Alexander Huss

Parton Showers & Resummation — *University of Milano-Bicocca, Italy* — June 6th 2023

FIXED-ORDER CALCULATIONS *

* focus on *recent* results that are *representative* for on-going *progress* and *relevant* for phenomenology *(personal selection)*

2

 ˆ *ab X xaP^A xbP^B P^A A f* **parton distribution functions (PDFs)** *(non-perturbative, universal)* **hard scattering** *(perturbation theory) AB* ⁼ ^X *ab* Z ¹ 0 d*x^a* Z ¹ 0 d*x^b fa|A*(*xa*) *fb|B*(*xb*) ˆ*ab*(*xa, xb*)

NLO — CONCEPTUALLY SOLVED?

IR subtraction *(fully automated & efficient)*

P^A

A

- Gosam [Chiesa et al. '14]
- ๏ MadGraph5_aMC@NLO [Frixione et al. '18]
- ๏ NLOX [Honeywell et al. '18]
- ๏ OpenLoops [Pozzorini et al. '19]
- Recola [Actis et al. '16]

 \bullet …

automated 1-loop providers

automated NLO subtraction

- ๏ dipoles [Catani, Seymour '96]
- ๏ FKS [Frixione, Kunszt, Signer '96]

Trend: off-shell

- \hookrightarrow high-multiplicity
- \therefore 2 \rightarrow 8 (ttw) NLO QCD+EW
	- [Denner, Pelliccioli, Schwan '22]
- \rightarrow 2 \rightarrow 9 (tt̄W + *j*) NLO QCD

More frontiers:

- loop-induced
- ‣ polarization
- \bullet \bullet \bullet

 \bullet …

[Bi, Kraus, Reinartz, Worek '23]

NNLO — THE BUILDING BLOCKS & CHALLENGES

two-loop amplitudes

(new class of functions, combinatoric & algebraic complexity)

WHAT CAN WE DO TODAY? — THE NNLO TIMELINE

Tremendous progress in the past ~ 10 years! \hookrightarrow 2 \rightarrow 2 under good control; 2 \rightarrow 3 steady progress

[adapted from slide by M. Grazzini]

NNLO REACHING MATURITY

distribution of the photon decay angle in the Collins-Soper reference frame. We can compute

"Standard" $2 \rightarrow 2$ well established \leftrightarrow independent calculations *(validation!)*

7-point scale variation.

[Catani, Devoto, Grazzini, Kallweit, Mazzitelli '19]

 $\frac{1}{\sqrt{2}}$

inclusive selections (bottom) of the normalized α distributions (bottom) of the normalized α

bution versus ATLAS data [20]. Uncertainty bands are from the from th

*q*T subtraction

[Czakon, Heymes, Mitov '15]

Stripper

comparison in fiducial volume essential for agreement

BEYOND "STANDARD" $2 \rightarrow 2$ CALCULATIONS

· adding flavour (also: Wbb)

- ‣ non-factorizable corrections
- Higgs beyond HTL $(m_t \rightarrow \infty)$
-
-

- ‣ hadron fragmentation [Czakon, Generet, Mitov, Poncelet '21,'22]
-

◎ mixed QCD×EW

full off-shell Drell-Yan

beyond approximations

- ‣ Z+b-jet [Gauld, Gehrmann-De Ridder, Glover, AH, Majer '20]
- ‣ W+c-jet [Czakon, Mitov, Pellen, Poncelet '20,'23]
- Z +c-jet [Gauld, Gehrmann–De Ridder, Glover, AH, Garcia, Stagnitto '23]

adding masses

- \rightarrow $\rm{W}{\rm H}$ $(\rm{H} \rightarrow b\bar{b})$ [Behring, Bizoń, Caola, Melnikov, Röntsch '20]
- ‣ $\rm pp\,\rightarrow\,b\bar{b}$ [Catani, Devoto, Grazzini, Kallweit, Mazzitelli '21]

identified particles / fragmentation

BEYOND "STANDARD" $2 \rightarrow 2$ CALCULATIONS

2 o adding flavour (also: Wbb)

