC/2. The upper limit of integration is chosen for convenience, since the

renormalon structure arises from the region where the denominator in the arctangent van-

ishes, corresponding to the Landau pole. Thus, any upper limit comprising the Landau

pole is acceptable.

The renormalon structure of the expression in the curly bracket of eq. (A.3), according

to the result presented in appendix A of ref. [50], is

1

b0,f↵s(µ)

Z µC

0

d�

⇡
arctan

⇡b0,f↵s(µ)

1 + b0,f↵s(µ) log
�2

µ2
C

=

µC

b0,f↵s(µ)

2

4P
Z 1

0

dt

⇡

exp
⇣
�

t
2b0,f↵s(µ)

⌘

1� t
+ CNP

⇤QCD

µ

3

5+ analytic terms in ↵s(µ).

(A.4)

In the last term, ⇤QCD is the QCD (large-nf ) scale, defined by the equation

↵s(µ) =
1

b0,f log
µ2

⇤2
QCD

, (A.5)

so that

exp

✓
�

1

2b0,f↵s(µ)

◆
=

⇤QCD

µ
. (A.6)
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contributing to the large-nf correction to the process �⇤ ! qq̄�. The right graph, with a
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blob insertion in the gluon propagator represents the inclusion of all corrections given by

a fermion loop, as represented by the recursive graphic equation

= + . (A.2)
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where µC = µeC/2. The upper limit of integration is chosen for convenience, since the

renormalon structure arises from the region where the denominator in the arctangent van-

ishes, corresponding to the Landau pole. Thus, any upper limit comprising the Landau

pole is acceptable.

The renormalon structure of the expression in the curly bracket of eq. (A.3), according

to the result presented in appendix A of ref. [50], is
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In the last term, ⇤QCD is the QCD (large-nf ) scale, defined by the equation

↵s(µ) =
1

b0,f log
µ2
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, (A.5)

so that
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Hadronization results

• Hadronisation is implemented as an observable-dependent shift ζ  

• Naively: smaller shifts ζ than in the two-jet limit → larger αs . 

• Sidenote: jet masses show very abrupt transition at very low values 
12
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Figure 3: Same as fig. 1, but for the sum of all the dipoles, where each contribution is

supplemented with the proper colour factor, as in eq. (6.6). The grey shading shows the

region which is usually excluded from ↵s determinations [29].

factors, see ref. [30] for more detail. We write

�qq̄gNP(v) = h⇣qq̄g(v), ⇣qq̄g(v) = ⇣qq̄(v)
CF � CA/2

CF
+ ⇣qg(v)

CA

CF
, (6.6)

where we have assumed that the qg and q̄g dipoles contribute equally. In eq. (6.6), ⇣qq̄
is identical to the contribution of the qq̄-dipole correction considered in this paper. The

function ⇣qg is as ⇣qq̄ except that the gluon plays the role of an anti-quark. We note that

it follows that ⇣qg(0) = 1/2 [30] and, hence, ⇣qq̄g(0) = 1.

In order to get a more realistic prediction, the value of the constant h should be

corrected to include also the e↵ects of the gluon splitting into two gluons, as it is commonly

done in the dispersive model [21, 22, 43], but this is irrelevant for us since we only report

results for the ⇣ function.

We compare analytic and numerical results for ⇣qg in fig. 2. We observe that also in this

case the numerical result converges towards the analytic one, and that features discussed

in connection with fig. 1 are also present for the qg dipole. We note that it is evident from

fig. 2 that the numerical result for the qg dipole is less stable than the result for the qq̄

one, so that the availability of the analytic computation in this case is especially welcome.

6.2 Results for the C-parameter and the thrust in the three-jet region and

comparison with existing literature

Having validated the analytic result against the numerical ones of ref. [30], we can compare

our predictions to the results in the literature. In fig. 3, we show our prediction for ⇣qq̄g

for both the C-parameter (left) and the thrust (right) distributions using eq. (6.6). In

those figures the grey shaded areas show the kinematic regions that are typically excluded

from high-precision extractions of ↵s [29]. We observe that for both the C-parameter and

the thrust the shape of non-perturbative corrections in the bulk of the three-jet region is

non-trivial.

– 40 –

Caola et al. ’22; Nason, Zanderighi ‘23



Remarks
The implementation of hadronisation with shape function Snp is not the 
same as a simple shift. For the scheme used in the fit of Abbate et al. ’10 
one finds 

  

Shape is similar to new three-jet result. 

Universality of shift between τ and C parameter in two-jet limit is 
model independent Lee and Sterman ‘06. Universality in three-jet limit?   

13
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Distributional shifts at NNLL’ accuracy (central profile scales):

 Effective non-perturbative shifts
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Figure 10. Profile functions implemented in our resummation, shown for a = {≠1.0, ≠0.5, 0.0, 0.5}

and Q = mZ . Left: Band method. Right: Scan method. Each set of profiles µH,J,S actually has a
di�erent absolute vertical scale set by µH = eHQ, which has been rescaled for this illustration to
eH = 1. Also, for each individual set of scales, it is the case that µS < µJ , although the overall
bands from the scan overlap.
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Why does the effect grow as one moves toward the fixed-order regime?

from talk of Jim Talbert 
Bell, Lee, Makris, Prager, 
Talbert,Yan, in preparation  

τ

https://www.int.washington.edu/sites/default/files/schedule_session_files/Talbert_J.pdf


αs fit with 3-jet hadronisation
• Fit does not include resummation


• would lead to smaller αs 
• Strictly speaking, hadronisation 

computation does not apply to 3-
jet resolution y3 

• additional model assumptions 
• Find few per-cent differences 

among hadron mass schemes 
• Fit with other observables? BW, 

MH, MD ?
14

small di↵erences are not surprising since all the Monte Carlos we use are tuned to these

data. The choice of the fit range has an impact on the result of about one percent. This

confirms that the range chosen is such that the impact of the resummation is modest. The

choice of how to treat statistical correlations has also a similar impact, and confirms that

our minimal overlap approach provides a sensible description of the correlations. For y3,

the di↵erence between the two limiting cases (where soft emissions are always-clustered or

never-clustered) amounts also to about a one percent e↵ect on the full fit.

Finally, we note that if one fits ↵s and ↵0 from the three observables considered

separately, one tends to get a larger value of the strong coupling, but with very di↵erent

values of ↵0. Indeed, there is a tension in the fitted value of ↵0, where both thrust and C-

parameter prefer a lower value, while y3 prefers a higher one. When fitting all observables

at the same time, the overall e↵ect is that one finds an intermediate value for ↵0 and a

lower value of ↵s. The �2 of the fits remain excellent, which justifies a simultaneous fit.

The role of each variable in the common fit is illustrated in Fig. 5. As one can see, for C

 0
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 1.5

 2

 0.09  0.1  0.11  0.12  0.13  0.14  0.15

α 0

αs(MZ)

C
τ

y3
C+τ

C+τ+y3

Figure 5: Contours at ��2 = 1 for fitting, C, ⌧ and y3 individually, and then in the

combinations C + ⌧ and C + ⌧ + y3.

and ⌧ , ↵0 and ↵S are strongly anti-correlated, and with a similar anti-correlation. On the

other hand, y3 has a ⇣ function that is small and of opposite sign, and thus ↵0 and ↵S

are only weakly correlated. The combined fit is then strongly constrained leading to an

intermediate value of ↵0 and a smaller value of ↵s.

Altogether, we conclude by remarking that our fit results agree very well with the

world average. In particular, we do not find low values of ↵s for the thrust or C-parameter

which are included in the current PDG average [57]. However, our results also clearly show

that a fit of ↵s from event shapes with an overall uncertainty below the percent level seems

today not feasible. In particular, by changing certain choices that we have made, like the

central renormalization scale or the mass scheme, one can easily obtain higher values of

↵S .

– 24 –
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Figure 6: Central values and ��2 = 4 (dashes) and 1 (solid) contours for our default fit

of table 2 (blue) and the fit obtained with the ⇣2J functions, corresponding to the default

fit of table 4 (magenta).

of linear corrections to the total cross section leads us to conclude that the integral of the

above formula from v = 0 up to any finite value of v must be finite. In fact, if that was

not the case, such divergence could not be canceled when performing the integral in the

whole range of the shape variable. Thus the argument of ↵s must be taken equal to the

hard scale (that in this case is not quite Q, but is related to the typical transverse mo-

mentum of the perturbative gluon that sets the value of v). We have thus shown that the

singular contributions of the hard gluon (hard relative to the scale �) in the real emission

and virtual exchanges cancel each other also in the coe�cient of the linear term.

The argument given above also suggests a possible way to match the linear corrections

in the three-jet limit to those in the two-jet limit, that are entangled with resummation

e↵ects. If we recall that the two-jet limit of the functions ⇣(v) for C, ⌧ , M2
H and M2

D

approach the value ⇣2j, we could conclude that the part of the last term in the square

bracket of eq. (7.1) that is singular in the two jet limit must combine with the virtual

correction to yield a finite result. This combined result is precisely what one gets when

expanding in powers of ↵s the Sudakov form factor, including the shift for the two-jet non-

perturbative correction. Thus, it is tempting to conclude that the singular part of the last

term function should be combined with the resummation component of the cross section,

while only the regular part should be applied to the 3-jet region. It is unlikely, however,

that this approach will work for observables like M2
H and M2

D, since in their case the limiting

value is approached extremely slowly, and in the first case it has even opposite sign with

respect to the average value of the ⇣ function in the fit range. It is however reassuring to

see that if we restrict ourselves to regions far away the two-jet region, all shape variables

– 27 –

3-jet fit
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Nason, Zanderighi ‘23



Sudakov shoulders

At the 3-jet end-point, the thrust and heavy-jet-mass (HJM) distributions 
suffer from enhanced higher-order corrections, which can be resummed. 
Effect on αs extraction?

15

Thrust vs HJM
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Figure 11: The hadronisation correction as a function of the value of the variable at parton
level.

In [37] it has been pointed out that for the longitudinal fragmentation functions there
can also be corrections proportional to mb/Q associated with the decay of secondary heavy-
quarks produced from a soft gluon, though it is suggested that for today’s energies such a
behaviour may not yet have set in. The possibility of a similar contribution in event shapes
should be investigated.

D The heavy-jet mass

We observed in section 6 that even in a ‘proper’ scheme the (αs,α0) fits for the heavy-jet
mass (and perhaps also the wide-jet broadening) seem to some extent inconsistent with the
results for the other variables. The distinguishing feature of the heavy-jet mass is its non-
inclusiveness, since it measures a specific hemisphere of the event (the heavy one), whereas
other variables measure the properties of the whole event.

We may well ask why non-inclusiveness leads to differences. One interesting analysis
has been presented in [18], which suggests that hadronisation corrections can be different in
the two hemispheres and convert a perturbatively light jet into a heavy one. However this
effectively increases the power correction rather than decreasing it and so cannot explain
the relatively small αs and α0 values that are observed. This does not mean that such a
mechanism is not present at all — indeed in the difference between the E and p schemes the
heavy jet mass correction is larger than that for the single jet mass (cf. fig. 6), and this could
be due to such a mechanism (it could also simply be because there are more hadrons in the
heavy hemisphere).

To help understand what is happening we have used Pythia to look at the mean hadro-
nisation as a function of the value of the variable at parton level, figure 11. For the thrust,
the hadronisation is fairly independent of the parton-level thrust value. For the heavy jet
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• Thrust and HJM have different kinks order by order in perturbation theory

Sudakov 
Shoulder
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curve does not have LO added in. That is, the LO is the ↵s
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times the “A” function and the NLO

curves are (↵s

2⇡
)2 times the “B” functions, in the notation of [? ]. Right is a zoom-in of Sudakov

shoulder region near 1

3
. The NLO computation is performed with the program event2 [? ? ]. All

distributions are normalized to Born cross section �0.

2

FIG. 2: Thrust (blue) and heavy jet mass (red) at NLO compared to LO (dashed). The NLO

curve does not have LO added in. That is, the LO is the ↵s

2⇡
times the “A” function and the NLO

curves are (↵s

2⇡
)2 times the “B” functions, in the notation of [8]. Right is a zoom-in of Sudakov

shoulder region near 1

3
. The NLO computation is performed with the program event2 [9, 10]. All

distributions are normalized to Born cross section �0.

shoulder region, the phase space and matrix elements both neatly factorize. This allows

us to define a soft function, which along with the inclusive jet function, can be used to

reproduce all the logarithms at NLO, and more generally the next-to-leading logarithmic

series. In Section IV we analyze the resummed expression. We show that there are no non-

global logarithms for the Sudakov shoulder; only regions related to the trijet configuration

by soft or collinear radiation can generate the shoulder logs. We also find an unusual pole

in the the resummed distribution, qualitatively similar to the Landau pole in the running

coupling. Unlike the QCD Landau pole however, the singularity in the resummed heavy

jet mass shoulder distribution is determined by the cusp anomalous dimension. Thus it is

a kind of Sudakov Landau pole. Similar poles can be found in other observables, such as

the Drell-Yan spectrum at small pT [11–13]. We show that for the Sudakov shoulder case,

the large Sudakov anomalous dimension contributing to this pole also enhances subleading

power e↵ects, making them comparable to the leading power result allowing the pole to be

cancelled in the full distribution. We conclude in Section VI.

II. NEXT-TO-LEADING ORDER ANALYSIS

As a first step towards understanding Sudakov shoulder logarithms, we analyze the matrix

elements and phase space near the shoulder region in full QCD. We concentrate here on the

5

LO

NLO Thrust

NLO HJM LO

NLO Thrust

NLO HJM

ρ = 1
3 , 7 − 2 6

5 ,
4 − 7

3 , ⋯

• Our first step is to understand the perturbative picture— Sudakov shoulders

• There are also non-perturbative effects:

• Scheme dependence: E-scheme, p-scheme


• Hadronization corrections
[Salam, Wicke, hep-ph/0102343]

[Nason, Zanderighi, 2301.03607]

[Mateu, Stewart, Thaler, 1209.3781]

HJM left shoulder could have significant effect on the  measurementαs

Xiaoyuan Zhang

Bhattacharya, Schwartz, Zhang ’22 + Michel, Stewart in progress, see Matt’s talk



Soft-drop and hadron colliders
Due to their sensitivity to soft radiation, it is difficult to use traditional event 
shapes at hadron colliders 

• Huge corrections from underlying event, pile-up, hadronisation 

Can try to mitigate these problems by removing soft emissions from 
observables using soft-drop Larkoski, Marzani, Soyez, Thaler ‘14 

• Resummed results for jet mass at N2LL Frye, Larkoski, Schwartz,Yan 
‘16 and N3LL at e+e− Kardos, Larkoski, Trócsányi ’20 

• Could allow for αs extractions at hadron colliders at the 10% level, 
perhaps 5% in the future Hannesdottir, Pathak, Schwartz, Stewart ‘22

16



Energy-energy correlators
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FIG. 2 Resummed result for the EEC in the back-to-
back region up to N4LL accuracy. Uncertainty bands
reflect the residual perturbative uncertainty and are ob-
tained with a 15-point scale variation of the resummation

scales. See text for details.

cross section by evaluating eq. (18) with di↵erent bound-
ary scales. Here, we vary the scales individually by a
factor of 1

2 or 2 around their canonical value and remove
the configurations with simultaneous variations of factors
greater than 2 or smaller than 1

2 . Next, we take the en-
velope of the results as our estimate of the perturbative
uncertainty. This results in a 15-point scale variation
procedure very analogous to the usual 7-point scale vari-
ation employed to estimate perturbative uncertainties in
fixed order calculations. To treat the large bT behavior
in the Fourier transform we use the b

⇤ prescription [2, 3]
employed in ref. [50].

Note that the cusp anomalous dimension is known at
5 loops only in approximate form [110] with an 80% rel-

ative uncertainty, �(5)
cusp = 0.21±0.17, but it is in general

expected that its numerical impact to be very small. In
figure 3 we show the e↵ect of varying the 5 loops cusp
anomalous dimension coe�cient around the values of the
uncertainty, {�(5)

Cusp,+ = 0.38, �(5)
Cusp = 0.21, �(5)

Cusp,� =
0.04}. We see that it generates a sub-per-mille variation,
confirming that it is indeed the case that its numerical
impact is small and that the approximation of ref. [110] is
more than enough for current phenomenological studies.

We leave a full phenomenological study of the EEC in-
cluding fixed order predictions [47, 70, 71], state of the
art resummation in the z ! 0 limit [44, 49] as well as esti-
mation of parametric and non-perturbative uncertainties
to future work.

