

FIXED-ORDER CALCULATIONS*

* focus on <u>recent</u> results that are <u>representative</u> for on-going <u>progress</u> and <u>relevant</u> for phenomenology (personal selection)

Alexander Huss

Short distance "hard"

high scales: $10^2 - 10^3$ GeV

evolution towards a physical observable state

Long distance "soft"

low scales: $\mathcal{O}(\text{few GeV})$

Focus:

high momentum transfer & clean signatures

 $\sigma_{AB} = \sum_{ab} \int_0^1 \mathrm{d}x_a \int_0^1 \mathrm{d}x_b \int_0^1 \mathrm{d}x_$

 $x_a P_A$

 $f_{a|A}(x_a)$

 $\hat{\sigma}_{ab}$

 $x_b P_B$

 $f_{b|B}(x_b)$

parton distribution functions (PDFs) (non-perturbative, universal)

hard scattering (perturbation theory)

non-perturbative effects (power suppressed)

0.0180

0.0108

0.0058

Short distance "hard"

high scales: $10^2 - 10^3$ GeV

evolution towards a physical observable state

Long distance "soft"

low scales: $\mathcal{O}(\text{few GeV})$

high momentum transfer & clean signatures

Focus:

$\sigma_{AB} = \sum_{ab} \int_0^1 \mathrm{d}x_a \int_0^1 \mathrm{d}x_b \int_0^1 \mathrm{d}x_$

 $\hat{\sigma}_{ab}$

 $x_a P_A$

 $f_{a|A}(x_a)$

 $< x_b P_B$

 $f_{b|B}(x_b)$

parton distribution functions (PDFs) (non-perturbative, universal)

[from slide by G.Salam—Higgs21]

PDF4LHC21

CT18

MSHT20

NNPDF40

hard scattering (perturbation theory) non-perturbative effects (power suppressed)

What is the power p?

[Ferrario Ravasio, Limatola, Nason '20; +Caola, Melnikov '21]

NLO - CONCEPTUALLY SOLVED?

one-loop amplitudes (all master integrals known, well understood: log, Li₂)

automated 1-loop providers

- Gosam [Chiesa et al. '14]
- MadGraph5_aMC@NLO [Frixione et al. '18]
- NLOX
 [Honeywell et al. '18]
- OpenLoops
 [Pozzorini et al. '19]
- Recola
 [Actis et al. '16]
- • •

Trend: off-shell

- → high-multiplicity
- $2 \rightarrow 8$ (ttW) NLO QCD+EW [Denner, Pelliccioli, Schwan '22]
- $2 \rightarrow 9$ (ttW + j) NLO QCD [Bi, Kraus, Reinartz, Worek '23]

More frontiers:

- loop-induced
- polarization
- • •

automated NLO subtraction dipoles [Catani, Seymour '96]

- FKS
 [Frixione, Kunszt, Signer '96]

IR subtraction
(fully automated & efficient)

infrared singularities

"virtual"

"real"

NNLO — THE BUILDING BLOCKS & CHALLENGES

Tremendous progress in the past ~ 10 years!

 \hookrightarrow 2 \rightarrow 2 under good control; 2 \rightarrow 3 steady progress

NNLO REACHING MATURITY

"Standard" $2 \rightarrow 2$ well established \iff independent calculations (validation!)

residue subtraction

[Caola, Melnikov, Schulze '15]

τ_1 jettiness subtraction

[Boughezal, Focke, Giele, Liu, Petriello '15] [Campbell, Ellis, Seth '19]

antenna subtraction

[Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier '16]

[Chen, Gehrmann, Glover, AH, Mo '22]

[Czakon, van Hameren, Mitov, Poncelet '19]

Stripper

Top Pairs $-t\bar{t} \times 2$

comparison in fiducial volume essential for agreement

Stripper

[Czakon, Heymes, Mitov '15]

$q_{\rm T}$ subtraction

[Catani, Devoto, Grazzini, Kallweit, Mazzitelli '19]

BEYOND "STANDARD" 2 -> 2 CALCULATIONS

adding flavour (also: Wbb̄)