1 ‣ non-factorizable corrections

-
-

• Higgs beyond HTL $(m_t \rightarrow \infty)$

- \rightarrow $\rm{W}{\rm H}$ $(\rm{H} \rightarrow b\bar{b})$ [Behring, Bizoń, Caola, Melnikov, Röntsch '20]
- ‣ $\rm pp\,\rightarrow\,b\bar{b}$ [Catani, Devoto, Grazzini, Kallweit, Mazzitelli '21]
- 3 identified particles / fragmentation
	- ‣ hadron fragmentation [Czakon, Generet, Mitov, Poncelet '21,'22]
	-

◎ mixed QCD×EW

full off-shell Drell-Yan

beyond approximations

- $Z+b$ -jet [Gauld, Gehrmann-De Ridder, Glover, AH, Majer '20]
- ‣ W+c-jet [Czakon, Mitov, Pellen, Poncelet '20,'23]
- Z +c-jet [Gauld, Gehrmann–De Ridder, Glover, AH, Garcia, Stagnitto '23]

adding masses

NON-FACTORIZABLE CORRECTIONS

- \hookrightarrow assumed small but can be π^2 enhanced?
- ‣ only Abelian gluons; UV finite $\overline{ }$
- ‣ no collinear sing. (only soft)

NLO: vanishes <u>NNLO</u>: $\times (N_c^2 - 1)^{-1}$

Complete non-factorizable NNLO \sim *σ*^{NNLO} ∼ +0.3 % *σ*^{LO}

 $\;\;\hat{}\;\;\mathscr{O}(1\%)$ on distributions

corrections not flat \rightsquigarrow increase to high- $p_{\rm T}$ $\textsf{fact.}~\simeq~\textsf{2--10}\times$ non-fact.

<u>but:</u> peak region \nrightarrow fact. \simeq non-fact.

- large (but subdominant) cross sections

๏ probe *strange* content of proton 1*.*025 e.g. from 3-loops: ↪ $f_{s}(x) \neq f_{\bar{s}}(x)$)ナ \overline{a} $\frac{m}{s}$

 \bullet flavour anti- k_T algorithm

ratio to NNPDF

W+C-JET [Czakon, Mitov, Pellen, Poncelet '23]

NNLO stabilizes perturbative series

sensitivity to IC ⇝

 component in the proton?" [NNPDF Nature 608 (2022)]

B-HADRON IN tt

[Czakon, Generet, Mitov, Poncelet '21,'22]

- \bullet tt \leftrightarrow high purity & statistics
- ๏ B-hadrons measured precisely \hookrightarrow precise m_t extraction?
- \odot small power corrections ↪ $m_t \gg m_b$
- \bullet extract $D_{i\rightarrow B}$ from e⁺e[−] data

ISOLATED PHOTONS *γ* + jet *q* l. *Dq*!

EXP: require *photon isolation* to eliminate *g g* Three different kinds of photons in hadronic collisions:

> TH: so far relied on *idealized isolations g g g q*

 \mathbf{m} ismatch: few– 10% [LH '13 '15] \sim $\mathcal{O}(\Delta_{exp}, \Delta_{sc1}^{NNLO})$

overwhelming background from hadronization

[Frixione '98]

\bigcirc \circ pp $\rightarrow \gamma \gamma + j$ \bigodot \bullet \bigodot ๏ $pp \rightarrow \gamma \gamma \gamma$ $pp \rightarrow jjj$ $pp \rightarrow Wbb$ $pp \rightarrow ttH$ $pp \rightarrow \gamma + jj$ THE $2 \rightarrow 3$ FRONTIER: [Chawdhry, Czakon, Mitov, Poncelet '19] [Chawdhry, Czakon, Mitov, Poncelet '21] [Czakon, Mitov, Poncelet '21] [Hartanto, Poncelet, Popescu, Zoia '22] [Kallweit, Sotnikov, Wiesemann '20] (gluon-fusion @ NLO \simeq N³LO) \hookrightarrow [Badger, Gehrmann, Marcoli, Moodie '21] [Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini '22] $(gg \rightarrow ggg$; antenna automation) \hookrightarrow [Chen, Gehrmann, Glover, Huss, Marcoli '22] [Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia '23] ta and a strong and
The strong area of the strong and a strong an among the most complex NNLO calculations 100M CPU hours!!!