CONCLUSION

Throughout this Letter we have discussed the com-
putation of the four-loop corrections to the quark and
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FIG. 3 Comparison of the central value for the EEC
distribution between the resummed result computed with
di↵erent values of the 5-loop cusp anomalous dimension.

gluon rapidity anomalous dimensions, which control the
all-order structure of large logarithms for several quan-
tities of phenomenological interest, including transverse
momentum distributions at proton colliders and event
shape observables at e

+
e
� colliders. Our computation is

built on our recent determination of the four-loop soft
anomalous dimension and the conjectured duality be-
tween the soft and rapidity anomalous dimensions. Our
result is fully analytic, up to four constant that are only
known numerically. Remarkably, our results exhibit gen-
eralized Casimir scaling, a property which was observed
to hold also for the cusp anomalous dimension through
four loops. We also applied our results for the rapidity
anomalous dimension to obtain for the first time phe-
nomenological results for the EEC in the back-to-back
region at N4LL, providing the most precise resummed
calculation for this observable to date and the first ex-
ample of the resummation of a TMD observable to fourth
logarithmic order. This shows that our result will play an
important role in the future precisely determine several
quantities of phenomenological interest.
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Matrix elements 

characterize energy flow into the detector 

A lot of new interesting developments in using these energy-energy 
correlators to study jet subtructure, determine αs and mt , … 

Correlators have many good properties 

• Insensitive to soft radiation 

• Factorization, Light-ray OPE, CFT techniques Hofman, Maldacena ‘08
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Energy Flow Operators

• From a field theory perspective, jets are the study of matrix elements
of Energy Flow/ ANEC/ Lightray operators

I +

One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]
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Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]
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where it is given by
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for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di�erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e+e� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z � 0 (the collinear limit) and z � 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z � 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

�(z) =
1

2
C(�s) z�N=4

J (�s) , (1.4)
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in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.
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• These correlation functions completely characterize the flow of energy
(or other charges) at infinity. Have a direct correspondence with
“calorimeter cells” in real experiments.

h |E(n̂1) · · · E(n̂k)| i

E(~n) =

1Z

0

dt lim
r!1

r2niT0i(t, r~n)

[Hofman, Maldacena]
[Sveshnikov, Tkachov; Korchemsky, Sterman]
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How does intrinsic heavy quark mass affect each of these regions of particle collisions?

Energy Correlators mapping high energy collider events

BeautyCharm

General angle region Back-to-back regionCollinear limit
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Energy Correlators in various region
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Simplest correlator is familiar EEC Basham, Brown, Ellis, Love ’78.  

Factorization theorems in collinear and in back-to-back limit. Second case 
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Energy-Energy Correlators at general angle with mass

Collinear
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FIG. 1 Boundary term of the rapidity quark anoma-
lous dimension as a function of bT through four loops.
The bT dependence enters only through the coupling con-
stant. The diverging behavior at large bT is due to ap-
proaching the Landau pole. For recent work on extract-
ing the anomalous dimension non-perturbatively at large

bT see refs. [29–39].

quadratic and quartic Casimir operators
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where R
0
2 {F, A}, T

a

R
are the generators of the repre-

sentation R and dR is the dimension of the color rep-
resentation. This property is referred to as generalized
Casimir scaling, which has also been observed to hold
for the four-loop cusp anomalous dimension [21, 22, 40].
We stress that we have computed �

i

r,4 independently for
i 2 {q, g}, so that generalized Casimir scaling was not
used as an input to our computation.

ENERGY-ENERGY CORRELATION AT N
4
LL

In this section we use our new result for �
q

r
to obtain

the first resummation for an event shape at N4LL. In par-
ticular, we consider the Energy-Energy Correlation [41]
(EEC) in electron-positron annihilation,

EEC(�) =
X

a,b

Z
d�

e+e�!a+b+X

EaEb

Q2
�(cos�ab � cos�) , (13)

which was one of the first infrared and collinear safe
observables proposed for an e

+
e
� collider. The EEC

measures the angle �ab between two final state parti-
cles weighted by the energies of the particles relative
to the total center-of-mass energy of the colliding e

+
e
�

pair. Furthermore, the EEC is symmetrized over all pos-
sible final state particle pairs, as implemented by the sum

in eq. (13). It is convenient to introduce a change of vari-
ables and to express the EEC in terms of z ⌘

1
2 (1�cos �),

z 2 [0, 1]. The small angle limit (� ! 0) is reproduced
by the z ! 0 limit, and the z ! 1 limit describes the
dijet/back-to-back (� ! ⇡) configuration. In these lim-
its, the observable becomes strongly sensitive to collinear
configurations of the QCD radiation generating large log-
arithms whose presence spoils the convergence of the per-
turbative expansion in the strong coupling constant. An
all-order understanding in the coupling, which allows for
the resummation of these logarithms, can be achieved
using factorization theorems [2, 3, 42–51].

Throughout its history the EEC has provided the
playground for exploring a variety of crucial aspects of
QCD and non abelian quantum field theories in gen-
eral, such as maximally supersymmetric Yang-Mills the-
ory (N = 4 sYM ). As a matter of fact, not only the EEC
has been measured in multiple experiments [52–61], but
it has been at the intersection of a variety of di↵erent
theoretical fields. The EEC has been studied at strong
coupling using the AdS/CFT correspondence [62], per-
turbatively in N = 4 sYM [63–69] and in QCD [43, 45–
50, 70–74], and it constitutes one of the simplest example
of energy correlators which have spurred renewed interest
in exploring the connections between QCD and N = 4,
see for example [75–80]. Moreover, the EEC can be used
for the extraction of the strong coupling constant (see for
example [59, 61, 81]), and its generalizations to ep and
hardon colliders as high precision probe for TMD physics
at present and future colliders [82–87].

EEC in the back-to-back limit

The back-to-back asymptotics of the EEC can be
described using Soft and Collinear E↵ective Theory
(SCET) [88–91] via the following factorization theorem
[51]

d�

dz
=

�̂0

8
Hqq̄(Q, µ)

Z 1

0
d(bTQ)2 J0

�
bTQ

p
1 � z

�
(14)

⇥ Jq

⇣
bT , µ,

QbT

�

⌘
Jq̄

⇣
bT , µ, QbT�

⌘
[1 + O(1 � z)] .

In eq. (14), J0 is the Bessel function arising from the
Fourier transform due to the azymuthal symmetry of the
EEC measurement, Hqq̄ is the quark color singlet SCET
hard function, which is related to the IR finite part of
the quark form factors [92–101] and can be extracted up
to 4 loops from the recent result of ref. [101], and Jq is
the quark EEC jet function which is known up to N3LO
[50, 51].

The EEC in the back-to-back limit is a SCETII ob-
servable, and therefore requires the handling of rapidity
divergences [1, 2, 12, 15, 102–108]. Eq. (14) is derived in
pure rapidity renormalization [51, 108], with � being the
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by the z ! 0 limit, and the z ! 1 limit describes the
dijet/back-to-back (� ! ⇡) configuration. In these lim-
its, the observable becomes strongly sensitive to collinear
configurations of the QCD radiation generating large log-
arithms whose presence spoils the convergence of the per-
turbative expansion in the strong coupling constant. An
all-order understanding in the coupling, which allows for
the resummation of these logarithms, can be achieved
using factorization theorems [2, 3, 42–51].

Throughout its history the EEC has provided the
playground for exploring a variety of crucial aspects of
QCD and non abelian quantum field theories in gen-
eral, such as maximally supersymmetric Yang-Mills the-
ory (N = 4 sYM ). As a matter of fact, not only the EEC
has been measured in multiple experiments [52–61], but
it has been at the intersection of a variety of di↵erent
theoretical fields. The EEC has been studied at strong
coupling using the AdS/CFT correspondence [62], per-
turbatively in N = 4 sYM [63–69] and in QCD [43, 45–
50, 70–74], and it constitutes one of the simplest example
of energy correlators which have spurred renewed interest
in exploring the connections between QCD and N = 4,
see for example [75–80]. Moreover, the EEC can be used
for the extraction of the strong coupling constant (see for
example [59, 61, 81]), and its generalizations to ep and
hardon colliders as high precision probe for TMD physics
at present and future colliders [82–87].
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In eq. (14), J0 is the Bessel function arising from the
Fourier transform due to the azymuthal symmetry of the
EEC measurement, Hqq̄ is the quark color singlet SCET
hard function, which is related to the IR finite part of
the quark form factors [92–101] and can be extracted up
to 4 loops from the recent result of ref. [101], and Jq is
the quark EEC jet function which is known up to N3LO
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Ingredients:  

• 3-loop jet functions Ebert, Mistlberger, Vita 
’20   

• 4-loop rapidity anomalous dimension Duhr, 
Mistlberger, Vita ’22, Moult, Zhu, Zhu ‘22.  

• four-loop hard anomalous dimensions 
Manteuffel, Panzer, and Schabinger ’20; 
Lee, Manteuffel, Schabinger, Smirnov, 
Smirnov, and M. Steinhauser ’22. 

• four-loop cusp Henn, Korchemsky, 
Mistlberger ’19; Manteuffel, Panzer, and 
Schabinger ’20 + … 5-loop cusp is missing, 
estimated to have very small effect.
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FIG. 2 Resummed result for the EEC in the back-to-
back region up to N4LL accuracy. Uncertainty bands
reflect the residual perturbative uncertainty and are ob-
tained with a 15-point scale variation of the resummation

scales. See text for details.

cross section by evaluating eq. (18) with di↵erent bound-
ary scales. Here, we vary the scales individually by a
factor of 1

2 or 2 around their canonical value and remove
the configurations with simultaneous variations of factors
greater than 2 or smaller than 1

2 . Next, we take the en-
velope of the results as our estimate of the perturbative
uncertainty. This results in a 15-point scale variation
procedure very analogous to the usual 7-point scale vari-
ation employed to estimate perturbative uncertainties in
fixed order calculations. To treat the large bT behavior
in the Fourier transform we use the b

⇤ prescription [2, 3]
employed in ref. [50].

Note that the cusp anomalous dimension is known at
5 loops only in approximate form [110] with an 80% rel-

ative uncertainty, �(5)
cusp = 0.21±0.17, but it is in general

expected that its numerical impact to be very small. In
figure 3 we show the e↵ect of varying the 5 loops cusp
anomalous dimension coe�cient around the values of the
uncertainty, {�(5)

Cusp,+ = 0.38, �(5)
Cusp = 0.21, �(5)

Cusp,� =
0.04}. We see that it generates a sub-per-mille variation,
confirming that it is indeed the case that its numerical
impact is small and that the approximation of ref. [110] is
more than enough for current phenomenological studies.

We leave a full phenomenological study of the EEC in-
cluding fixed order predictions [47, 70, 71], state of the
art resummation in the z ! 0 limit [44, 49] as well as esti-
mation of parametric and non-perturbative uncertainties
to future work.

CONCLUSION

Throughout this Letter we have discussed the com-
putation of the four-loop corrections to the quark and
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FIG. 3 Comparison of the central value for the EEC
distribution between the resummed result computed with
di↵erent values of the 5-loop cusp anomalous dimension.

gluon rapidity anomalous dimensions, which control the
all-order structure of large logarithms for several quan-
tities of phenomenological interest, including transverse
momentum distributions at proton colliders and event
shape observables at e

+
e
� colliders. Our computation is

built on our recent determination of the four-loop soft
anomalous dimension and the conjectured duality be-
tween the soft and rapidity anomalous dimensions. Our
result is fully analytic, up to four constant that are only
known numerically. Remarkably, our results exhibit gen-
eralized Casimir scaling, a property which was observed
to hold also for the cusp anomalous dimension through
four loops. We also applied our results for the rapidity
anomalous dimension to obtain for the first time phe-
nomenological results for the EEC in the back-to-back
region at N4LL, providing the most precise resummed
calculation for this observable to date and the first ex-
ample of the resummation of a TMD observable to fourth
logarithmic order. This shows that our result will play an
important role in the future precisely determine several
quantities of phenomenological interest.
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• At hadron collider use transverse EECs  Ali, Pietarinen, Stirling ’84. ATLAS 
αs determination is based on NLO + MC but NNLL resummation is available 
Gao, Li, Moult, Zhu ‘19  

• Factorization theorems for multi-point correlators in jets in collinear limit; 
results for higher-point correlators Lee, Mecaj, Moult ‘22

``Conformal Colliders Meet the LHC’’ 
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ATLAS-CONF-2020-025 Lee, Mecaj, Moult ‘22

3

perturbative orders.4 The main complexity in extending
this factorization theorem to the case of hadron colliders
is the need to measure the energy correlators inside an
identified jet defined with the anti-kT algorithm [9] used
experimentally. The derivation of such a factorization
theorem is the main result of this Letter.

Our factorization theorem is derived by combining the
seminal work of Collins-Soper-Sterman [11–17] on factor-
ization for inclusive hadron production, with recent de-
velopments in SCET [79–83], in particular the fragment-
ing jets formalism [87–92], which allows for the factoriza-
tion of states produced inside high pT jets.5 Combining
these approaches, we derive a factorization theorem for
generic correlation functions of energy flow operators in-
side inclusive high-pT jets at the LHC

d⌃

dpT d⌘ d{⇣} =
X

i

Hi (pT /z, ⌘, µ) (5)

⌦
Z 1

0
dx xN Jij(z, x, pTR, µ) J [N ]

j ({⇣}, x, µ) .

Here, Hi is the hard function describing the production of
parton i, which includes the parton distribution functions
of the hadron beams. The convolution structure ⌦ is over
the parton momentum fraction z. The matching coe�-
cient Jij incorporates the details of the jet algorithm [91],
and depends explicitly on the jet radius, R. Combined,
Hi and Jij the light-ray density. The energy correlator

jet function [62, 69], J [N ]
j , depends on a momentum frac-

tion x, and the set of angles between the detectors, {⇣},
which can be written in terms of cross ratios and RL, as
in Eq. (4). This factorization theorem enables any cal-
culation of the energy correlators in the collinear limit
to be embedded into the LHC environment. A partic-
ularly beautiful aspect of this factorization is that each
component satisfies a DGLAP [101–103] evolution, illus-
trating a natural interplay of the energy correlator and
fragmenting jet formalisms.

As compared with previous approaches to jet sub-
structure, we believe that the approach of correlation
functions, encapsulated in Eq. (5), presents a number
of advantages. First, for an arbitrary N -point correla-
tor, both the normalization and the shape dependence
are free of soft e↵ects and non-global logarithms [104],
without the application of grooming procedures [84, 85]
that complicate higher order calculations. Second, un-
like for groomed observables, where the algorithm com-
plicates the non-perturbative structure of the observable

4 At leading logarithmic order, one can use the jet calculus [86].
However, this does not allow one to take into account higher
order corrections associated with the source.

5 For other phenomenological applications of the fragmenting jet
function formalism see e.g. [93–100].
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FIG. 3: Ratios of the multi-point projected correla-
tors compared with CMS Open Data points extracted
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providing a quantitative test of the light-ray OPE.
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Many new ideas and results
• EECs to measure the top-quark mass Holguin, Moult, Pathak, Procura ’22 
• EECs for b- and c-quarks Lee, Mecaj Moult ’22 
• Non-Gaussianities in collider energy flux Chen, Moult, Thaler, Zhu ‘22 
• EECs for nuclear matter at the electron-ion collider (EIC) Devereaux, 

Fan, Ke, Lee, Moult ’23 
• Nucleon energy correlators Liu, Zhu ’22, Cao, Liu, Zhu ‘23 
• EECs for studying the quark-gluon plasma 	 	 	 	 	 	 	 	 	 	

Andres, Dominguez, Holguin, Marquet, Moult ’23; Liu, Liu, JPan, Yuan and 
Zhu ’23 

• Renormalons in the EEC Schindler, Stewart, Sun ’23 
• … 
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Outlook

● Most precise experimental determination of 
as(mZ), as precise as the PDG and Lattice 
world averages

● First as(mZ) determination at N3LO+N4LLa

● Clean experimental signature (leptons) with 

highest exp sensitivity

● as measured directly at mZ scale (as in LEP 

event shapes)

● Semi-inclusive observable, which has 

advantages of exclusive (higher exp. 

sensitivity) and inclusive (higher order theory, 

smaller non-pQCD effects)

● Quadratic LQCD/Q power corrections, 

compared to linear in LEP event shapes

● No correlation with as(mZ) determinations 

from PDF fits, as Z pT in the Sudakov region 

is not suitable for inclusion in PDF fits

● First determination using QCD resummed 

theory predictions based on a semi-inclusive 

observable at hadron-hadron colliders 

as = 0.11828 +0.00084 –0.00088

αs from from qT spectrum of Z-bosons 

24



pp → “EW bosons” + X  at low qT 

• Ingredients known to high accuracy 
• three-loop beam functions Ebert, Mistlberger, Vita ‘20 
• three-loop hard functions for Z/W/γ (new: singlet contributions Gehrmann, 

Primo ’21 with top mass Chen, Czakon, Niggetiedt ’21), two-loop for 
diboson processes 

• new: four-loop anomalous dimensions and anomaly exponent
25

2 RESUMMATION FRAMEWORK AND IMPLEMENTATION

to terms suppressed by powers of qT , these channels factorize as

d�ij(p1, p2, {q}) =
Z 1

0
d⇠1

Z 1

0
d⇠2 d�

0
ij(⇠1p1, ⇠2p2, {q})Hij(⇠1p1, ⇠2p2, {q}, µ) ·

1

4⇡

Z
d2x? e�iq?x?