- Z+b-jet [Gauld, Gehrmann-De Ridder, Glover, AH, Majer '20]
- W+c-jet [Czakon, Mitov, Pellen, Poncelet '20,'23]
- Z+c-jet [Gauld, Gehrmann-De Ridder, Glover, AH, Garcia, Stagnitto '23]

adding masses

- $pp \rightarrow WH (H \rightarrow b\bar{b})$ [Behring, Bizoń, Caola, Melnikov, Röntsch '20]
- $pp \rightarrow b\bar{b}$ [Catani, Devoto, Grazzini, Kallweit, Mazzitelli '21]

identified particles / fragmentation

- hadron fragmentation [Czakon, Generet, Mitov, Poncelet '21, '22]
- isolated photons [Gehrmann, Schürmann '22; + Chen, Glover, Höfer, AH '22]

mixed QCD×EW

- full off-shell Drell-Yan
- W [Buonocore, Grazzini, Kallweit, Savoini, Tramontano '21];

beyond approximations

- non-factorizable corrections
- VBF [Liu, Melnikov, Penin '19]; [Dreyer, Karlberg, Tancredi '20]; [... '23] single-t [Brønnum-Hansen, Melnikov, Quarroz, Signorile-Signorile, Wang '22]
- Higgs beyond HTL $(m_t \to \infty)$ [Czakon, Harlander,

 $\text{NNLO}_{\text{s}\otimes\text{ew}} \sim -1\,\%$ on σ^{fid}

naive product can't capture kinematic features (resonance/shoulder)

but works remarkably well in high-energy tails (Sudakov logs fact.)

BEYOND "STANDARD" 2 -> 2 CALCULATIONS

adding flavour (also: Wbb̄)

- Z+b-jet [Gauld, Gehrmann-De Ridder, Glover, AH, Majer '20]
- W+c-jet [Czakon, Mitov, Pellen, Poncelet '20,'23]
- Z+c-jet [Gauld, Gehrmann-De Ridder, Glover, AH, Garcia, Stagnitto '23]

adding masses

- $pp \rightarrow WH (H \rightarrow b\bar{b})$ [Behring, Bizoń, Caola, Melnikov, Röntsch '20]
- $pp \rightarrow b\bar{b}$ [Catani, Devoto, Grazzini, Kallweit, Mazzitelli '21]

identified particles / fragmentation

- hadron fragmentation [Czakon, Generet, Mitov, Poncelet '21, '22]
- isolated photons [Gehrmann, Schürmann '22; + Chen, Glover, Höfer, AH '22]

mixed QCD×EW

- full off-shell Drell-Yan
- W [Buonocore, Grazzini, Kallweit, Savoini, Tramontano '21];

beyond approximations

- non-factorizable corrections
- VBF [Liu, Melnikov, Penin '19]; [Dreyer, Karlberg, Tancredi '20]; [... '23] single-t [Brønnum-Hansen, Melnikov, Quarroz, Signorile-Signorile, Wang '22]
- Higgs beyond HTL $(m_t \to \infty)$ [Czakon, Harlander,

 $\text{NNLO}_{\text{s}\otimes\text{ew}} \sim -1\,\%$ on σ^{fid}

naive product can't capture kinematic features (resonance/shoulder)

but works remarkably well in high-energy tails (Sudakov logs fact.)

Non-Factorizable Corrections

NLO: vanishes NNLO: $\times (N_c^2 - 1)^{-1}$

- \hookrightarrow assumed small but can be π^2 enhanced?
- only Abelian gluons; UV finite
- no collinear sing. (only soft)

Single top

Complete non-factorizable NNLO

- $\sigma_{\rm nf}^{\rm NNLO} \sim +0.3\% \ \sigma^{\rm LO}$
- $\triangleright \mathcal{O}(1\%)$ on distributions

corrections not flat \leadsto increase to high- $p_{\rm T}$ fact. \simeq 2–10× non-fact.

<u>but:</u> peak region \rightsquigarrow fact. \simeq non-fact.