1 2 \bigcirc \circ pp $\rightarrow \gamma \gamma + j$ \bigodot \odot \bigodot \odot $pp \rightarrow \gamma \gamma \gamma$ $pp \rightarrow jjj$ $pp \rightarrow Wbb$ $pp \rightarrow t\bar{t}H$ $pp \rightarrow \gamma + jj$ THE $2 \rightarrow 3$ FRONTIER: [Chawdhry, Czakon, Mitov, Poncelet '19] [Chawdhry, Czakon, Mitov, Poncelet '21] [Czakon, Mitov, Poncelet '21] [Hartanto, Poncelet, Popescu, Zoia '22] [Kallweit, Sotnikov, Wiesemann '20] (gluon-fusion @ NLO \simeq N³LO) \hookrightarrow [Badger, Gehrmann, Marcoli, Moodie '21] [Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini '22] $(gg \rightarrow ggg$; antenna automation) \hookrightarrow [Chen, Gehrmann, Glover, Huss, Marcoli '22] [Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia '23] ta and a strong and
The strong area of the strong and a strong an among the most complex NNLO calculations 100M CPU hours!!!

\mathbf{C} scales

15

ttH — AN EIKONAL HIGGS?!

- ๏ a direct probe of the top Yukawa \leftrightarrow HL-LHC projection (exp): $\mathcal{O}(2\%)$
- ๏ missing ingredient: 2-loop amplitude \Leftrightarrow 2 \rightarrow 3 (+ 2 masses): current frontier
- ๏ *apply:* soft Higgs approximation $\mathcal{M}^{\text{t}\bar{\text{t}}}(\rho_t, p_{\bar{t}}, p_H) \simeq F(\alpha_s; m_t/\mu_R) J(p_H) \mathcal{M}^{\text{t}\bar{\text{t}}}(\rho_t, p_{\bar{t}})$
- $\Delta_{\text{scl}}^{\text{NLO}} \simeq \pm 9 \% \Rightarrow \Delta_{\text{scl}}^{\text{NNLO}} \simeq \pm 3 \%$
- ๏ error estimate for approximation $\rightarrow \pm 0.6\%$ (\leftarrow) on NNLO

future: valid approximation also for $t\overline{t}Z \& t\overline{t}W^{\pm}$?

- ๏ "Standard candles"
	- \leftrightarrow very precisely measured
- ๏ slow perturbative convergence **HIGGS BOSON COMPETUITOATIVE CONVERGENCE**
	- ↪ pp → *γγ* $\rightarrow \gamma \gamma$ ob
	- \hookrightarrow Higgs production (gg \rightarrow H) TSS production (gg \rightarrow H) [b. $\text{FPP} \quad \text{or} \quad \text$ $\overline{}$

Some processes require us to even push to the next order:

Fully Inclusive calculations $\leftrightarrow \sigma_{\text{tot}}$

power corrections ⇝ *instabilities*

- ⊕ can be cured This yields a stable fit, with a stable fit, with an acceptable \mathcal{L} **by resummation**
- θ hard $\sigma^{\Pi G}$ should not *^T* ! *^q*cut *^T* ⇠ 1GeV and simply dropping the power cor-*The need resummation?* corrections are shown in Fig. 2. The latter are huge at α Θ hard $\sigma^{\text{fid.}}$ should not need resummation?