✓
x2
T
Q2

b20

◆�Fij(x?,µ)

Bi(⇠1, x?, µ) ·Bj(⇠2, x?, µ) , (1)

where p1 and p2 are the incoming hadron momenta. The cross section d�ij is fully differential
in the electroweak momenta {q}.

The beam functions Bi and Bj encode the soft and collinear emissions at low transverse
momentum (or more precisely large transverse separation x?) and the indices i and j and
the momentum fractions ⇠1 and ⇠2 refer to the partons which enter the hard process after
these emissions. The hard Born-level process has the differential cross section d�0

ij
and the

hard-function as Hij collects the associated virtual corrections. The collinear anomaly leads
to the Q2-dependent factor within the Fourier-integral over the transverse position x?. The
perturbatively calculable anomaly exponent Fij is also referred to as the rapidity anomalous
dimension in the framework of ref. [37]. In case of gluon-gluon initiated processes (i = j = g),
a second product of beam functions is added as required [25, 64]. Lastly, we have defined
b0 = 2e��E , where �E is the Euler-Mascheroni constant, and x2

T
= �x2?.

The hard function and the Born cross section are the only process-dependent ingredients in
formula (1). Since the hard function corresponds to the MS-renormalized loop corrections
to the Born amplitude and the implementations of NNLO corrections in MCFM are based
upon a SCET-derived factorization for jettiness ⌧ [65], the MS-renormalized hard functions
are readily available. Furthermore, the processes associated with ⌧ > 0 correspond to those
with qT > 0 needed for the fixed-order matching, and are already well-tested and numerically
stable in the singular limits.

The hard function involves logarithms of the ratio µ2/Q2, which are minimized with a choice
of µ = µ2

h
⇠ Q2, but inside the beam functions the natural choice is µ ⇠ qT . To avoid large

logarithms of q2
T
/Q2 one chooses µh ⇠ Q in the hard function and then evolves it down to the

resummation scale µ ⇠ qT using the RG. This evolution can be solved analytically to obtain
a hard function evolution factor U(Q2, µh, µ) with cusp anomalous dimension and quark and
gluon anomalous dimensions as essential ingredients, see ref. [66] for details. At N3LL we
make use of the recent calculation of the four-loop cusp anomalous dimension [67–69].

The appearance of the power-like dependence on the hard scale Q2 from a re-factorization
of regularized beam functions has been discussed extensively in refs. [23, 24], where the
associated anomaly exponent Fij was first extracted to two-loop accuracy. For resummation
at N3LL we use the three-loop result of refs. [70, 71].

Improvement at very small qT It is natural to rewrite the anomaly as a function of the
logarithm L? = log(x2

T
µ2/b20) and the quantity

⌘i =
Ci↵s(µ)

⇡
log

Q2

µ2
, (2)

where Ci = CF for quark-antiquark initiated processes and Ci = CA for gluon-gluon initiated
processes. For the choice µ ⇠ qT , as appropriate for the beam functions, we should count

6

hard function: Born + virtual

beam functionscollinear anomaly



4-loop anomalous dimensions 
• Anomaly exponent aka rapidity anomalous dimension can be extracted from 

regular 4-loop soft anomalous dimension obtained in Das, Moch, Vogt ’19,  
Duhr, Mistlberger Vita, ’22 through conformal mapping at β(ε*) = 0 
Vladimirov ’16. 

• Independent extractions by Duhr, Mistlberger, Vita ’22 and Moult, Zhu, Zhu 
’22  

• four-loop hard anomalous dimensions Manteuffel, Panzer, and Schabinger 
’20; and full quark and gluon form factors Lee, Manteuffel, Schabinger, 
Smirnov, Smirnov, and M. Steinhauser ’22. 

• four-loop cusp Henn, Korchemsky, Mistlberger ’19; Manteuffel, Panzer, and 
Schabinger ’20 + … 5-loop cusp is missing, estimated to have very small 
effect.
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Implementation 

• Structure of resummation is the same as born-level + virtual in fixed-order computation 
• Resummation can piggyback on existing fixed-order codes MATRIX+RadISH 

Kallweit, Re, Rottoli, Wiesemann ’20, CuTe-MCFM TB, Neumann ‘20, to get 
resummed fiducial cross sections. 

• Same for jet-veto cross section MadGraph5_aMC@NLO TB, Frederix, Neubert 
Rothen ’14; MCFM-RE Arpino, Banfi, Jäger, Kauer ’19; MCFM 
Campbell, Ellis, Neumann, Seth ’23, → Keith’s talk; → Matthew’s talk
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2 RESUMMATION FRAMEWORK AND IMPLEMENTATION

to terms suppressed by powers of qT , these channels factorize as

d�ij(p1, p2, {q}) =
Z 1

0
d⇠1

Z 1

0
d⇠2 d�

0
ij(⇠1p1, ⇠2p2, {q})Hij(⇠1p1, ⇠2p2, {q}, µ) ·
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4⇡
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d2x? e�iq?x?

✓
x2
T
Q2

b20

◆�Fij(x?,µ)

Bi(⇠1, x?, µ) ·Bj(⇠2, x?, µ) , (1)

where p1 and p2 are the incoming hadron momenta. The cross section d�ij is fully differential
in the electroweak momenta {q}.

The beam functions Bi and Bj encode the soft and collinear emissions at low transverse
momentum (or more precisely large transverse separation x?) and the indices i and j and
the momentum fractions ⇠1 and ⇠2 refer to the partons which enter the hard process after
these emissions. The hard Born-level process has the differential cross section d�0

ij
and the

hard-function as Hij collects the associated virtual corrections. The collinear anomaly leads
to the Q2-dependent factor within the Fourier-integral over the transverse position x?. The
perturbatively calculable anomaly exponent Fij is also referred to as the rapidity anomalous
dimension in the framework of ref. [37]. In case of gluon-gluon initiated processes (i = j = g),
a second product of beam functions is added as required [25, 64]. Lastly, we have defined
b0 = 2e��E , where �E is the Euler-Mascheroni constant, and x2

T
= �x2?.

The hard function and the Born cross section are the only process-dependent ingredients in
formula (1). Since the hard function corresponds to the MS-renormalized loop corrections
to the Born amplitude and the implementations of NNLO corrections in MCFM are based
upon a SCET-derived factorization for jettiness ⌧ [65], the MS-renormalized hard functions
are readily available. Furthermore, the processes associated with ⌧ > 0 correspond to those
with qT > 0 needed for the fixed-order matching, and are already well-tested and numerically
stable in the singular limits.

The hard function involves logarithms of the ratio µ2/Q2, which are minimized with a choice
of µ = µ2

h
⇠ Q2, but inside the beam functions the natural choice is µ ⇠ qT . To avoid large

logarithms of q2
T
/Q2 one chooses µh ⇠ Q in the hard function and then evolves it down to the

resummation scale µ ⇠ qT using the RG. This evolution can be solved analytically to obtain
a hard function evolution factor U(Q2, µh, µ) with cusp anomalous dimension and quark and
gluon anomalous dimensions as essential ingredients, see ref. [66] for details. At N3LL we
make use of the recent calculation of the four-loop cusp anomalous dimension [67–69].

The appearance of the power-like dependence on the hard scale Q2 from a re-factorization
of regularized beam functions has been discussed extensively in refs. [23, 24], where the
associated anomaly exponent Fij was first extracted to two-loop accuracy. For resummation
at N3LL we use the three-loop result of refs. [70, 71].

Improvement at very small qT It is natural to rewrite the anomaly as a function of the
logarithm L? = log(x2

T
µ2/b20) and the quantity

⌘i =
Ci↵s(µ)

⇡
log

Q2

µ2
, (2)

where Ci = CF for quark-antiquark initiated processes and Ci = CA for gluon-gluon initiated
processes. For the choice µ ⇠ qT , as appropriate for the beam functions, we should count
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hard function: Born + virtual

beam functionscollinear anomaly
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Figure 16: Comparison between the measured normalised di�erential 3f

3?)
cross-sections, integrated over |H | < 3.6,

with their total uncertainties and the predictions from the various resummation calculations. The top left panel
shows the data, while the next panels show one by one the ratios between each prediction with its uncertainties as
obtained from renormalisation/factorisation/resummation scale variations and the data. The predictions include
approximate N4LL resummation and, except for ARTEMIDE, fixed-order O(U3

B
) contributions from MCFM [47, 52].
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• aN4LL resummations from several groups with different formalisms (public N4LL:  
CuTe-MCFM Campbell, Neumann ’22, DYTurbo Camarda, Cieri, Ferrera ’23; ARTEMIDE Scimemi, Vladimirov ‘23) 

• All results (except ARTEMIDE) include αs3 fixed order from MCFM 
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Comparison and uncertainties 
Resummed computations are performed in a variety of (equivalent) 
formalisms and with different of scheme choices 

• Scale setting in momentum space (CuTe, Radish) versus impact 
parameter space (everyone else) 

• Different formalisms for rapidity logs (CSS, collinear anomaly, RRG) 
and associated uncertainty 

• Different matching schemes / transition to fixed order 
Uncertainty estimates are much less standardized than for fixed-order 
computations!


• Ongoing comparison/benchmark efforts by LHC EW sub-group
29



ATLAS αs extraction

• Reconstruct inclusive spectrum 
rate from angular coefficients 
ATLAS-CONF-2023-013   

• αs  from fit to DYTurbo  

• MSHT20 approximate N3LO PDFs 

• cross checks with NNLO sets 

• Non-perturbative effects based on 
two-parameter ansatz by Collins 
Rogers ‘14
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Figure 2: Transverse-momentum distribution of / bosons predicted with DYTurbo [31] at different values of Us (</ ),
using the MSHT20 PDF set [32].

range |[ | < 2.5. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors.
Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements
with high granularity. A steel/scintillator-tile hadron calorimeter covers the central pseudorapidity range
(|[ | < 1.7). The endcap and forward regions are instrumented with LAr calorimeters for both the EM and
hadronic energy measurements up to |[ | = 4.9. The muon spectrometer surrounds the calorimeters and is
based on three large superconducting air-core toroidal magnets with eight coils each. The field integral of
the toroids ranges between 2.0 and 6.0 T m across most of the detector. The muon spectrometer includes a
system of precision tracking chambers and fast detectors for triggering. A three-level trigger system is
used to select events. The first-level trigger is implemented in hardware and uses a subset of the detector
information to accept events at a rate of at most 75 kHz. This is followed by two software-based trigger
levels that together reduce the accepted event rate to 400 Hz on average depending on the data-taking
conditions during 2012. An extensive software suite [44] is used in data simulation, in the reconstruction
and analysis of real and simulated data, in detector operations, and in the trigger and data acquisition
systems of the experiment. The data were collected by the ATLAS detector in 2012 at a centre-of-mass
energy of

p
B = 8 TeV, and correspond to an integrated luminosity of 20.2 fb�1. The mean number of

additional ?? interactions per bunch crossing (pile-up events) in the data set is approximately 20.

3 Cross-section measurement

The /-boson transverse-momentum distribution is measured in the electron and muon decay channels,
which provide a clear signature with low background rates and a high precision measurement of the
momentum, as presented in Ref. [45]. The double-differential cross sections as functions of transverse
momentum and rapidity (H) of the / boson are measured in the pole region, defined as 80 < <✓✓ < 100 GeV,
where <✓✓ is the invariant mass of the dilepton system. The combination of 6.2 million electron and

4

ATLAS-CONF-2023-015 



ATLAS αs extraction

One of the most precise determinations of αs ! 

31

ATLAS-CONF-2023-015 
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Figure 5: Comparison of the determination of Us (</ ) from the /-boson transverse-momentum distribution with
other determinations at hadron colliders [17, 18, 20, 21], with the PDG category averages [3], with the lattice QCD
determination [10], and with the PDG world average.

determination with simultaneous determination of PDFs and strong-coupling constant. The measured
value of Us(</ ) = 0.11828+0.00084

�0.00088 is compatible with other determinations and with the world-average
value, as illustrated in Fig. 5.

Among experimental determinations, this is the most precise to date and the first based on N4LLa+N3LO
predictions in perturbative QCD. This result marks the start of a new era in precision studies of QCD with
the Drell-Yan process. The strong-coupling constant can be investigated with higher precision and in higher
energy regimes with future larger datasets.
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Figure 3: Determination of Us (</ ) at various different orders in the QCD perturbative expansion, using the MSHT20
PDF set. The filled area represents missing higher order uncertainties estimated through scale variations, the vertical
error bars include experimental and PDF uncertainties.

Table 1: Summary of the uncertainties for the determination of Us (</ ).

Experimental uncertainty +0.00044 -0.00044
PDF uncertainty +0.00051 -0.00051

Scale variations uncertainties +0.00042 -0.00042
Matching to fixed order 0 -0.00008
Non-perturbative model +0.00012 -0.00020

Flavour model +0.00021 -0.00029
QED ISR +0.00014 -0.00014

N4LL approximation +0.00004 -0.00004

Total +0.00084 -0.00088

quoted uncertainty. The inclusion of NLO electroweak corrections yields a shift on Us(</ ) of +0.00006,
uncertainties related to missing electroweak higher orders are considered negligible.

Uncertainties related to the numerical approximation or the incomplete knowledge of some of the coefficients
required for N4LL accuracy of ?T-resummation are estimated to contribute at the level of ±0.00004, with
the largest contribution coming from the numerical approximation of the cusp anomalous dimension at
five loops [39], and from the incomplete knowledge of the hard-collinear contributions at four loops [42].
Uncertainties due to the numerical approximation of the four loop splitting functions are already included
in the MSHT20 PDF uncertainties.

A summary of the uncertainties in the determination of Us(</ ) is shown in Table 1.

The goodness of fit is assessed by computing the value of the j
2 function with the theory predictions

8
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Traditional resummation methods (such as SCET) restricted to global 
observables which do not involve angular cuts on hadronic radiation. 
Non-global observables such as  

• jet cross sections → Gregory’s talk or isolation-cone cross 
sections relevant for γ production → Xiaofeng’s talk 

involve very intricate structure of soft radiation

• secondary emissions: non-global logarithms (NGLs) Dasgupta, 

Salam ’01; Banfi, Marchesini, Smye ’02 
• hadronic collisions: complex phases & breakdown of color 

coherence: super-leading logarithms SLL Forshaw, Kyrieleis, 
Seymour ’06
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Simplest example of non-global observable: gap between 
jets aka away from jet energy flow aka interjet energy flow 
aka rapidity slice


 


  


→ large logarithms            with 

Will discuss case of large cone radius R ~ 1. 
34

Qjet
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R ~ 1 
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Global Logarithms

• In (massive) QED, logarithmic terms would 
exponentiate: full result is exponential of one loop! 

• For global observables in QCD, non-abelian higher-
order corrections (“non-abelian exponentiation”)

35
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• Soft gluons from secondary emissions inside the jets 

• Not captured by standard resummation methods. Even leading NGLs  (αs L)n  

do not simply exponentiate! 

• At large Nc leading NGLs can be obtained with parton shower Dasgupta,  
Salam ‘02 or by solving a non-linear integral equation Banfi, Marchesini, Smye 
’02, the BMS equation
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Hard function
m hard partons along  

fixed directions {n1, …, nm} 

Factorization for gap between jets in e+e− 

integration over directions color trace

TB, Neubert, Rothen, Shao Phys.Rev.Lett. 116 (2016) 19, 192001, see also Caron-Huot ‘15

Figure 1. Pictorial representations of factorization formulas (1.1) and (1.4) for interjet energy flow
(left) and jet mass (right). The black lines represent hard radiation with typical scale Q which is
constrained to be inside the cones, and the red lines depict soft radiation with a low energy scale
Q0 which is allowed to populate the full phase space. In the right figure, the blue lines in the left
hemisphere represent collinear radiation which is described by the inclusive jet function in (1.4).

Our main goal in the present work is to develop the Monte Carlo methods to include

these corrections as a step towards full higher-logarithmic resummation, but it is also

interesting to study their numerical size, since they have never been computed for non-

global observables and often dominate numerically in the global case. It is customary to

add a prime to the logarithmic accuracy to indicate the presence of higher-order matching

corrections. In this notation our next-to-leading-logarithmic results for the jet mass have

NLL0 accuracy.

In Refs. [2, 10] we have derived a factorization formula for interjet energy flow and light-

jet mass. The key element is the presence of multi-Wilson-line operators which generate

the intricate pattern of Non-Global Logarithms (NGLs). Explicitly, the result for interjet

energy flow at a lepton collider has the form

�(Q,Q0) =
1X

m=2

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
, (1.1)

where Q is the center-of-mass energy, and Q0 = �Q is the veto energy outside the jet cone

area. For simplicity, we choose the jet axis along the thrust axis. The above factorization

formula neglects power corrections from O(�) terms. The hard functions Hm describe

hard radiation inside the jet cone, and their characteristic scale is Q since radiation inside

the cones is unrestricted. The index m represents the number of hard partons inside the

jet, which propagate along the directions {n} = {n1, n2, . . . , nm}. Each of these sources

soft radiation, which we describe by a Wilson line along the direction of the hard parton.