JET FLAVOUR \leftrightarrow PROXY FOR

Flavoured jets are everywhere:

- Higgs physics → couplings
 (60% H → bb̄)
- top physics \longrightarrow PDFs, α_s , BSM $(|V_{tb}| \sim 1)$
- f-jet + $E_{\rm T}^{\rm miss}$ \longrightarrow BSM
- V + f-jet \longrightarrow PDFs, $\alpha_{s'}$ BG

Z+C-JET

• "is there an intrinsic charm (IC) component in the proton?"

 \hookrightarrow evidence (3 σ) [NNPDF Nature 608 (2022)]

LHCb kinematics (very forward)

→ sensitivity to IC

B-HADRON IN tt

[Czakon, Generet, Mitov, Poncelet '21,'22]

- tt high purity & statistics
- B-hadrons measured precisely \rightarrow precise m_t extraction?
- $m_{\rm t} \gg m_{\rm b}$ • small power corrections
- extract $D_{i\to B}$ from e⁺e⁻ data

shape sensitive to $m_{\rm t}$

 $\delta_{
m NNLO}$ shape distortion

 $\leftrightarrow \Delta m_{\rm t} \sim 1 \, {\rm GeV}$

12

ISOLATED PHOTONS γ + jet

EXP: require *photon isolation* to eliminate

overwhelming background from hadronization

TH: so far relied on idealized isolations

mismatch: few-10% [LH '13 '15]

THE $2 \rightarrow 3$ FRONTIER:

[Chawdhry, Czakon, Mitov, Poncelet '19]
[Kallweit, Sotnikov, Wiesemann '20]

• pp $\rightarrow \gamma \gamma + j$ [Chawdhry, Czakon, Mitov, Poncelet '21] (gluon-fusion @ NLO \simeq N³LO) \hookrightarrow [Badger, Gehrmann, Marcoli, Moodie '21]

[Czakon, Mitov, Poncelet '21]

 $(gg \rightarrow ggg; antenna automation)$

→ [Chen, Gehrmann, Glover, Huss, Marcoli '22]

 $ext{pp} o Wb\bar{b}$

[Hartanto, Poncelet, Popescu, Zoia '22] [Buonocore, Devoto, Kallweit, Mazzitelli, Rottoli, Savoini '22] (approx. $m_{\rm b}$)

[Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini '22]

[Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia '23]

THE $2 \rightarrow 3$ FRONTIER:

[Chawdhry, Czakon, Mitov, Poncelet '19]
[Kallweit, Sotnikov, Wiesemann '20]

• pp $\rightarrow \gamma\gamma + j$ [Chawdhry, Czakon, Mitov, Poncelet '21] (gluon-fusion @ NLO \simeq N³LO)

→ [Badger, Gehrmann, Marcoli, Moodie '21]

[Czakon, Mitov, Poncelet '21]

 $(gg \rightarrow ggg; antenna automation)$

→ [Chen, Gehrmann, Glover, Huss, Marcoli '22]

[Hartanto, Poncelet, Popescu, Zoia '22] [Buonocore, Devoto, Kallweit, Mazzitelli, Rottoli, Savoini '22] (approx. $m_{\rm b}$)

 $pp \to t\bar{t}H$

[Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini '22]

[Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia '23]

[Hartanto, Poncelet, Popescu, Zoia '22]

3.5

4.0

first NNLO 2 → 3 w/ external mass
 challenge: 2-loop amplitude [Abreu et al. '22]
 irreducible background to
 → VH, single top, BSM searches

1.5

1.0

0.5

2.0

2.5

3.0

 $\Delta R_{bar{b}}$

tīH — AN EIKONAL HIGGS?!

[Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini '22]

- a direct probe of the top Yukawa \hookrightarrow HL-LHC projection (exp): $\mathcal{O}(2\%)$
- missing ingredient: 2-loop amplitude \longleftrightarrow 2 \to 3 (+ 2 masses): current frontier
- apply: soft Higgs approximation $\mathcal{M}^{t\bar{t}H}(p_t, p_{\bar{t}}, p_H) \simeq F(\alpha_s; m_t/\mu_R) J(p_H) \mathcal{M}^{t\bar{t}}(p_t, p_{\bar{t}})$
- error estimate for approximation $\pm 0.6\%$ (on NNLO

future: valid approximation also for $t\bar{t}Z \& t\bar{t}W^{\pm}$?