The matrix elements of these Wilson lines define the soft functions Sm({n}, Q0, µ). To

obtain the cross section, one integrates over the directions {n} which is indicated by the

symbol ⌦. The hard and soft functions are matrices in the color space of the m partons

and one takes the color trace h. . . i after multiplying them. The operator definition for

these functions and further explanations can be found in [2].

– 2 –

σ =
∑
a,b

∫ 1

0
dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0
dx1dx2 Cab(Q, x1, x2, µ)〈P (p1)|Oa(x1)|P (p1)〉 〈P (p2)|Ob(x2)|P (p2)〉+O(ΛQCD/Q)

(2)

〈qa′(x′p)|Oa(x)|qa′(x′ p)〉 = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

Vm =2
∑
(ij)

∫
dΩ(nk)

4π
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

− 2 iπ
∑
(ij)

(Ti,L · Tj,L − Ti,R · Tj,R)Πij (3)

Rm =− 4
∑
(ij)

Ti,L · Tj,R Wm+1
ij Θin(nm+1)

Hm ∝ |Mm〉〈Mm| (4)
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Wilson coefficients fulfill RG equations 

   
1. Compute Hm at a characteristic high scale µh ~ Q  

2. Evolve Hm to the scale of low energy physics µs ~ Q0  

3. Evaluate Sm at low scale µs ~ Q0 

Avoids large logarithms αsn lnn(Q/Q0) of scale ratios which spoil 
convergence of perturbation theory.

Resummation by RG evolution

RG
 evolution

d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z
t

0
dt

0Hn�1(t
0)Rn�1(t

0)e�(t0�t)Vn (13)

�LL =
1X

n=2

Hn(ts)⌦ Sn(ts) (14)

d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H

lm
(Q,µ) (16)

2

Q

Q0

treatment which is based on RG evolution in Soft-Collinear E↵ective Theory (SCET) [4–6]

(see [7] for a review). Our starting point is the factorization theorem which separates the

hard radiation inside the jets (or outside the isolation cone) from the soft radiation. The

soft radiation is driven by Wilson lines along the directions of the hard partons in the

process. Since there are contributions involving any number of hard partons, we end up

with operators with an arbitrary number of Wilson lines and these operators mix under

renormalization. The corresponding RG equation is complicated, but we will show that it

takes the form of a recursive equation which can be solved using a parton shower Monte-

Carlo (MC) program, which at leading-log accuracy and large-Nc is equivalent to the one

used by Dasgupta and Salam. An advantage of our treatment is that the RG equation is

not limited to leading logarithmic accuracy and we briefly discuss which ingredients and

modifications will be necessary to reach higher precision. There has been a lot of recent

work [8–11] on the general structure of parton showers and how to increase their accuracy.

The problem at hand provides an explicit example of a shower equation derived from first

principles for which it is clear what ingredients are needed to resum sub-leading logarithms.

The leading logarithms can be obtained by starting from the tree-level amplitudes and

running the parton shower to generate the logarithmically enhanced terms. Using a tree-

level event generator, this resummation can be automated. We have written a dedicated

parton shower code to perform the resummation and use the MadGraph5_aMC@NLO

framework [12] to generate the necessary tree-level amplitudes. We then study exclusive

jet and isolation-cone cross sections. In particular, we give numerical results for dijet

production with a gap between jets and compare to ATLAS measurements and theoretical

predictions [13] based on the BMS equation [14]. We also study isolated photon production

and compute the logarithms of ✏� , the energy fraction inside the isolation cone.

The remainder of this paper is organized as follows. In Section 2 we review the factor-

ization theorem for jet cross sections with gaps or isolation cones. In Section 3 we will show

that RG evolution of the associated Wilson coe�cients is equivalent to a parton shower,

and we give the necessary ingredients for LL resummation. In Section 4 we will apply

the shower code to obtain some phenomenological predictions, namely gap fraction of dijet

production and isolation cone cross section. We summarize our results and provide some

further discussions in Section 5.

2 Factorization for jet cross sections with gaps or isolation cones

The factorization formula for lepton-collider processes with k jets which takes the form

[1, 2]

d�(Q,Q0) =
1X

m=k

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
. (2.1)

Here Q denotes the large energy inside the jets, while Q0 denotes the small energy outside

the jets in an angular region ⌦out. The factorization theorem is the leading term in an

expansion of the cross section in � = Q0/Q. Both the soft and hard functions depend on

the directions {n} = {n1, . . . , nm} and colors of the hard partons. The symbol ⌦ indicates

– 2 –
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↵
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Here Q denotes the large energy inside the jets, while Q0 denotes the small energy outside

the jets in an angular region ⌦out. The factorization theorem is the leading term in an

expansion of the cross section in � = Q0/Q. Both the soft and hard functions depend on
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RG = Parton Shower
• Ingredients for LL 

• RG 

• equivalent to parton shower equation
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divergence from the lower end of the energy integration, the total result for the divergent

part becomes

αs

4π
z
(1)
m,m({n}, Q, δ, ε, µ) +

αs

4π

∫
dΩ(nm+1)

4π
z
(1)
m,m+1({n, nm+1}, Q, δ, ε, µ)

= − αs

2πε

∑

(ij)

Ti · Tj

∫
dΩ(nk)

4π
W k

ij Θ
nn̄
out(nk) . (5.8)

Since the color factors are contracted with the trivial tree-level soft function, we do not need

to distinguish the left and right color generators. Note that inside the cone the real and

virtual corrections have cancelled, so that the net result only gets contributions from out-

of-cone radiation and precisely cancels against the divergence of the soft function. We see

that the renormalization indeed works at the one-loop level. We have repeated the same

exercise also for the narrow-jet case, see Appendix C. In this case, we can give explicit

expressions for the angular integrals. Again, we find that the divergences cancel as they

should.

5.2 Renormalization-group evolution at leading logarithmic level

We now discuss the anomalous-dimension matrix ΓH defined in (2.40), which governs the

RG evolution of the hard (2.38) and soft functions (2.39), and verify the agreement between

the perturbative expansion of the BMS equation and our RG-based resummation method.

In order to resum the leading logarithmic terms, the anomalous-dimension matrix is needed

up to O(αs). It can be expressed as

ΓH ({n}, Q, δ, µ) =
αs

4π
Γ(1) ({n}, Q, δ, µ) +O(α2

s) , (5.9)

where

Γ(1) =






V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .
...

...
...

...
. . .






. (5.10)

It follows from the discussion in the previous section that, in the soft approximation, the

corresponding matrix elements are given by

Vm = Γ(1)
m,m = −2

∑

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

∫
dΩ(nk)

4π
W k

ij

[
Θnn̄

in (k) +Θnn̄
out(k)

]
,

Rm = Γ
(1)
m,m+1 = 4

∑

(ij)

Ti,L · Tj,RWm+1
ij Θnn̄

in (nm+1) . (5.11)

The anomalous dimensions Vm and Rm depend on the directions {n} = {n1, . . . , nm} and

colors of the hard partons, and the indices i, j in the sum run from 1 to m. The quantities

Rm also depend on the additional direction nm+1 of the real emission. The integration over

this direction is performed after the multiplication with the soft function. At first sight,
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Ti · Tj ! �Nc
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�j,i±1 . (26)

S0(n̄)S1(n1) . . . Sm(nm) |Mm({p})i , (27)

S0(n̄)S1(n) . . . Sm+1(nm+1) , (28)

hard: ph ⇠ !R (1, 1, 1)

soft: ps ⇠ !R (,,)

left-collinear: pc ⇠ !R (1,,
p
)

(29)

|MS

m
({p})i = h{p}|S(n)S†(n̄)|0i . = h (30)

hH(0)
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(0)
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(31)

S
(0)
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↵
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d↵
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↵
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1X
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Progress on NGLs
• PanScales, a general-purpose shower, which correctly resums leading 

large-Nc NGLs (and global logs!) Dasgupta, Dreyer, Hamilton, Monni, 
Salam and Soyez ‘20, + … ,’21 Alaric Herren, Höche, Krauss, Reichelt, 
Schoenherr ’22 → talks by Silvia and Daniel 

• Finite-Nc results for leading NGLs in e+e− Hatta, Ueda ’13 + Hagiwara ‘15 
based on Weigert ’03;  De Angelis, Forshaw and Plätzer ’20 → talk by 
Simon 

• First NLL numerical results in the large-Nc limit 

• Extension of BMS framework to NLL (2104.06416) and numerical 
implementation in MC code Gnole (2111.02413)  Banfi, Dreyer, Monni 

• Two-loop anomalous dimension in factorization framework TB, Rauh, 
Xu, 2112.02108; implementation into shower code TB, Schalch, Xu, in 
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Next-to-leading non-global logarithms
Ingredients: 

• Nc = 3 leading logs obtained from 
Hatta, Ueda ’13.  

• Two-loop anomalous dimension 
Γ(2) TB, Rauh, Xu, ‘21 

• Implementation of Γ(2) in parton 
shower framework TB, Schalch, 
Xu, in preparation
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Corrections scale as           or                  terms.  
First NGL resummation at this accuracy level!  
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FIG. 1. Shows our awesome results for Q = Mz.

FIG. 2. Shows our awesome results for Q = 1 TeV.
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NLL NGLs at hadron collider
• Many ingredients the same as for e+e− 
• Nc = 3 leading logs again from Hatta, 

Ueda ’13.  
• superleading logs small for qq → Z 

• Hard functions related to partonic cross 
sections for qq → Z +g, qg → Z +q  

• It would be great if this would be 
measured at LHC!

• currently measured gap between 

dijet observables are theoretically 
more complicated, involve also 
collinear and forward logs
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Super-Leading Logs (SLLs)
Analyze gap between jets at hadron collider, cone 
around beam direction 

  

Large logarithms           with 

• e+e− :  m ≤ n, leading logs m = n 

• p p : 
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Forshaw, Kyrieleis, Seymour ’06 ’08
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missing in large-Nc parton showers!  
(Deductor? Soper and Nagy … ’19)



Non-cancellation of collinear logs

Blue: collinear emission.  Red: Glauber/Coulomb phase 

Note: Glauber phases cancel in e+e− and in large-Nc limit
44
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Double logarithms due to soft+collinear configurations.
Forshaw, Kyrieleis, Seymour ’06 ’08; Catani, de Florian, Rodrigo ’11, Schwartz, Yan, Zhu ’17…



Earlier results on SLLs
Since effect first arises at              , only few results 

• Discovery of effect, computation of first SLL in gaps between jets for qq →qq 
Forshaw, Kyrieleis, Seymour ‘06 

• Colour space calculation of leading SLL Forshaw, Kyrieleis, Seymour ’08 

• Note that SLLs vanish in the large-Nc limit. 

• Diagrammatic calculation, first two orders, different channels qq, qg, gg Keates 
and Seymour ‘09
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We have repeated the same calculation also for the case qq → qq when the exchanged

particle is a color singlet. In this case the color structure of the tree level is trivial and

reads

H
S
4 = δα3α1

δα4α2
δβ1β3

δβ2β4
σ0 (4.11)

The associated matrix element reads
〈

H
S
4

(

ΓL
)n−m

ΓI
(

ΓL
)m

ΓIΓ
〉

= −σ0 π
2 CFN

n
c 2m+n+8 [J1 − 2 (1 − δn,m)J2] (4.12)

The singlet and octet operators form a basis of color structures for four-quark processes,

so any such process can be obtained as a linear combination of the two matrix elements

(4.10) and (4.12).

[Should we also do the other partonic channels?]

4.1 Comparison with the literature

Previous work on superleading logarithms has analyzed two jet production with a rapidity

gap ∆Y [2, 3, 6]. More precisely, one considers two cones around the beam directions and

imposes that the two hard final-state jets are inside these cones. One then measures the

energy flow into the rapidity gap ∆Y between the two cones. This “gap between jets”

setup was proposed to study the interplay of color coherence and hadronisation and as a

window into Regge dynamics and, potentially, new physics [7, 8]. Subsequently such cross

sections were studied both experimentally [9–13] and theoretically, see e.g. [14, 15]. In the

earlier works on soft radiation, it was assusmed that real and virtual effects completely

cancel inside the cones. The main discovery of [2] was that this cancellation is spoiled by

the presence of the imaginary parts in the virtual part of the amplitudes.

In this setup we can easily evaluate the two integrals which arise and we find that both

of them are simply proportional to the rapidity gap

J1 = 2∆Y sign(ηJ ) J2 = ∆Y (4.13)

This is trivial for J2, but it is interesting that, up to an overall sign, the dependence on the

scattering angle of the final-state jets cancels in the particular linear combination relevant

for J2 after integrating over the azimuthal angle. Previous computations of superleading

logarithms have only considered the ηJ > 0 case and we also adopt this choice to compare.

We can now compute the total contribution at each order as

S(n+3) =
n
∑

m=0

S(n+3)
m (4.14)

and compare to the results in [2, 3, 6]. For the first few orders for color-octet exchange we

get

S(3)
O =

(αs

4π

)3
L3
Q∆Y π2 32

3
(−CF )σ0 ,

S(4)
O =

(αs

4π

)4
L5
Q∆Y π2 8

15

(

3N2
c − 4

)

σ0 ,

S(5)
O =

(αs

4π

)5
L7
Q∆Y π2 4

315
Nc

(

−27N2
c + 44

)

σ0 ,

(4.15)
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Mm M†
m

Φ1

Φ2

Φ̄1

Φ̄2

i

j

Mm Sp

i

j

Mm+1

6

7. All-order summation for gluon channels?

8. Discussion of color traces, especially for 2 to 2 scattering. Interference!

9. Discussion of Glauber expansion and comment on higher-order ⇡
2 terms (Matthias)

10. Intro: Explain (with the example of qq ! qq scattering) that the double-logarithmic

terms really start at 3-loop (not 4-loop) order, and that afgter resummation they

could be as large as a 1-loop e↵ect (Matthias)

11. Explain why SLLs only arise at hadron colliders

And here is a list of points we should mention, but will need more work in the future

1. Complete NLL

• all pieces of the one-loop anomalous dim. (to arbitrary power!)

• two-loop cusp [Done!]

• rapidity logs

2. Systematics . . . expansion in the exponent?

3. Glauber Lagrangian for our problem? Factor of 2. . . Where do the phases show up

in the low-energy theory?

4. Rapidity logs?

5. Full LL gap between jets phenomenology.

2 Factorization of jet cross sections at hadron colliders

The following factorization formula holds for the gaps between jets cross section at hadron

colliders [8]:

�2!M (Q0) =

Z
dx1

Z
dx2

1X

m=2+M

⌦
Hm({n}, x1, x2, s, µ) ⌦ Wm({n}, Q0, x1, x2, µ)

↵
.

(2.1)

[Moved x1 and x2 integrals back here. Added xi arguments to hard function] The hard

functions Hm describe all possible m-parton processes a1 + a2 ! a3 + · · · + am. To keep

the notation compact, we do not indicate the di↵erent partonic configurations, but it is

understood one must sum not only over di↵erent values of m, but over all possible channels.

The brackets h. . . i denote the sum over final-state colors and average over the inital-state

colors. The symbol ⌦ indicates the integral over the directions {n} = {n1, . . . , nm} of the

hard partons and the momentum fraction of the partons entering the hard scattering, see

below.

– 2 –

Hard functions
m hard partons along  

fixed directions {n1, …, nm} 

σ =
∑
a,b

∫ 1

0
dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0
dx1dx2 Cab(Q, x1, x2, µ)〈P (p1)|Oa(x1)|P (p1)〉 〈P (p2)|Ob(x2)|P (p2)〉+O(ΛQCD/Q)

(2)

〈qa′(x′p)|Oa(x)|qa′(x′ p)〉 = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

Vm =2
∑
(ij)

∫
dΩ(nk)

4π
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

− 2 iπ
∑
(ij)

(Ti,L · Tj,L − Ti,R · Tj,R)Πij (3)

Rm =− 4
∑
(ij)

Ti,L · Tj,R Wm+1
ij Θin(nm+1)

Hm ∝ |Mm〉〈Mm| (4)

Soft + collinear function 
squared amplitude  
for m Wilson lines 
+collinear fields

integration over directions 

Wilson lines

gap

TB, Neubert, Shao Phys.Rev.Lett. 127 (2021) 21, 212002 + Stillger, in preparation



• Effective theory 

• Additional regulator 

• Low energy matrix elements        will 
suffer from rapidity logarithms 

• RG evolution 

• mixes multiplicities + colors!