GOING BEYOND --> N3LO

Some processes require us to even push to the next order:

- "Standard candles"
 - very precisely measured
- slow perturbative convergence
 - \hookrightarrow pp $\rightarrow \gamma \gamma$
 - \hookrightarrow Higgs production $(gg \rightarrow H)$

Fully Inclusive calculations $\iff \sigma_{ ext{tot}}$

- $gg \to H \checkmark$ [C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, B. Mistlberger '15]
- VBF-H ✓, VBF-HH ✓

 [F. Dreyer, A. Karlberg '16, '18]

- $\begin{array}{c} \bullet & pp \rightarrow \gamma^*/Z \ ? \\ \hline \text{[C. Duhr, B. Mistlberger '21]} \end{array}$

[J. Baglio, C. Duhr, B. Mistlberger, R. Szafron '22]

FULLY DIFFERENTIAL ggH @ N3LO

FULLY INCLUSIVE

- \times limited to σ^{tot}
- ✓ very efficient $\mathcal{O}(\sec)$

FULLY DIFFERENTIAL

- \checkmark d $\sigma \leadsto$ fiducial cuts, arbitrary distributions, ...
- \times computationally expensive $\mathcal{O}(10^5-10^6)$ h

ATLAS CUTS

linear fiducial power corrections

>> instabilities

- can be curedby resummation
- \ominus hard $\sigma^{\text{fid.}}$ should not need resummation?

lin. fid. power corr.

FULLY INCLUSIVE

- \times limited to σ^{tot}
- ✓ very efficient $\mathcal{O}(\sec)$

FULLY DIFFERENTIAL

- \checkmark d $\sigma \leadsto$ fiducial cuts, arbitrary distributions, ...
- \times computationally expensive $\mathcal{O}(10^5\text{-}10^6)\,\mathrm{h}$

no instabilities & flat K-factor: $N^3LO \simeq NNLO \times K_{N^3LO}$

DRELL YAN — A STANDARD CANDLE

- clean signature (ℓ^{\pm} , $E_{\rm T}^{\rm miss}$) & large cross section: (~ 1000 Z & ~ 4000 W[±]) / sec *
- detector calibration, BSM searches,
 luminosity monitor, PDFs,
- precision measurements: $\Rightarrow \sin^2(\theta_{\rm w}), M_{\rm W}$

- almost universal NNLO \rightarrow N³LO corrections!
- NC & CC[±] probe
 different parton content

[Chen, Gehrmann, Glover, AH, Yang, Zhu '21, '22]

* $\mathcal{L} = 2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

W Production — Absolute Spectrum

$$M_{\mathrm{T}}^{\mathrm{W}} \equiv \sqrt{E_{\mathrm{T}}^{\ell} E_{\mathrm{T}}^{\nu} \left(1 - \cos \Delta \varphi_{\ell \nu}\right)}$$

NCLUSIVE

FIDUCIAL (CDF II)

 $p_{\mathrm{T}}^{\ell}, E_{\mathrm{T}}^{\mathrm{miss}} \in [30, 55] \,\mathrm{GeV}$ $|\eta^{\ell}| < 1$ $p_{\mathrm{T}}^{\mathrm{W}} < 15 \,\mathrm{GeV}$

NLO NNLO N3LO

LO

- fiducial cuts impact pattern of radiative corrections
- larger N³LO corrections (-1% [inc.] vs. -4% [fid.])

fiducial power corrections?

N³LO + RESUMMATION

improved convergence 👐 uncertainties: few %

DYTURBO [Camarda, Cieri, Ferrera '22]

more robust & reduced uncertainties

CUTE-MCFM [Neumann, Campbell '22]

good agreement with data

NNLOJET+RADISH

[Chen, Gehrmann, Glover, AH, Monni, Rottoli, Re, Torrielli '22]

• some shape distortion \longleftrightarrow impact on $M_{\rm W}$ for CC \pm ?

CONCLUSIONS & OUTLOOK

- perturbative calculations crucial to scrutinise the Standard Model
- NNLO in good shape (reduced uncertainties & improved TH-data comparison)
 - $\sim 2 \rightarrow 2$ largely done, steady progress for $2 \rightarrow 3 \iff$ performance increasingly an issue
 - tying up loose ends 🚧 flavour, fragmentation, non-fact., mass effects, ...
 - loop amplitudes becoming a bottleneck again ** approximations in the interim
- \bullet N³LO computation of *inclusive* 2 \rightarrow 1 processes mature
 - first differential pp \rightarrow "colour neutral" $\leftrightarrow pp \rightarrow \gamma\gamma$, pp $\rightarrow VH$ within reach
 - towards $2 \rightarrow 2$: massless 3-loop amplitudes, first steps for subtraction, ...
- percent-level phenomenology: everything becomes relevant
 PDFs (+N³LO evolution), parametric, QCD×EW, non-perturbative, ...

CONCLUSIONS & OUTLOOK

- perturbative calculations crucial to scrutinise the Standard Model
- NNLO in good shape (reduced uncertainties & improved TH-data comparison)
 - $\sim 2 \rightarrow 2$ largely done, steady progress for $2 \rightarrow 3 \iff$ performance increasingly an issue
 - tying up loose ends 🚧 flavour, fragmentation, non-fact., mass effects, ...
 - loop amplitudes becoming a bottleneck again « approximations in the interim
- N³LO computation of *inclusive* $2 \rightarrow 1$ processes mature
 - first differential pp \rightarrow "colour neutral" \leftrightarrow pp $\rightarrow \gamma\gamma$, pp \rightarrow VH within reach
 - towards $2 \rightarrow 2$: massless 3-loop amplitudes, first steps for subtraction, ...
- percent-level phenomenology: everything becomes relevant
 PDFs (+N³LO evolution), parametric, QCD×EW, non-perturbative, ...

 Thank you!

BACKUP

MIXED QCD—EW CORRECTIONS FOR DRELL—YAN

 $d\sigma = d\sigma_{LO} \left(1 + \left(\frac{\alpha_s}{2\pi} \right) \delta^{(1,0)} + \left(\frac{\alpha}{2\pi} \right) \delta^{(0,1)} + \left(\frac{\alpha_s}{2\pi} \right)^2 \delta^{(2,0)} + \left(\frac{\alpha_s}{2\pi} \right) \left(\frac{\alpha}{2\pi} \right) \delta^{(1,1)} + \cdots \right)$

 $\sigma^{\text{NLO}_{\text{s}\oplus\text{ew}}} \sim 1, \ \delta^{(1,0)}, \ \delta^{(0,1)}$ $\sigma^{\text{NNLO}_{\text{s}\otimes\text{ew}}} \sim 1, \ \delta^{(1,0)}, \ \delta^{(0,1)}, \ \delta^{(1,1)}$ $\sigma^{\text{NNLO}_{\text{s}\otimes\text{ew}}} \sim 1, \ \delta^{(1,0)}, \ \delta^{(0,1)}, \ \delta^{(1,0)} \times \delta^{(0,1)}$ naive prod. $\sim 1, \ \delta^{(1,0)}, \ \delta^{(0,1)}, \ \delta^{(1,0)} \times \delta^{(0,1)}$

resonant / on-shell

- pole expansion [Dittmaier, Huss, Schwinn '14, '15]
- on-shell Z (QCD×QED) [Delto, Jaquier, Melnikov, Röntsch '19]
- $\sigma_{
 m Z}^{
 m tot}$ [Bonciani, Buccioni, Rana, Vicini '20]
- on-shell

 [Buccioni, Caola, Delto, Jaquier, Melnikov, Roentsch '20]

 [Behring, Buccioni, Caola, Delto, Jaquier, Melnikov, Röntsch '20]

off-shell

- W
 [Buonocore, Grazzini, Kallweit, Savoini, Tramontano '21]
 - [Bonciani, Buonocore, Grazzini, Kallweit, Rana, Tramontano, Vicini '21]
 [Buccioni, Caola, Chawdhry, Devoto, Heller,
 von Manteuffel, Melnikov, Rontsch, Signorile-Signorile '22]