[12–14]. In the absence of these interactions, the collinear low-energy matrix elements are

the usual collinear parton distribution functions (PDFs)
Z 1

�1

dt

2⇡
e
�ixitin̄i·pi hHi(pi)| �̄

↵̄

i (tn̄i) P
i

↵̄↵ �↵

i (0) |Hi(pi)i = fai(xi, µ) . (2.10)

An important ingredient for the resummation of large logarithms is the renormalization

group (RG) equation for the hard function [Mellin convolution! Which symbol? ⇤, ?, ⌦]

d

d ln µ
Hm({n}, s, µ) = �

mX

l=2+M

Hl({n}, s, µ) ? �
H

lm
({n}, s, µ) , (2.11)

Both the hard function and the anomalous dimension depend on the two momentum frac-

tions of the initial-state partons, which are combined with the standard Mellin convolutions

(f ? g)(z) =

Z
dx

Z
dy �(z � xy) f(y) g(x) . (2.12)

We have one such convolution for each initial state parton momentum fraction. These

Mellin convolutions arise in the usual Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

evolution equations and we will find that in the absence of Glauber phases the collinear

part of the anomalous dimension indeed produces the standard DGLAP evolution. Most

of the discussion in this paper will concern the soft part of the anomalous dimension,

which has trivial dependence on the momentum fractions. The soft emissions take away

an insignificant momentum fraction so that the soft part of the anomalous dimension will

be proportional to �(1 � y1)�(1 � y2) which renders the Mellin convolutions trivial. For

the discussion of soft e↵ects, we will later omit the convolutions symbols when writing

products of anomalous dimensions.

The anomalous dimension matrix �
H

lm
mixes hard function of di↵erent multiplicities.

At one-loop order this matrix has the form

�
H ({n}, x1, x2, s, µ) =

↵s

4⇡

0

BBBBBB@

Vk Rk 0 0 . . .

0 Vk+1 Rk+1 0 . . .

0 0 Vk+2 Rk+2 . . .

0 0 0 Vk+3 . . .

...
...

...
...

. . .

1

CCCCCCA
. + O(↵2

s) , (2.13)

where k = 2 + M is the minimal number of partons for a M -jet process at a hadron

collider. The virtual matrix elements Vm leave the number of partons unchanged, while

the real-emission operators Rm map a hard function with m partons onto one with (m+1)

partons.

By solving the RG equation (2.11) we can evolve the hard function from its natural

scale µ
2
h

⇠ ŝ = x1x2s down to the scale µs ⇠ Q0 of the low-energy dynamics. A formal

solution is given by the path-ordered exponential

U({n}, µs, µh) = P exp

 Z
µh

µs

dµ

µ
�

H(s, {n}, µ)

�
, (2.14)
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T a
i,L

T a
i,R

Ti,L ◦ Ti,R

W q
ij → W

q

ij

S
ren(2)
2

〈Hm ⊗ Γ
(1)
ml ⊗̂S

(0)
l 〉 = 〈Hm ⊗

(

Vm 1+Rm⊗̂1
)

〉 = 4
∑

(ij)

∫

[dΩq] W
q
ij θout(nq)〈Hm ⊗ Ti · Tj〉 , (51)

Γ = Γ+ Γ
G + Γ

c ln
µ2

ŝ

σ(Q) =
∑

a1,a2∈q,q̄,g

Ca1a2
(x1, x2, Q, µ) fa1

(x1, µ) fa2
(x2, µ)

∫ ∞

−∞

dt

2π
e−ixtn̄·p 〈P (p)| χ̄q(tn̄)

n̄/

2
χq(0) |P (p)〉 = fq(x1, µ) . (52)

Φi ∈ χq,A⊥

Leff = LSCET = Lc1 + Lc2

Leff = LSCET = Lc1 + Lc2 + Ls + LG

d

d lnµ
Ca1a2

(Q, x1, x2, µ) = −
∑

b1,b2∈q,q̄,g

Cb1b2 % (Γb1a1
+ Γb2a2

)

d

d lnµ
fa(x, µ) =

∑

b∈q,q̄,g

Γab % fb

Glauber 
s+c interactions

which is defined by its series expansion

Hk U(µs, µh) (2.15)

= Hk +

Z
µh

µs

dµ

µ
Hk ? �

H(s, µ) +

Z
µh

µs

dµ

µ

Z
µh

µ

dµ
0

µ0 Hk ? �
H(s, µ0) ? �

H(s, µ) + . . . ,

where we suppressed the direction arguments {n} of the anomalous dimension. In the

following we will first give a detailed derivation of �
H at one loop. In contrast to the

e
+
e
� case, the anomalous dimension does not only contain soft contributions, but also

contain collinear and soft+collinear contributions associated with the initial state. The

soft+collinear parts of the anomalous dimension have logarithmic dependence on µ, which

leads to double logarithms upon performing the µ-integrations in (2.15). These are the

super-leading logarithms and following our earlier work [24], we will compute the leading

double-logarithmic terms order-by-order.

It will be very interesting to study the low-energy matrix elements Wm in more detail

in the future. The fact the evolution of the hard function produces double-logarithms,

but the low-energy theory only knows about a single scale Q0 implies that the low energy

matrix elements must su↵er from a collinear anomaly which produces rapidity logarithms

[15]. The presence of rapidity logarithms is characteristic for processes involving Glauber

gluons [11], but since the double logarithmic terms only start at four-loop order, these

rapidity logarithms must have quite an intricate structure. To achieve NLL (single-log)

accuracy one must resum also the rapidity logarithms, but for our discussion of double-

logarithmic e↵ects, they can be neglected. The double logarithms are fully generated by

RG evolution from the scale µh = Q to the scale µs = Q0 and we can then neglect all

interactions at the scale µ = Q0 so that Wm are given by their tree-level result which, due

to the collinear anomaly, holds up to single-logarithmic corrections

Wm({n}, Q0, x1, x2, µs) = fa1(x1, µs) fa2(x2, µs)1 . (2.16)

3 Collinear singularities and anomalous dimension

The gap-between jet observable at e
+
e
� colliders is single logarithmic and instead of the

matrix elements fWm one has matrix elements which only involve soft Wilson lines. The

physics of the non-global logarithms is driven by soft emissions and we have extracted the

one-loop anomalous dimension by considering the soft limit of the hard functions Hm,

which leads to the result [16]

Vm =2
X

(ij)

Z
d⌦(nq)

4⇡
(Ti,L · Tj,L + Ti,R · Tj,R) W

q

ij

� 2 i⇡

X

(ij)

(Ti,L · Tj,L � Ti,R · Tj,R) ⇧ij , (3.1)

Rm = � 4
X

(ij)

Ti,L � Tj,R W
q

ij
⇥hard(nm+1) .
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RG
 evolution

Q

Q0

treatment which is based on RG evolution in Soft-Collinear E↵ective Theory (SCET) [4–6]

(see [7] for a review). Our starting point is the factorization theorem which separates the

hard radiation inside the jets (or outside the isolation cone) from the soft radiation. The

soft radiation is driven by Wilson lines along the directions of the hard partons in the

process. Since there are contributions involving any number of hard partons, we end up

with operators with an arbitrary number of Wilson lines and these operators mix under

renormalization. The corresponding RG equation is complicated, but we will show that it

takes the form of a recursive equation which can be solved using a parton shower Monte-

Carlo (MC) program, which at leading-log accuracy and large-Nc is equivalent to the one

used by Dasgupta and Salam. An advantage of our treatment is that the RG equation is

not limited to leading logarithmic accuracy and we briefly discuss which ingredients and

modifications will be necessary to reach higher precision. There has been a lot of recent

work [8–11] on the general structure of parton showers and how to increase their accuracy.

The problem at hand provides an explicit example of a shower equation derived from first

principles for which it is clear what ingredients are needed to resum sub-leading logarithms.

The leading logarithms can be obtained by starting from the tree-level amplitudes and

running the parton shower to generate the logarithmically enhanced terms. Using a tree-

level event generator, this resummation can be automated. We have written a dedicated

parton shower code to perform the resummation and use the MadGraph5_aMC@NLO

framework [12] to generate the necessary tree-level amplitudes. We then study exclusive

jet and isolation-cone cross sections. In particular, we give numerical results for dijet

production with a gap between jets and compare to ATLAS measurements and theoretical

predictions [13] based on the BMS equation [14]. We also study isolated photon production

and compute the logarithms of ✏� , the energy fraction inside the isolation cone.

The remainder of this paper is organized as follows. In Section 2 we review the factor-

ization theorem for jet cross sections with gaps or isolation cones. In Section 3 we will show

that RG evolution of the associated Wilson coe�cients is equivalent to a parton shower,

and we give the necessary ingredients for LL resummation. In Section 4 we will apply

the shower code to obtain some phenomenological predictions, namely gap fraction of dijet

production and isolation cone cross section. We summarize our results and provide some

further discussions in Section 5.

2 Factorization for jet cross sections with gaps or isolation cones

The factorization formula for lepton-collider processes with k jets which takes the form

[1, 2]

d�(Q,Q0) =
1X

m=k

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
. (2.1)

Here Q denotes the large energy inside the jets, while Q0 denotes the small energy outside

the jets in an angular region ⌦out. The factorization theorem is the leading term in an

expansion of the cross section in � = Q0/Q. Both the soft and hard functions depend on

the directions {n} = {n1, . . . , nm} and colors of the hard partons. The symbol ⌦ indicates

– 2 –

Rm =4
X

(ij)

Ti,L · Tj,R

⇢h
�(nk � ni) ln

µ

2Ei
+ �(nk � nj) ln

µ

2Ej

i
�W

m+1
ij ⇥in(nm+1)

�

Vm =2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

⇢
� ln

µ
2

2Ei2Ej
+

Z
d⌦(nk)

4⇡
W

k
ij

�

� 8 i⇡
X

(ij)

(T1,L · T2,L � T1,R · T2,R)⇧ij (11)

(12)

X

(ij)

Ti,L · Tj,L ln
µ

2Ei
= �

X

i

Ti,L · Ti,L ln
µ

2Ei
= �

X

i

Ci ln
µ

2Ei
(13)

�
X

(ij)

Ti,L � Tj,R �(nk � ni) ln
µ

2Ei
= +

X

i

Ti,L � Ti,R �(nk � ni) ln
µ

2Ei
(14)

� = �+ �G +
X

i

�c
i ln

µ
2

ŝ

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=4

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (15)

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (16)
ΛQCD

<latexit sha1_base64="if0izj6c4in30TFm/EH/LGbsIMM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaEDbbSbt0swm7G6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqhlSj4BJbhhuB3VQhjUOBnXB8N/M7T6g0T+SjmaTox3QoecQZNVbqREFOAz4NqjW37s5BVolXkBoUaAbVr/4gYVmM0jBBte55bmr8nCrDmcBppZ9pTCkb0yH2LJU0Ru3n83On5MwqAxIlypY0ZK7+nshprPUkDm1nTM1IL3sz8T+vl5noxs+5TDODki0WRZkgJiGz38mAK2RGTCyhTHF7K2EjqigzNqGKDcFbfnmVtC/q3lX98uGy1rgt4ijDCZzCOXhwDQ24hya0gMEYnuEV3pzUeXHenY9Fa8kpZo7hD5zPH34Vj68=</latexit>

fai

DG
LAP

Stewart, Rothstein ‘16

Mellin convolution
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k: number of partons at Born-level

cusp: soft+collinearwide-angle soft Glauber

Γ
(1) =

















V4 R4 0 0 · · ·
0 V5 R5 0 · · ·
0 0 V6 R6 · · ·
0 0 0 V7 · · ·
...

...
...

...
. . .

















+ . . . . (19)

Crn =
〈

H4 (Γ
c)r ΓG (Γc)n−r

Γ
G
Γ⊗ 1

〉

, (20)

Crn =
〈

H4 (Γ
c)rΓG(Γc)n−r

Γ
G
Γ⊗ 1

〉

, (21)

Γ
S = Γ+ Γ

G + Γ
c ln

µ2

ŝ

Crn = −64π (4Nc)
n−r fabc

∑

j>2

〈

H4 (Γ
c)r ΓG

T
a
1 T

b
2 T

c
j

〉

Ji (22)

Θveto(nk) = 1−Θhard(nk)

0 ≤ r ≤ n

Crn = 28−rπ2 (4Nc)
n

{

∑

j>2

Jj
〈

H4

[

(T2 − T1) · Tj + 2r−1Nc (σ1 − σ2) dabc T
a
1 T

b
2 T

c
j

]〉

(23)

+ 2 (1− δr0)J2
〈

H4

[

CF + (2r − 1)T1 · T2

]〉

}

.

Hm

C(O)
rn = σ̂B 28−rπ2 (4Nc)

n

[

CFJ43 +
J2
Nc

(

N2
c − 2r+1 + 1

)

(1− δr0)

]

(24)

C(S)
rn = σ̂B 28−rπ2 (4Nc)

n CF

[

− J43 + 2J2(1− δr0)
]

(25)

Q0 =







2Etot for e+e−

2ET
tot for pp

(26)

M (27)

M† (28)

|Mm+1({p, q})〉 = ε∗µJµ,a(q)|Mm({p})〉 = gs

m
∑

i=1

T
a
i

ε∗ · ni

ni · q
|Mm({p})〉 , (29)

Mm+1 Mm M†
m (30)

T a
i,L

T a
i,R

Ti,L ◦ Ti,R

W q
ij → W

q

ij

S
ren(2)
2

〈Hm ⊗ Γ
(1)
ml ⊗̂S

(0)
l 〉 = 〈Hm ⊗

(

Vm 1+Rm⊗̂1
)

〉 = 4
∑

(ij)

∫

[dΩq] W
q
ij θout(nq)〈Hm ⊗ Ti · Tj〉 , (51)

Γ = Γ+ ΓG + Γc ln
µ2

ŝ

σ(Q) =
∑

a1,a2∈q,q̄,g

Ca1a2
(x1, x2, Q, µ) fa1

(x1, µ) fa2
(x2, µ)

∫ ∞

−∞

dt

2π
e−ixtn̄·p 〈P (p)| χ̄q(tn̄)

n̄/

2
χq(0) |P (p)〉 = fq(x1, µ) . (52)

Φi ∈ χq,A⊥

Leff = LSCET = Lc1 + Lc2

Leff = LSCET = Lc1 + Lc2 + Ls + LG

d

d lnµ
Ca1a2

(Q, x1, x2, µ) = −
∑

b1,b2∈q,q̄,g

Cb1b2 % (Γb1a1
1b2a2

+ 1b1a1
Γb2a2

)

d

d lnµ
fa(x, µ) =

∑

b∈q,q̄,g

Γab % fb

W q
ij =

ni · nj

ni · nq nj · nq
(53)

|Mn+1〉 → Sp({pi, pj}) |Mn〉+ . . . . (54)

R
C
i→P (ξ) = 4δ(nk − ni)P i→P (ξi)Ci→P,L C

†
i→P,R

V
C
i→P (ξ) = −2γi

0 δiP δ(1 − ξ)
(55)

Γc =
∑

i=1,2

4
[

Ci 1− Ti,L ◦ Ti,R δ(nk − ni)
]

ΓG = −8iπ (T1,L · T2,L − T1,R · T2,R)

Γ = 2
∑

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

∫

dΩ(nq)

4π
W

q

ij − 4
∑

(ij)

Ti,L ◦ Tj,R W
k

ij Θin(nk)

(56)

Γ(1)(ξ1, ξ2) = ΓC
1 (ξ1)δ(1 − ξ2) + δ(1 − ξ1)Γ

C
2 (ξ2) + δ(1 − ξ1) δ(1 − ξ2)Γ

S . (57)

d�

dqTdy
=

X

ab=q,q̄

Z
d
2
x? e

�iq?·x?Hab(Q
2
, µ)Ba(⇠1, x

2
T
, µ)Bb(⇠2, x

2
T
, µ)S(x2

T
, µ) +O

✓
q
2
T

M2

◆
,

(1)

�Hm(t) = Hk(t0)�Ukm(t, t0)

= Hk(t0)

Z
t

t0

dt
0ULL

kl
(t0 � t0) ·

↵(t0)

4⇡

✓
�(2)

ll0 �
�1

�0
�(1)

ll0

◆
·ULL

l0m(t� t
0)

dm

rm

vm

�H ({n}, ⇠1, ⇠2, s, µ) =
↵s

4⇡
�(1) =

↵s

4⇡

0

BBBBBB@

Vk Rk 0 0 . . .

0 Vk+1 Rk+1 0 . . .

0 0 Vk+2 Rk+2 . . .

0 0 0 Vk+3 . . .

...
...

...
...

. . .

1

CCCCCCA
+O(↵2

s
) , (2)

1

see also Forshaw, Holguin, and Plätzer ‘19

• Split into soft(+collinear) and purely collinear 

• Split soft part
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Figure 4: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m+ 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 5: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
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the Glauber terms are given by
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G = −8 iπ

(
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and the coefficients of the cusp logarithms are
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i = Γ0Ci 1 ,

R
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i = −Γ0Ti,L ◦ Ti,R δ(nm+1 − ni) .

3

paper [16]. A nontrivial phase can arise if the initial state carries color, as is the case for

the partonic amplitudes relevant for hadronic collisions.

In e
+
e
� the collinear contributions in the cross section cancel, but the individual hard

functions do su↵er from collinear singularities and as a consequence also the entries Vm

and Rm of the anomalous dimension matrix. In the case of Vm and Rm the collinear

singularities arise when the emitted parton becomes collinear to the directions of one of

the m hard partons. Of course the presence of the collinear singularities also means that

the anomalous dimensions (3) are not well defined as they stand. To make them well

defined, one can introduce an angular cuto↵ into the expressions for Vm and Rm. In [10]

we have instead extracted the collinear singular terms in (3) in dimensional regularization

and have demonstrated that they cancel when the anomalous dimension is applied to the

soft functions. The remaining anomalous dimension can be obtained by replacing the dipole

W
q

ij
with the collinearily subtracted function

W
q

ij = W
q

ij
�

1

ni · nq

�(ni � nq) �
1

nj · nq

�(nj � nq) . (3.8)

where it is understood that the angular delta distribution �(ni � nq) only acts on the test

function, not on the coe�cient multiplying it.

Due to the presence of Glauber phases, the collinear singularities associated with the

initial state will not cancel for hadron collider processes. Furthermore, in addition to

the soft anomalous dimension (3), we will also need a purely collinear anomalous dimen-

sion which corresponds, up to the color structure, to the usual DGLAP evolution of the

PDFs. To extract the collinear pieces of the anomalous dimension, we will now first con-

sider collinear singularities in the virtual corrections and then collinear limits of the hard

function.

3.1 Collinear singularities in virtual corrections

The soft and collinear divergences of massless scattering amplitudes |Mm({p})i are very

well known [17–22] and encoded in an anomalous dimension matrix, which up to two-loop

order takes the form [17]

�({s}, µ) =
X

(ij)

Ti · Tj

2
�cusp(↵s) ln

µ
2

�sij

+
X

i

�
i(↵s)1 . (3.9)

The hard function Hm is given by squared amplitudes with particles along fixed directions

so that the anomalous is relevant. However, according to the definition (3.10) the hard

function is integrated over the energies of the outgoing partons in the presence of the phase

space constraints. Since the collinear part of the anomalous dimension logarithmically

depends on the energies through the cusp logarithms, the result (3.13) does not immediately

translate into a result for the anomalous dimension of the hard function.

We will now prove that the collinear pieces of the anomalous dimension (3.13) asso-

ciated with final state partons cancel against collinear singularities of real-emission cor-

rections present in hard functions with additional collinear legs. This cancellation can be
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Figure 4: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m+ 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 5: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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the virtual correction (red) HmVm has m legs.
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the virtual correction (red) HmVm has m legs.
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i→P,R

V
C
i→P (ξ) = −2γi

0 δiP δ(1 − ξ)
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Ci 1− Ti,L ◦ Ti,R δ(nk − ni)
]

ΓG = −8iπ (T1,L · T2,L − T1,R · T2,R)

Γ = 2
∑
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(Ti,L · Tj,L + Ti,R · Tj,R)

∫
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q
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∑
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(56)

extra hard parton!

see Forshaw, Holguin, and Plätzer ‘19
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tions HmRC involve one additional hard gluon (dashed blue line) which is
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ΛNP !
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s ! pTJet ! Eout ! mproton ∼ ΛQCD
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〈
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(Ti,L · Tj,L − Ti,R · Tj,R)Πij = 4 (T1,L · T2,L − T1,R · T2,R)

Πij = 1 if both inc./out.  

contain both amplitudes |Mm({p})〉 and their conjugate. The color matrices Ti,L act on

the amplitude while Tj,R multiplies the conjugate, for example

(T1,L · T2,L + T3,R · T4,R)Hm = T1 · T2 Hm + Hm T3 · T4 . (1.4)

The color matrices in the virtual part act on the color indices of the m partons of the

amplitude and Ti · Tj =
∑

a T
a
i · T a

j . This is the usual color-space notation. While we

do not indicate this notationally, the color matrices in the real emission matrix Rm are

different. They take an amplitude with m partons and associated color indices and map it

into an amplitude with m+ 1 partons. Explicitly, we have

Ti,L · Tj,RHm = T
a
i Hm T

a
j . (1.5)

[Better notation? Standard color-space notation not very well suited to add

new colored partons.] and the index a is the color of the emitted gluon. Note that there

is no sum over the color a. The color sum will only be taken at the end after multiplying

with the soft function. We nevertheless like to keep the scalar product notation Ti,L · Tj,R

since it allows us to suppress the color index, which is one of the advantages of the color-

space formalism. However, when applying the matrix Rm one needs to keep in mind that

one changes into new color space and that subsequent applications of color matrices can

act on the new color index.

Note that the terms in the second line of (1.2) are purely imaginary. An imaginary

part is present whenever i and j are both incoming or both outgoing partons and the

prefactor is Πij = 1 in these cases and zero otherwise. The presence of this phase-factor

can be understood by analyzing the UV divergences of the soft loop integral
∫

ddk
1

k2 + i0

ni · nj

(ni · k + η + i0)(−ni · k + η + i0)
, (1.6)

where η regularizes the collinear and soft singularities. This integral gets two contributions.

Cutting the gluon propagator, one obtains a phase-space integral whose divergence gives

rise to the angular integral in the first line of Vm, while cutting the two eikonal propagators

yields the imaginary part in the second line. This imaginary part is called the Glauber or

Coulomb phase, since it arises from a region of phase-space where kµ ≈ kµ
⊥
.

The imaginary part can be simplified using color conservation
∑

i Ti = 0. For con-

creteness, consider the process 1 + 2 → 3 + · · ·+m. We then have
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= 4T1 · T2 + C1 + C2 −
m
∑

i=3

Ci (1.9)

The constant imaginary part arises both from the generators Ti,L acting on the amplitude

and the generators Ti,R acting on the conjugate amplitude. These terms cancel in the
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real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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Computation of SLLs

52

Cannot use large Nc: compute order by order 

Need products of anomalous dimensions. Each μ integral 
produces single log (    ,       ) or double logs (      ), i.e. SLLs!      

Will set μh=Q and μs=Q0 and ignore running of αs. 
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ŝ
,

(11)

with

Vm = 2
X

(ij)

�
Ti,L · Tj,L + Ti,R · Tj,R

� Z d⌦(nk)

4⇡
W

k
ij

Rm = �4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥hard(nm+1)

V G = �8i⇡
�
T1,L · T2,L � T1,R · T2,R

�
(12)

V c
i = 4Ci 1

Rc
i = �4Ti,L � Ti,R �(nk � ni)

Rm =4
X

(ij)

Ti,L · Tj,R

⇢h
�(nk � ni) ln

µ

2Ei
+ �(nk � nj) ln

µ

2Ej

i
�W

m+1
ij ⇥in(nm+1)

�

Vm =2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

⇢
� ln

µ
2

2Ei2Ej
+

Z
d⌦(nk)

4⇡
W

k
ij

�

� 8 i⇡
X

(ij)

(T1,L · T2,L � T1,R · T2,R)⇧ij (13)

(14)

X

(ij)

Ti,L · Tj,L ln
µ

2Ei
= �

X

i

Ti,L · Ti,L ln
µ

2Ei
= �

X

i

Ci ln
µ

2Ei
(15)

�
X

(ij)

Ti,L � Tj,R �(nk � ni) ln
µ

2Ei
= +

X

i

Ti,L � Ti,R �(nk � ni) ln
µ

2Ei
(16)

� = �+ �G +
X

i

�c
i ln

µ
2

ŝ
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+ many more diagrams: Glauber(s) on the right side, 
different attachents for wide-angle soft, virtuals … 
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Figure 4: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 5: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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Figure 6: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.

3

Figure 6. Action of the cusp operator R
c
1 and the virtual piece V

G
on a hard function Hm. The

operator R
c
1 adds an additional final state leg (dashed blue line) along the direction of the incoming

parton 1.

and combine the real and virtual pieces of the soft anomalous dimension into the matrix

notation

�c =
X

i=1,2

�
cusp
0

⇥
Ci 1 � Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �2i⇡�

cusp
0 (T1,L · T2,L � T1,R · T2,R) ,

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nq)

4⇡
W

q

ij � 4
X

(ij)

Ti,L � Tj,R W
k

ij ⇥hard(nk) .

(5.1)

As in (3.11) and (3.15), these are matrices in multiplicity space that multiply the hard

function from the right and the order of the matrices determines the order in which they

act on the hard function. At the same time, they contain color matrices that can act on

the amplitude or the conjugate amplitude in each step, i.e. multiply the color indices of

the hard function on the left or on the right. The vector nk in (5.1) corresponds to the

direction of the emitted gluon. Each emission generates a new vector and in a product of

anomalous dimensions we will label the vectors with an index nki with i = 0, 1, . . . , where

i = 0 is the last emission, i = 1 the second to last, and so on.

Three properties of the di↵erent components of the anomalous dimension (5.1) greatly

simplify our calculations. Color coherence, the fact that the sum of the soft emissions o↵

two collinear partons has the same e↵ect as a single soft emission o↵ the parent parton,

implies that

H�c � = H��c
. (5.2)

[�c
,�] = 0 (5.3)

To derive this relation, we note that the contributions Rm and V m only depend on

the sum of colors if two partons i and j become collinear, e.g.

Ti,L · Tk,RW
q

ik + Tj,L · Tk,RW
q

jk = (Ti,L + Ti,L) · Tk,RW
q

ik , (5.4)
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FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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. . .

1

CCCCCCA
+ . . . . (19)

0  r  n

Γ(1)(ξ1, ξ2) = ΓC
1 (ξ1)δ(1 − ξ2) + δ(1 − ξ1)Γ

C
2 (ξ2) + δ(1 − ξ1) δ(1 − ξ2)Γ

S . (57)

ΓH ({n}, x1, x2, s, µ) =
αs

4π
Γ(1) =

αs

4π
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(58)

C4,10 =
〈

H4 (Γ
c)4ΓG(Γc)6 ΓG Γ⊗ 1

〉

, (59)

Γ(1)(ξ1, ξ2) = ΓC
1 (ξ1)δ(1 − ξ2) + δ(1 − ξ1)Γ

C
2 (ξ2) + δ(1 − ξ1) δ(1 − ξ2)Γ

S . (57)

ΓH ({n}, x1, x2, s, µ) =
αs

4π
Γ(1) =

αs
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(58)

C4,10 =
〈

H4 (Γ
c)4ΓG(Γc)6 ΓG Γ⊗ 1

〉

, (59)

Cr,n =
〈

H4 (Γ
c)rΓG(Γc)n−r

ΓG Γ⊗ 1
〉

, (60)

Si(ni)Sj(nj) = Si(nP )Sj(nP ) = Si+j(nP ) . (61)

In [?] it was shown that this implies the following relation

Si+j(nP )Sp({pi, pj}) |Mm〉 = Sp({pi, pj})SP (nP ) |Mm〉 . (62)



• Basic strategy: commute     ’s and       to the right where they 
vanish. 

• After a lot of color algebra, one finds 

• Eigenvalues 

• Eigenoperators are Qi  are combinations color 10 basic 
structures.

Evaluation of Crn
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

Final result in the diagonal basis

Diagonalizing the recursion matrix, we find

Crn = �16 (�cusp
0 ⇡)2 (Nc�

cusp
0 )n

7X

i=1

vr

i

⌦
H2!M Qi

↵
, (6.51)

where

v1 = 0 , v2 =
1

2
, v3 = 1 , v4 =

3Nc � 2

2Nc

, v5 =
3Nc + 2

2Nc

, v6 =
2(Nc � 1)

Nc

, v7 =
2(Nc + 1)

Nc

are the eigenvalues, and the corresponding eigenoperators are given by

Q1 = J12


4Nc

N2
c � 1

C1C2 S6

�
,

Q2 =
M+2X

j=3

Jj


� Nc

N2
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O
(j)
4

�
+ J12


2Nc
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(C1 + C2) S5 � 4Nc
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c � 1

C1C2 S6

�
,

Q3 =
M+2X
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Jj


� N2

c

2(N2
c � 4)

O
(j)
2

�
+ J12


N2

c

N2
c � 4

S3 � N2
c

3
S5

�

Q4 =
M+2X

j=3

Jj


1

2
O

(j)
1 +

Nc

4(Nc � 2)
O

(j)
2 � 1

2
O

(j)
3 +

1

2(Nc � 1)
O

(j)
4

�

+ J12


1

2
S1 +

Nc

4(Nc � 2)
S2 � Nc

2(Nc � 2)
S3 � 1

2
S4

+

✓
(C1 + C2)

Nc � 2

Nc � 1
+

Nc (Nc � 4)

6

◆
S5 +

2C1C2

Nc � 1
S6

�
, (6.52)

Q5 =
M+2X

j=3

Jj


1

2
O

(j)
1 +

Nc

4(Nc + 2)
O

(j)
2 +

1

2
O

(j)
3 +

1

2(Nc + 1)
O

(j)
4

�

+ J12


1

2
S1 +

Nc
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1

2
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+
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◆
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�
,

Q6 = �J12


1

2
S1 +

Nc

4(Nc � 2)
S2 � 1

2
S4 +

2C1C2

Nc � 1
S6

�
,

Q7 = �J12


1

2
S1 +

Nc

4(Nc + 2)
S2 +

1

2
S4 +

2C1C2

Nc + 1
S6

�
.

Note that for the first term in the sum in (6.51) we have 0r = �r0.

The master formula (6.48), along with the expression (6.40) and (6.50), represents our

final solution for the color structures Crn for particles transforming in arbitrary represen-

tations of SU(Nc). In the derivation of this formula the number M of final-state particles

has been kept arbitrary. While in the literature super-leading logarithms have always been

discussed in the context of 2 ! 2 hard-scattering processes [26, 29] [more refs], our formula

can also been applied to the important cases where there is a single final-state jet (M = 1)
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power-like n and r dependence
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3
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for each of the four structures in (6.41). After some lengthy algebra, we find that the set

of linearly independent color structures must be generalized to

S1 = fabefcde {T
b

1 , T c

1 } {T
a

2 , T d

2 } ,

S2 = dadedbce {T
b

1 , T c

1 } {T
a

2 , T d

2 } ,

S3 = dadedbce

h
T

a

2

�
T

b

1 T
c

1 T
d

1

�
+

+ (1 $ 2)
i
,

S4 = {T
a

1 , T b

1 } {T
a

2 , T b

2 } ,

S5 = T1 · T2 ,

S6 = 1 .

(6.45)

In other words, the linear combinations of the di↵erent structures in each line of (6.41) are

broken up in their substructures. With this generalization, we obtain the mappings

S1 ! 8Nc S1 + 2Nc S2 + 8S4 + 32C1C2 S6 ,

S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,

S4 ! 8S1 + 8Nc S4 ,

S5 ! 4Nc S5 ,

S6 ! 0 ,

(6.46)

as well as
O1 ! Nc (2S1 + S2 + 2S3) + 4S4

+ 16


C1 + C2 �

Nc

�
N2

c + 8
�

24

�
S5 + 16C1C2 S6 ,

O2 ! 0 ,

O3 ! 4S1 + 2Nc S4 + 4Nc (C1 + C2 � Nc) S5 ,

O4 ! �4Nc (C1 + C2) S5 � 8NcC1C2 S6 .

(6.47)

Therefore, most remarkably, the basis {Si} closes under repeated application of �c. [Shall

we diagonalize the matrix?]

Master formula for the color traces

At this point, we obtain the final result [It would be good to give a figure!]

Crn = �256⇡2 (4Nc)
n�r

"
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⌦
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� J12
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↵
#

,

(6.48)

where the basis operators have been defined in (6.36) and (6.45). It follows from (6.14) that

the coe�cients d(r)
i

vanish for r = 0. We find that these coe�cients obey the recurrence
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There is no need to symmetrize the first and the third structure in the index pair (b, c),

because the color trace ⌦
H

⇣
T

a

2 {T
b

1 , T c

1 } T
d

j � (1 $ 2)
⌘↵

(6.34)

with which these structures are contracted already has this symmetry.

At this point, we arrive at the result

Crn = �256⇡2 (4Nc)
n�r

"
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j=3
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4X
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c(r)
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⌦
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#
,

(6.35)

where the basis operators are defined as
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(6.36)

From (6.14) it follows that for the special case where r = 0 we have

c(0)
i

= �i1 . (6.37)

Applying s insertions of �c we generate the right-hand side of (6.35) with coe�cients c(s)
i

.

(We also generate terms proportional to J12, which will be discussed below.) Applying �
c

one more time, the four structures change to

O
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4 ,
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(j)
3 ! 4O

(j)
1 + 6Nc O

(j)
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4 .

(6.38)

The first relation follows from (6.26), and the remaining relations are readily derived by re-

peating the derivation of (6.19) from (6.14), after replacing the overall color tensor fabefcde

with dadedbce, �ab �cd, and �ad �bc, respectively, and making use of the trace relations in

(6.22) and (6.31). The above replacement rules lead to the recurrence relations
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– 33 –

Final result in the diagonal basis

Diagonalizing the recursion matrix, we find
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Note that for the first term in the sum in (6.51) we have 0r = �r0.