$\mathcal{O}(\alpha_{\rm S} \alpha)$ — RESONANCE REGION

[Bonciani, Buonocore, Grazzini, Kallweit, Rana, Tramontano, Vicini '21]

$$\sigma_{ ext{PA}}^{ ext{NNLO}_{ ext{s}\otimes ext{ew}}}$$

$$\sigma_{\text{naive prod.}}^{\text{NNLO}_{\text{s}\otimes\text{ew}}}$$

- naive product not able to capture kinematic effects
 - \hookrightarrow fails below resonance $(m_{\ell\ell})$
 - \hookrightarrow fails away from shoulder (p_{T}^{μ})
- pole approximation (PA)
 - → well-captures full result here

$\mathcal{O}(\alpha_{\rm S} \alpha)$ — HIGH-ENERGY TAILS

[Buccioni, Caola, Chawdhry, Devoto, Heller, von Manteuffel, Melnikov, Rontsch, Signorile-Signorile '22]

N³LO PARTON DISTRIBUTION FUNCTIONS

N3LO evolution

4-loop splitting functions

[Moch, Ruijl, Ueda, Vermaseren, Vogt '17,'18,'22]; [Herzog, Falcioni, Moch, Vogt '23], in progress...

aN3LO PDFs (MSHT)

[McGowan, Cridge, Harland-Lang, Thorne '22]

purely resummed $p_{\rm T}^{\rm Z}$ spectrum

** PDF uncertainties

syst. differences between PDFs

PDF(NNLO
$$\rightarrow$$
 N³LO) $\delta\sigma^{N^3LO}$ /(?)

FIDUCIAL ACCEPTANCES & yH

 $\hat{y} \sim \frac{1}{2} |\Delta y(\gamma_1, \gamma_2)| \le \cosh^{-1} \left(\frac{M_{\text{H}}}{2p_{\text{T}}^{\text{min}}}\right) \approx 0.9$

need resummation

linear fiducial power corrections!

ACCEPTANCE $f(p_T^H)$

$$f(p_{\rm T}^{\rm H}) = f_0 + f_1 \cdot p_{\rm T}^{\rm H} + \mathcal{O}((p_{\rm T}^{\rm H})^2)$$

[Frixione, Ridolfi '97; Ebert, Tackmann '19 + Michel, Stewart '21; Alekhin et al. '21]

- Linear $p_{\mathrm{T}}^{\mathrm{H}}$ dependence
 - factorial growth for fixed-order
 - sensitivity to very low $p_{\mathrm{T}}^{\mathrm{H}}$

$$\frac{\sigma_{\text{asym}} - f_0 \,\sigma_{\text{inc.}}}{\sigma_0 \,f_0} \simeq 0.18_{\alpha_s} - 0.15_{\alpha_s^2} + 0.31_{\alpha_s^3} + \dots$$
$$\simeq 0.12 \,@\text{N}^3\text{LL}$$

[Salam, Slade '21]

ACCEPTANCE $f(p_T^H)$

"with cuts" / "no cuts"

$$f(p_{\rm T}^{\rm H}) = f_0 + f_1 \cdot p_{\rm T}^{\rm H} + f_2 \cdot (p_{\rm T}^{\rm H})^2 + \mathcal{O}((p_{\rm T}^{\rm H})^3)$$

- Quadratic p_{T}^{H} dependence
 - suppress factorial growth
 - fixed order \simeq resummation

$$\frac{\sigma_{\text{prod}} - f_0 \,\sigma_{\text{inc.}}}{\sigma_0 \,f_0} \simeq 0.005_{\alpha_s} + 0.002_{\alpha_s^2} - 0.001_{\alpha_s^3} + \dots$$
$$\simeq 0.006 \, @ \, \text{N}^3 \text{LL}$$

[Salam, Slade '21]

GOING DIFFERENTIAL @ N3LO - qT SUBTRACTION

FULLY INCLUSIVE

- \times limited to σ^{tot}
- \checkmark very efficient $\mathcal{O}(\sec)$

FULLY DIFFERENTIAL

- $\checkmark d\sigma \rightsquigarrow fiducial cuts,$ arbitrary distributions, ...
- x computationally expensive $\mathcal{O}(10^5-10^6) \, \text{h}$

 $q_{\rm T}$ resummation

- expand to fixed order
- $\mathcal{O}(\alpha_s^3)$ ingredients:
- hard function $H_{q\bar{q}}$ [Gehrmann, Glover, Huber, Ikizlerli, Studerus '10]
- soft function $S(\mathbf{b}_{\perp})$ [Li, Zhu '16]
- beam function $B_q(\mathbf{b}_{\perp})$

[Luo, Yang, Zhu, Zhu '19] [Ebert, Mistlberger, Vita '20]

$$\begin{aligned} \mathrm{d}\sigma_{\mathrm{N^3LO}}^V &= \mathrm{d}\sigma_{\mathrm{N^3LO}}^V \bigg|_{q_{\mathrm{T}} < q_{\mathrm{T}}^{\mathrm{cut}}} + \left. \mathrm{d}\sigma_{\mathrm{N^3LO}}^V \right|_{q_{\mathrm{T}} > q_{\mathrm{T}}^{\mathrm{cut}}} \\ &= \mathcal{H}_{\mathrm{N^3LO}}^V \otimes \mathrm{d}\sigma_{\mathrm{LO}}^V + \left[\mathrm{d}\sigma_{\mathrm{NNLO}}^{V+\mathrm{jet}} - \mathrm{d}\sigma_{\mathrm{N^3LO}}^{V,\mathrm{CT}} \right]_{q_{\mathrm{T}} > q_{\mathrm{T}}^{\mathrm{cut}}} + \mathcal{O}\left((q_{\mathrm{T}}^{\mathrm{cut}}/Q)^n \right) \end{aligned}$$

 $q_{\rm T}^{\rm cut}$ as small as possible \iff $q_{\rm T}^{\rm cut}$ as large as possible

- suppress power corrections
- → numerical stability & efficiency

- *fully independent* calculation of the inclusive cross section
- "fake" plateau: q_T^{cut} ∈ [2, 5] GeV
 → 12% error on δN³LO!

- converges to correct result for $q_{\rm T}^{\rm cut} \lesssim 1 \, {\rm GeV}$
- fit & extrapolate?
 - marginal gains for potentially uncontrolled systematics

FIDUCIAL CUTS AND LINEAR POWER CORRECTIONS — N3LO SLICING

• fiducial cuts \rightarrow can induce linear power corrections

[Tackmann, Ebert '19][Alekhin, Kardos, Moch, Trócsányi '21][Salam, Slade '21]

can jeopardise $q_{\rm T}$ slicing $\mathcal{O}\left((q_{\rm T}^{\rm cut}/Q)^2\right) \rightsquigarrow \mathcal{O}\left(q_{\rm T}^{\rm cut}/Q\right)$ $[q_{\rm T}^{\rm cut} \lesssim 1\,{\rm GeV}] \qquad [q_{\rm T}^{\rm cut} \lesssim 10^{-2}\,{\rm GeV}\,?!]$

FIDUCIAL CUTS AND LINEAR POWER CORRECTIONS - N3LO SLICING

fiducial cuts
 can induce linear power corrections

[Tackmann, Ebert '19][Alekhin, Kardos, Moch, Trócsányi '21][Salam, Slade '21]

can jeopardise $q_{\rm T}$ slicing $\mathcal{O}\left((q_{\rm T}^{\rm cut}/Q)^2\right) \rightsquigarrow \mathcal{O}\left(q_{\rm T}^{\rm cut}/Q\right)$ $[q_{\rm T}^{\rm cut} \lesssim 1\,{\rm GeV}] \qquad [q_{\rm T}^{\rm cut} \lesssim 10^{-2}\,{\rm GeV}\,?!]$

can compute & subtract the linear term:

 \hookrightarrow simple boost of $V \to \ell \bar{\ell}$ system

(pure kinematics & acceptance effect)

[Catani, de Florian, Ferrera, Grazzini '15] [Ebert, Michel, Stewart, Tackmann '21]