The master formula (6.48), along with the expression (6.40) and (6.50), represents our

final solution for the color structures Crn for particles transforming in arbitrary represen-

tations of SU(Nc). In the derivation of this formula the number M of final-state particles

has been kept arbitrary. While in the literature super-leading logarithms have always been

discussed in the context of 2 ! 2 hard-scattering processes [26, 29] [more refs], our formula

can also been applied to the important cases where there is a single final-state jet (M = 1)
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On the one hand, counting w = O(1) seems not unreasonable. On the other hand, we will

find that the scale ambiguities from the choice of µ̄ turns out to be an O(1) e↵ect in our

case and does not appear to be suppressed with a factor of
p

↵s(µ̄) ⇡ 0.33.

[Comment on the scaling of SLLs in both schemes.]

6 Evaluation of the color traces

The second relation in (4.4) implies that we can replace the last two color operators under

the color trace in (4.5) by their commutator [V G,�]. Introducing the abbreviation

H = H2+M (�c)r
V

G (�c)n�r , (6.1)

we find after a straightforward calculation
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�
.

(6.2)

Note that one of the two indices in the sum over i and j in � must be equal to 1 or 2,

corresponding to an attachment of the emitted soft gluon (with index k0) on one of the

initial-state partons, while the second index j can be arbitrary. When the above result is

inserted under the color trace in (4.5), we can use the cyclicity of the trace to move all color

generators to the right-hand side of H, and the symbol ⌦ implies that we must integrate

over the direction nk0 of the emitted gluon. We obtain [⇥gap(nk)?]

⌦
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⌘
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(6.3)

where ⇥out(nk) ⌘ 1 � ⇥in(nk), and we have used the fact that W
k

ii = 0 by definition. It is

not di�cult to show that the color trace on the right-hand side of this relation vanishes if

j = 1, 2 refers to one of the initial-state partons. We thus obtain

⌦
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G
� ⌦ 1

↵
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where we have defined

Jj =

Z
d⌦(nk)

4⇡

⇣
W k

1j � W k

2j

⌘
⇥gap(nk) . (6.5)

The fact that the angular integration is now restricted to the region outside the jets allows

us to replace the subtracted dipoles W
q

ij defined in (3.8) with the original dipoles. Already
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• Combine Crn with μ-Integrals, we can sum SLLs to 
all orders using

56

with �
cusp
0 = 4 and process-dependent coe�cients ki and parameters

v1 =
1

2
, v2 = 1 , v3,4 =

3Nc ± 2

2Nc

, v5,6 =
2 (Nc ± 1)

Nc

. (5.10)

Neglecting the running of the coupling, as is formally permitted at strict double-logarithmic

accuracy, we derived in (5.4) a simple expression for the integrals Irn. Using this expression

and the power-like dependence of Crn on r, we find [I have pulled out a factor 1/3! = 1/6.

Please check all expressions below for consistency!]
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which satisfy ⌃0(w) = ⌃(0, w) and are normalized such that

⌃0(0) = ⌃(v, 0) = 1 . (5.15)

Setting n = m + r, we can extend the sum over r to infinity. Rewriting the factorials as

Pochhammer symbols (x)n = �(x + n)/�(x), we obtain the representation
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which shows that the sum is a Kampé de Fériet function2
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The arguments in the upper line indicate the Pochhammer symbols in the numerator, the

lower line corresponds to the ones in the denominator.

It will be useful to derive the asymptotic behavior of these functions in the limit

w ! 1. For ⌃0(w) we find

⌃0(w) =
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2We thank B. Ananthanarayan and Souvik Bera for pointing this out.
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1X

n=0

(�4)n 3! n!

(2n + 3)!
w

n = 2F2

✓
1, 1; 2,

5

2
; �w

◆
, (5.13)

and

⌃(v, w) =
1X

n=0

nX

r=0

(�4)n 3! n!

(2n + 3)!

(2r)!

4r (r!)2
v

r
w

n
, (5.14)

which satisfy ⌃0(w) = ⌃(0, w) and are normalized such that

⌃0(0) = ⌃(v, 0) = 1 . (5.15)

Setting n = m + r, we can extend the sum over r to infinity. Rewriting the factorials as

Pochhammer symbols (x)n = �(x + n)/�(x), we obtain the representation

⌃(v, w) =
1X

m=0

1X

r=0

�
1
�
m+r

�
1
�
m

�
1
2

�
r�

2
�
m+r

�
5
2

�
m+r

(�w)m (�vw)r

m! r!
, (5.16)

which shows that the sum is a Kampé de Fériet function2

⌃(v, w) = 1+1
F2+0

⇣ 1 : 1, 1
2 ;

2,
5
2 : ;

� w, �vw

⌘
. (5.17)

The arguments in the upper line indicate the Pochhammer symbols in the numerator, the

lower line corresponds to the ones in the denominator.

It will be useful to derive the asymptotic behavior of these functions in the limit

w ! 1. For ⌃0(w) we find

⌃0(w) =
3

2w

⇣
ln(4w) + �E � 2

⌘
+

3

4w2
+ O(w�3) . (5.18)

2We thank B. Ananthanarayan and Souvik Bera for pointing this out.
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Figure 7. Plot of the function ⌃(v, w) for the smallest parameters v1 and the largest value v4.
The full result is shown as a solid line. The red dotted lines shows the perturbative expansion up
to tenth order in w. The orange dashed line is the large-w asymptotics shown in (5.20).

For the function ⌃(v, w), we perform the sum over r in (5.16) in terms of a hypergeometric

function, use an integral representation for this function, and then perform the sum over

m to obtain an integral representation in terms of the error function erf(y). It reads

⌃(v, w) =

Z 1

0
dx

3

4
p

x


2

y2(x)
�

p
⇡ erf (y(x))

y3(x)

�
, (5.19)

with y(x) =
q

w
�
1 + (v � 1)x

�
. [I have checked numerically that in the limit v ! 0 this

reproduces ⌃0(w)!] From this expression we can derive the asymptotic behavior of the

function in the limit w ! 1. We find [It is strange that here we cannot take the limit

v ! 0!]

⌃(v, w) =
3 arctan

�p
v � 1

�
p

v � 1 w
� 3

p
⇡

2
p

v w3/2
+ O(w�2) . (5.20)

For the special case v = 1, it follows that

⌃1(w) ⌘ ⌃(1, w) =
3

w
� 3

p
⇡ erf (

p
w)

2w3/2
. (5.21)

It is possible to carry out the integral in (5.21) and obtain a representation in terms of

the Owen T -function, which has an implementation in Mathematica. We find [I find

numerically that this formula does not agree with the integral in (5.19)!]

⌃(v, w) =
3

2z
p

w


4⇡ T

✓p
2 z,

p
w

z

◆
�

p
⇡ z erf (

p
vw)p

vw
+

p
⇡ e

�w erf(z)p
w

+⇡ erf
�p

w
�
erf(z) + 2 arccos

✓
1p
v

◆
� ⇡

�
,

(5.22)

with z =
p

(v � 1 + i✏)w, where the i✏ prescription is needed for the analytic continuation

to v < 1.
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Resummed result
Combine Crn with μ integrals and carry out the sums.  

Simplest case is qq→qq scattering with photon exchange 

with                           .  
  

Note: Standard Sudakov has form            .
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4

The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
and [�c, [V G,� ]]. Under the trace, we find that both
commutators evaluate to the same structure apart from
a factor (4Nc). We thus obtain

Crn = �64⇡ (4Nc)
n�r fabc

X

j>2

⌦
H4 (�c)r V GT a

1 T b
2 T c

j

↵

⇥
Z

d⌦(nk)

4⇡

⇣
W

k
1j � W

k
2j

⌘
⇥veto(nk) . (15)

The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we
consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three

non-trivial color structures:

Crn = 28�r⇡2 (4Nc)
n

⇢ X

j>2

Jj

⌦
H4

⇥
(T2 � T1) · Tj

+ 2r�1Nc (�1 � �2) dabc T a
1 T b

2 T c
j

⇤↵
(18)

+ 2 (1 � �r0) J2

⌦
H4

⇥
CF + (2r � 1) T1 · T2

⇤↵�
.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get

C(O)
rn = �̂B 28�r⇡2 (4Nc)

n

CFJ43

+
J2

Nc

�
N2

c � 2r+1 + 1
�
(1 � �r0)

�
, (19)

C(S)
rn = �̂B 28�r⇡2 (4Nc)

n CF

⇥
� J43 + 2J2(1 � �r0)

⇤
,

with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)

While the explicit form is not particularly illuminating, it
is interesting to study the asymptotic behavior for w !
1. Ordinary Sudakov double logarithms are resummed
to the form e�cw and are thus strongly suppressed in this
limit, while the function f(w) ⇠ (ln w)/w falls o↵ much
slower.
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with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
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Numerical results

• LL has O(1) uncertainty, e.g. running of αs is beyond LL but significant! 
• Strong cancellations among orders, especially for 2→0 and 2→1 

• typical for badly convergent expansions
58
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Summary and Outlook
• Interesting new insights into event shapes in e+e−, but problems in αs 

determination not fully settled, in my opinion 
• Precise αs from qT spectrum in Z-production 
• Energy correlators are a promising new tool for collider physics


• many new calculations and ideas + first measurements at LHC 
• First resummations of subleading NGLs and leading SLLs are 

becoming available. Next steps and open questions 
• phenomenological applications 
• analysis of low-energy matrix elements, Glauber contributions, 

NGL × SLL, ….



Extra slides



61

observable default Fit ranges (2) Fit ranges (3)

C [ 0.25 : 0.6 ] [ 0.17 : 0.6 ] [ 0.375 : 0.6 ]

⌧ [ 0.1 : 0.3 ] [ 0.067 : 0.3 ] [ 0.15 : 0.3 ]

y3 [ 0.05 : 0.3 ] [ 0.033 : 0.3 ] [ 0.075 : 0.3 ]

Table 1: Default fit range used (second column), and alternative choices (obtained by

multiplying the default lower bound by 2/3 and 3/2) used to estimate the impact of the

choice of the fit range (third and forth column).

Variation ↵s(MZ) ↵0 �2 �2/Ndeg

Default setup 0.1182 0.64 7.3 0.17

Renormalization scale Q/4 0.1202 0.60 9.1 0.21

Renormalization scale Q 0.1184 0.68 8.7 0.20

NP scheme (b) 0.1198 0.77 7.0 0.16

NP scheme (c) 0.1206 0.80 5.4 0.12

NP scheme (d) 0.1194 0.66 5.8 0.13

P -scheme 0.1158 0.62 10.7 0.24

D-scheme 0.1198 0.79 5.7 0.13

Standard scheme 0.1176 0.58 9.2 0.21

No heavy-to-light correction 0.1186 0.67 6.8 0.16

Herwig6 0.1180 0.59 15.9 0.36

Herwig7 0.1180 0.60 12.0 0.27

Ranges (2) 0.1174 0.62 12.7 0.23

Ranges (3) 0.1188 0.69 2.7 0.08

Replica method (around average) 0.1192 0.61 7.0 0.16

Replica method (around default) 0.1192 0.61 7.0 0.16

y3 clustered 0.1174 0.66 8.2 0.19

C 0.1256 0.48 1.3 0.07

⌧ 0.1194 0.64 0.8 0.04

y3 0.1214 1.81 0.2 0.02

C, ⌧ 0.1238 0.51 2.6 0.07

Table 2: Default fit result for ↵s(MZ) and ↵0 (first line) and other fit results obtained by

varying the setup. See text for more details.

renormalization scale to µR = Q/4 orQ. We investigate the impact of the way in which non-

perturbative corrections are implemented, using the alternative schemes (b, c, d) presented

in Sec. 5 (near Eq. (5.15)). We also present the result obtained using the P - and D- scheme

to define the observables, as discussed in Sec. 6.3, and the result obtained in the standard

scheme. To assess the impact of the heavy-to-light correction factor we switch it completely

o↵. We vary the Monte Carlo used to compute the migration matrix for the scheme and
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Figure 2: Dominant double logarithmic region near the two jet limit. The qg dipole does

not radiate, while the qq̄ and q̄g dipoles di↵er only by their colour factor.
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Figure 3: The ⇣(M2
H) function at very small value of its argument. The dots are obtained

by performing a quadruple precision calculation and binning the results uniformly in a

logarithmic scale. The left/right plot use a linear/logarithmic scale for the x axis.

check that the two jet limit of 1 and 0 respectively are actually reached, we had to perform

a dedicated calculation in quadruple precision in the small v region. As an example,

we show in Fig. 3 the result of this calculation for M2
H. It is evident that M2

H changes

sign and reaches the value 1 very near zero, varying by about 2 units in a very narrow

neighbourhood around zero. M2
D undergoes an even stronger variation, changing by three

units, and reaching zero from negative values. Such an abrupt change in the three-jet

distribution as we approach the two-jet limit suggests that subleading soft terms in the

two-jet limit remain more important than double logarithms all the way down to very small

values of the shape variable, questioning on one side the possibility to associate the two-jet

limit non-perturbative correction to the resummation of soft radiation, and, on the other

side, the application of our newly computed non perturbative correction as we approach

the two-jet limit.

4.4 Numerical checks

As a numerical check of the above calculations we also computed the ⇣ functions by directly

generating the phase space comprising the three hard partons and the soft one, fixing its

transverse momentum to a value �0 = Q0/100. More explicitly, we first generate the

underlying Born momenta pi, i = 1 . . . 3, choose �0 = 1 GeV and Q0 = 100 GeV, and

construct the momentum of the radiated parton as in eqs. (4.7) to (4.8). Assuming for
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FIG. 5. Comparison between finite and large-Nc shower.

Shower algorithm

In practice, the new shower algorithm can be described through the following steps:

1. At shower time ttot = t0 = 0 we start with two particles which are back-to-back and represent a color dipole
with weight w = 1.

2. Generate a random time step �t1 and choose an emitting dipole ni, nj among the list of particles Elist. Make
an insertion of �(2) at t0 = ttot + �t1. This is done by generating additional emissions nq, nr as well as the
associated weight w0 according to (5)-(7).

3. Start a LL shower [6]

(a) At shower time ttot,LL = t0 we start with a copy of Ecopy
list and weight w0.

(b) Generate a random time step �tLL and insert the weight w0 into a NLL histogram at ttot,LL = ttot,LL+�tLL.

(c) Choose the emitting dipole ni, nj among Ecopy
list and generate an emission nLL

q .

(d) If nLL
q is outside of the veto region we insert nLL

q between its parent emitters in Ecopy
list , update the weight and

repeat the procedure from step (b). Otherwise, if nLL
q is inside the veto region, we stop the LL showering.

4. Generate a random time step �t2 and insert the weight w at ttot = ttot + �t2 in a LL histogram.

5. Similar to (c) and (d), pick a an emitting dipole in Elist and generate an emission nq. If nq is outside of the
veto region we insert nq between its parent emitters, update the weight and repeat the procedure from step 2.
Otherwise, if nq is inside the veto region, we start a new shower, i.e. return to step 1.

Comparison with Gnole

Comparison with finite-Nc calculation at LL

See Figure 5.

Large Nc versus Nc = 3
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FIG. 5. Comparison between finite and large-Nc shower.

Shower algorithm

In practice, the new shower algorithm can be described through the following steps:

1. At shower time ttot = t0 = 0 we start with two particles which are back-to-back and represent a color dipole
with weight w = 1.

2. Generate a random time step �t1 and choose an emitting dipole ni, nj among the list of particles Elist. Make
an insertion of �(2) at t0 = ttot + �t1. This is done by generating additional emissions nq, nr as well as the
associated weight w0 according to (5)-(7).

3. Start a LL shower [6]

(a) At shower time ttot,LL = t0 we start with a copy of Ecopy
list and weight w0.

(b) Generate a random time step �tLL and insert the weight w0 into a NLL histogram at ttot,LL = ttot,LL+�tLL.

(c) Choose the emitting dipole ni, nj among Ecopy
list and generate an emission nLL

q .

(d) If nLL
q is outside of the veto region we insert nLL

q between its parent emitters in Ecopy
list , update the weight and

repeat the procedure from step (b). Otherwise, if nLL
q is inside the veto region, we stop the LL showering.

4. Generate a random time step �t2 and insert the weight w at ttot = ttot + �t2 in a LL histogram.

5. Similar to (c) and (d), pick a an emitting dipole in Elist and generate an emission nq. If nq is outside of the
veto region we insert nq between its parent emitters, update the weight and repeat the procedure from step 2.
Otherwise, if nq is inside the veto region, we start a new shower, i.e. return to step 1.

Comparison with Gnole

Comparison with finite-Nc calculation at LL

See Figure 5.



Forward gluon-gluon scattering

• Slow convergence (w∼2): necessary to include eight 
terms (10 loops!) to converge to resummed result 

• Very sensitive to choice of μ in αs: should include 
running!
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Phenomenological impact in forward gluon-gluon scattering:

 necessary to include eight terms (  10 loops) to obtain reliable results;  
rriiresummation formalism is essential!
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Figure 3: Individual contributions of the terms of order ↵
n+3
s L

2n+3 to the series of SLLs in (22), in units of
the Born cross section (corresponding to the lowest order), for forward qq ! qq scattering (left) and gg ! gg

scattering (right) at partonic center-of-mass energy of 1TeV and a rapidity gap �Y = 2 between the jets. We
use ↵s = ↵s(Q0) for the QCD coupling.

where w = Nc↵s
4⇡ L

2 encodes the double-logarithmic dependence, and w⇡ = Nc↵s
4⇡ (2⇡)2 is a “⇡

2-

enhanced” term containing the two Coulomb phases. For
p

ŝ = 1 TeV and Q0 = 25 GeV, and setting
↵s = ↵s(Q0), both w ⇡ 1.9 and w⇡ ⇡ 1.4 are of O(1), and w⇡w 2F2

�
1, 1; 2,

5
2 ; �w

�
⇡ 1.9. Therefore,

the numerical e↵ect of the SLLs is of the same order as a logarithmically enhanced, 1/Nc-suppressed
one-loop contribution to the cross section. In the asymptotic limit, one finds

w 2F2
�
1, 1; 2,

5
2 ; �w

�
!

3

2
[ln(4w) + �E � 2] for

Q
2

Q
2
0

! 1 . (26)

The left panel of Figure 3 illustrates the behavior of the first few terms in the series of SLLs for
the case of qq ! qq scattering in the color-octet channel, which is more relevant because in QCD the
lowest-order diagram for quark-quark scattering involves a t-channel gluon exchange. The size of the
corrections is of comparable magnitude with the singlet case. The colored curves show the individual
contributions of the terms of order ↵

n+3
s L

2n+3 to the series in (22), in units of the Born cross section,
for the case of forward scattering at

p
ŝ = 1TeV and a rapidity gap �Y = 2 between the jets. The

shown contributions correspond to logarithmically enhanced e↵ects arising at 3-loop to 7-loop order
in perturbation theory. We use ↵s = ↵s(Q0) for the QCD coupling, as done in [24] (see the comments
below). Note the alternating behavior of the series, which according to (22) is a general feature of the
series of SLLs. It is only because of this property that the sum of all contributions (n = 0, 1, . . . , 1)
adds up to a moderate correction to the cross section, which varies between 17% and 9% for Q0

between 20 and 35 GeV. The largest contribution comes from the term with n = 0, which is not a SLL
in the strict sense of the word, as this e↵ect scales like ↵

3
sL

3 (=mL)2. Nevertheless, this contribution
has the same physical origin and is not captured by conventional parton showers (see e.g. [63]), and
it is important to include it for consistency.

I. Resummation of SLLs for arbitrary jet processes, including subleading e↵ects

Quark-initiated processes are relatively simple, because in the fundamental representation of SU(Nc)
arbitrary products of color generators can be expressed as linear combinations of the unit matrix and
the generators themselves:

{T
a

i ,T
b

i } =
1

Nc

�ab 1 + �i dabc T
c

i , (27)

where �i = ±1 was defined after (23). It is of paramount importance for many important LHC
processes to generalize the approach to processes containing gluons in the initial state. This necessarily
leads to a vastly more complicated color algebra, because in the adjoint representation of SU(Nc)
symmetrized products of color generators cannot be simplified in a straightforward way. It is not at
all obvious that a closed expression for the traces Crn can be found in this case, but my calculations
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Figure 4: Resummed contributions of SLLs in forward qq ! qq (left) and gg ! gg (right) scattering for three
di↵erent scale choices for the QCD coupling ↵s.

the scale integrals, it is possible to account for other higher-order contributions by using the known
expressions for the two-loop cusp anomalous dimension and �-function. Further contributions arising
at order ↵

n+3
s L

2n+2 involve color traces analogous to those in (20), in which one includes one less
insertion of �c but a second insertion of �. I expect that it will be possible to evaluate these traces
in closed form. If this is not the case, one can truncate the sum over n in (22) at a finite order and
perform the relevant color traces using the ColorMath tool [76].

The SLLs arise from the color traces (20) with two insertions of the Glauber operator V
G. Since

for realistic choices of the parameters Q and Q0 the quantities w = Nc↵s
4⇡ L

2 and w⇡ = Nc↵s
4⇡ (2⇡)2 are

of similar magnitude, it is natural to ask how important the contributions from color traces involving
four, six or more Glauber insertions are. These traces have the structure

Cr1...r2kn =
⌦
H2+nJ (�c)r1 V G (�c)r2 V G

. . . (�c)r2k V G � ⌦ 1
↵
, (30)

where
P2k

i=1 ri = n, and they contribute at order ↵
n+2k+1
s L

2n+2k+1(2⇡)2k / ↵s w
n+k

w
k
⇡ in perturbation

theory. The SLLs are recovered in the case where k = 1. Including also the terms with k > 1 generates
a Glauber series of subleading logarithmic e↵ects. I believe it should be possible to calculate some of
these higher-order e↵ects analytically by generalizing the methods developed in [24] (milestone I.3).

As a result of these improvements, I expect to obtain all-order predictions for the contributions of
the SLLs to arbitrary LHC jet cross sections with vastly improved perturbative stability (compared
with the bands shown in Figure 4). Since there is no double counting between these e↵ects and any
state-of-the-art perturbative calculations of jet rates, even those improved using parton showers, the
e↵ects of the SLLs can be taken into account consistently by means of a multiplicative correction
factor to the di↵erential cross section, i.e.

d�(pp ! X+jets)
��
fixed order+PS

!

✓
1 +

d�SLL

d�Born

◆
d�(pp ! X+jets)

���
fixed order+PS

. (31)

This correction must be applied to the di↵erential cross sections, because in general the SLLs will be
sensitive to the kinematic dependence of the Born cross section (milestone I.4). Our estimates show
that the corrections from SLLs can be sizable (see Figure 4). Their e↵ects are not included in existing
calculations of jet cross sections, and the possibility of their existence is not reflected in the error
estimates for these calculations.

II. Systematic study of single-logarithmic corrections (including NGLs)

The factorization formula (10) provides a complete EFT description of non-global hadron-collider
observables, in which all logarithmically enhanced e↵ects can be calculated in a systematic way. Once
the SLLs have been calculated for in the way described above, one must still account for the remaining
single-logarithmic corrections. They start at one-loop order and are described by color traces with
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(3-loop)

(4-loop)

(5-loop)

(6-loop)



Terms of order          .

• Hard function for gluon exchange in t-channel. 

• n=0 term is not SLL, but missing in large Nc 
limit.
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Figure 3: Individual contributions of the terms of order ↵
n+3
s L

2n+3 to the series of SLLs in (22), in units of
the Born cross section (corresponding to the lowest order), for forward qq ! qq scattering (left) and gg ! gg

scattering (right) at partonic center-of-mass energy of 1TeV and a rapidity gap �Y = 2 between the jets. We
use ↵s = ↵s(Q0) for the QCD coupling.

The left panel of Figure 3 illustrates the behavior of the first few terms in the series of SLLs for
the case of qq ! qq scattering in the color-octet channel, which is more relevant because in QCD the
lowest-order diagram for quark-quark scattering involves a t-channel gluon exchange. The size of the
corrections is of comparable magnitude with the singlet case. The colored curves show the individual
contributions of the terms of order ↵

n+3
s L

2n+3 to the series in (22), in units of the Born cross section,
for the case of forward scattering at

p
ŝ = 1TeV and a rapidity gap �Y = 2 between the jets. The

shown contributions correspond to logarithmically enhanced e↵ects arising at 3-loop to 7-loop order
in perturbation theory. We use ↵s = ↵s(Q0) for the QCD coupling, as done in [24] (see the comments
below). Note the alternating behavior of the series, which according to (22) is a general feature of the
series of SLLs. It is only because of this property that the sum of all contributions (n = 0, 1, . . . , 1)
adds up to a moderate correction to the cross section, which varies between 17% and 9% for Q0

between 20 and 35 GeV. The largest contribution comes from the term with n = 0, which is not a SLL
in the strict sense of the word, as this e↵ect scales like ↵

3
s L

3 (=mL)2. Nevertheless, this contribution
has the same physical origin and is not captured by conventional parton showers (see e.g. [60]), and
it is important to include it for consistency.

I. Resummation of SLLs for arbitrary jet processes, including subleading e↵ects

Quark-initiated processes are relatively simple, because in the fundamental representation of SU(Nc)
arbitrary products of color generators can be expressed as linear combinations of the unit matrix and
the generators themselves:

{T
a

i , T
b

i } =
1

Nc

�ab 1 + �i dabc T
c

i , (27)

where �i = ±1 was defined after (23). It is of paramount importance for many important LHC
processes to generalize the approach to processes containing gluons in the initial state. This necessarily
leads to a vastly more complicated color algebra, because in the adjoint representation of SU(Nc)
symmetrized products of color generators cannot be simplified in a straightforward way. It is not at
all obvious that a closed expression for the traces Crn can be found in this case, but my calculations
(still unpublished) indicate that there exists a basis of 10 color structures which closes under repeated
application of �c. The result I obtain for a generic pp ! nJ jet process reads [61]

Crn = �256⇡
2 (4Nc)

n�r

2

4
nJ+2X

j=3

Jj

4X

i=1

c
(r)
i

⌦
H2!nJ O

(j)
i

↵
� J2

6X

i=1

d
(r)
i

⌦
H2!nJ Si

↵
3

5 , (28)

where both the color structures O
(j)
i

, Si and the coe�cient functions c
(r)
i

, d
(r)
i

are far more complicated

than those in the simple relation (23). Three of the structures O
(j)
i

and four of the structures Si involve
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Soft emissions are obtained from the matrix elements 
of the Wilson-line operators 

  

To get the amplitudes with additional soft partons, one 
takes the matrix element of the multi-Wilson-line 
operators:

Figure 1. Definition of the parameters � and � of the dijet cross section. We use the thrust axis
~n, as the jet axis.

definiton is identical to the one in the seminal paper of Sterman and Weinberg [36]. Using

the thrust vector as the jet axis leads to a simpler form of the phase-space constraints and

will enable us to use existing two-loop results for the cone-jet soft function obtained in

[27, 28].

If we consider wide-angle jets with � ⇠ 1, the e↵ective theory contains only two mo-

mentum regions

hard: ph ⇠ Q (1, 1, 1) , (2.3)

soft: ps ⇠ Q� (1, 1, 1) .

The hard mode describes the energetic particles inside the jet. Given their momentum

scaling, these particles can never be outside the jet, in contrast to the soft partons which

can be emitted inside or outside the jet. Since there are no collinear singularities for large

cone size, the cross section is single-logarithmic, i.e. the leading logarithms have the form

↵
n
s ln�.

The factorization of an amplitude with m hard partons and an arbitrary number of

soft partons is of course well known. Each of the hard partons get dressed with a Wilson

line along its direction. In analogy to factorization for amplitudes with coft particles [32],

we have

S1(n1)S2(n2) . . . Sm(nm)|Mm({p})i , (2.4)

where n
µ

i
= p

µ

i
/Ei and {p} = {p1, p2, . . . , pm}, but while the coft case involved quark

splitting amplitudes, we are now dealing with ordinary amplitudes |Mm({p})i. One way

to obtain this formula is to write down the SCET operator for processes with m jets,

which involves m di↵erent collinear fields, perform the decoupling transformation and then

take the matrix element with exactly one collinear particle in each sector, which gives the

amplitude |Mm({p})i. (On the amplitude level, there is no di↵erence between collinear

and hard on-shell particles. The di↵erence in scaling only matters in the expansion of the

phase-space constraints.) To get the amplitude with an arbitrary number of soft particles

in the final state, one takes the relevant matrix element of the Wilson-line operator (2.4).

Doing so, the cross section takes the form

– 5 –

To get the amplitude for the emission of l soft partons in the final state with momenta

k1, . . . , kl, one computes the matrix element

〈k1, . . . , kl|S1(n1)S2(n2) . . . Sm(nm) |0〉 (2.11)

of the Wilson-line operator. To obtain the contribution of an arbitrary number of soft par-

tons to the jet cross section, one first defines the squared matrix element for the emissions

from m partons as

Sm({n}, Qβ, δ) =
∫

Xs

∑
〈0|S†

1(n1) . . . S
†
m(nm) |Xs〉〈Xs|S1(n1) . . . Sm(nm) |0〉 θ(Qβ−2E out) .

(2.12)

This is the same as the coft function which arises for narrow-angle jets [38], up to the

fact that the constraint now acts on the out-of-cone energy E out of the soft radiation, as

opposed to n̄ · p out, the large component of the total momentum of the coft fields. Since

the soft function depends on the outside energy, it depends on the cone size δ. In terms of

the matrix element (2.12), the jet cross section takes the form

σ(β, δ) =
1

2Q2

∞∑

m=2

m∏

i=1

∫
dd−1pi

(2π)d−12Ei
〈Mm({p})|Sm({n}) |Mm({p})〉

× (2π)d δ(Q −Etot) δ
(d−1)(&ptot)Θ

nn̄
in

({
p
})

, (2.13)

up to terms suppressed by powers of β. The integration is over the m-dimensional phase-

space of the hard partons, which are all constrained to lie inside the two jet cones. The

function Θnn̄
in

({
p
})

ensures that the hard partons are either inside the right jet along the

direction n or the left jet along n̄. In the narrow-cone case, we will encounter constraints

which involve only one of the jets. Note that, due to the multipole expansion, the contri-

bution of soft particles must be neglected in the momentum-conservation δ-functions.

In order to write the cross section in a more transparent way, we now define hard

functions which are obtained by integrating over the energies of the hard particles subject

to the constraint that their sum is equal to the center-of-mass energy Q, while keeping

their directions nµ
i fixed,

Hm({n}, Q, δ) =
1

2Q2

∑

spins

m∏

i=1

∫
dEi E

d−3
i

(2π)d−2
|Mm({p})〉〈Mm({p})|

× (2π)d δ
(
Q−

m∑

i=1

Ei

)
δ(d−1)(&ptot)Θ

nn̄
in

({
p
})

. (2.14)

These hard functions are distribution-valued in the angles of the particles, since they

contain additional divergences which arise when particles become collinear. These real-

emission divergences get cancelled by the divergences associated with the virtual correc-

tions to amplitudes with fewer legs. In contrast, the soft function (2.12) is regular in the

angles. The function H2({n}, Q) = σ0 H(Q2)1, where H(Q2) = |CV (−Q2 − iε)|2 is the
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Wilson lines: 

Γ
(1) =

















V4 R4 0 0 · · ·
0 V5 R5 0 · · ·
0 0 V6 R6 · · ·
0 0 0 V7 · · ·
...

...
...

...
. . .

















+ . . . . (19)

Crn = −64π (4Nc)
n−r fabc

∑

j>2

〈

H4 (Γ
c)r V G

T
a
1 T

b
2 T

c
j

〉

Ji (20)

Θveto(nk) = 1−Θhard(nk)

0 ≤ r ≤ n

Crn = 28−rπ2 (4Nc)
n

{

∑

j>2

Jj
〈

H4

[

(T2 − T1) · Tj + 2r−1Nc (σ1 − σ2) dabc T
a
1 T

b
2 T

c
j

]〉

(21)

+ 2 (1− δr0)J2
〈

H4

[

CF + (2r − 1)T1 · T2

]〉

}

.

Hm

C(O)
rn = σ̂B 28−rπ2 (4Nc)

n

[

CFJ43 +
J2
Nc

(

N2
c − 2r+1 + 1

)

(1− δr0)

]

(22)

C(S)
rn = σ̂B 28−rπ2 (4Nc)

n CF

[

− J43 + 2J2(1− δr0)
]

(23)

Q0 =







2Etot for e+e−

2ET
tot for pp

(24)

M (25)

M† (26)

|Mm+1({p, q})〉 = ε∗µJµ,a(q)|Mm({p})〉 = gs

m
∑

i=1

T
a
i

ε∗ · ni

ni · q
|Mm({p})〉 , (27)

Mm+1 Mm M†
m (28)

Si(x) = exp

[

ie

∫ ∞

0
ds ni ·Aa(x+ sni)T

a
i

]

. (29)

Si(ni) = exp

[

igs

∫ ∞

0
ds ni · Aa(sni)T

a
i

]

. (30)

(For outgoing particle! Incoming has integration from -∞ to 0)



Basic properties of Γ
• Color coherence: 

• Collinear safety 
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Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
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cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
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i=1(R
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Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that
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Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
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i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
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, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.
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The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
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the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-
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where we have defined �c =
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that
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The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because
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The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
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where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
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i , both of which are
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cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,
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i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that
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gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s
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L2n+3 (�4)n n!
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nX
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(2r)!

4r (r!)2
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(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

cyclicity of trace

cyclicity of trace



Leading SLLs
1. Want maximum number of       ’s at given order. 

2. Need       to prevent       from commuting to the 
right and vanishing. Two insertions of       since 
cross section is real. 

3. Need one emission     at the end to prevent       
from vanishing 

Taken together, this implies that the leading SLLs at 
(n+3)-rd order arise from matrix elements
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cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =
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4⇡

⌘n+3
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(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)
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which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
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ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)
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. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
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Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that
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= 0 .
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The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(
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