- ✓ fiducial cuts, d*σ* ⇝ arbitrary distributions, …
- ✗ computationally expensive $\mathcal{O}(10^5\text{-}10^6)$ h

[Chen, Gehrmann, Glover, AH, Mistlberger, Pelloni '21]

- ✗ limited to *σ*tot
- √ very efficient Ô(sec)

FULLY DIFFERENTIAL ggH @ N3LO

FULLY INCLUSIVE

FULLY DIFFERENTIAL

⇝

[Chen, Gehrmann, Glover, AH, Mistlberger, Pelloni '21]

no instabilities & flat *K*-factor: $N^3LO \simeq NNLO \times K_{N^3LO}$

- ✓ fiducial cuts, d*σ* ⇝ arbitrary distributions, …
- ✗ computationally expensive $\mathcal{O}(10^5\text{-}10^6)$ h
- ✗ limited to *σ*tot
- √ very efficient Ô(sec)

FULLY DIFFERENTIAL ggH @ N3LO

FULLY INCLUSIVE

FULLY DIFFERENTIAL

⇝

DRELL YAN — A STANDARD CANDLE

- **•** clean signature (e^{\pm} , E_T^{miss}) & large cross section: $(-1000 Z & -4000 W^{\pm}) / sec$
- ๏ detector calibration, BSM searches, luminosity monitor, PDFs, …
- precision measurements: \hookrightarrow sin²($\theta_{\rm w}$), $M_{\rm W}$

* $\mathscr{L} = 2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

[Chen, Gehrmann, Glover, AH, Yang, Zhu '21,'22]

-
-
-

N3LO + RESUMMATION

improved convergence \leftrightarrow uncertainties: *few %*

๏ more robust & reduced uncertainties

DYTURBO [Camarda, Cieri, Ferrera '22]

, *m^Z* = 91*.*1876 GeV, *^Z* = 2*.*4952 GeV,

and we include the control of the c

Figure 5.: Differential transverse-momentum resumma-

NNLOJET+RADISH

CONCLUSIONS & OUTLOOK

- ๏ perturbative calculations *crucial* to scrutinise the Standard Model
- ๏ NNLO in good shape (reduced uncertainties & improved TH-data comparison)
	- \rightarrow 2 \rightarrow 2 largely done, steady progress for 2 \rightarrow 3 \leftrightarrow performance increasingly an issue
	- ▶ tying up loose ends <→ flavour, fragmentation, non-fact., mass effects, ...
	- loop amplitudes becoming a bottleneck again \leftrightarrow approximations in the interim
- **◎** N³LO computation of *inclusive* 2 → 1 processes mature
	- first differential $pp \rightarrow$ "colour neutral" \leftrightarrow $pp \rightarrow \gamma \gamma$, $pp \rightarrow VH$ within reach
	- \rightarrow towards $2 \rightarrow 2$: massless 3-loop amplitudes, first steps for subtraction, ...
- ๏ percent-level phenomenology: *everything becomes relevant* « PDFs (+N³LO evolution), parametric, QCD×EW, non-perturbative, ...

CONCLUSIONS & OUTLOOK

- ๏ perturbative calculations *crucial* to scrutinise the Standard Model
- ๏ NNLO in good shape (reduced uncertainties & improved TH-data comparison)
	- \rightarrow 2 \rightarrow 2 largely done, steady progress for 2 \rightarrow 3 \leftrightarrow performance increasingly an issue
	- ▶ tying up loose ends <→ flavour, fragmentation, non-fact., mass effects, ...
	- loop amplitudes becoming a bottleneck again \leftrightarrow approximations in the interim
- **◎** N³LO computation of *inclusive* 2 → 1 processes mature
	- first differential $pp \rightarrow$ "colour neutral" \leftrightarrow $pp \rightarrow \gamma \gamma$, $pp \rightarrow VH$ within reach
	- \rightarrow towards $2 \rightarrow 2$: massless 3-loop amplitudes, first steps for subtraction, ...
- ๏ percent-level phenomenology: *everything becomes relevant* « PDFs (+N³LO evolution), parametric, QCD×EW, non-perturbative, ... Thank you!

25

BACKUP**DUALIAN**

MIXED QCD—EW CORRECTIONS FOR DRELL—YAN

27

$$
d\sigma = d\sigma_{LO} \left(1 + \left(\frac{\alpha_s}{2\pi}\right) \delta^{(1,0)} + \left(\frac{\alpha}{2\pi}\right) \delta^{(0,1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \delta^{(2,0)} + \left(\frac{\alpha_s}{2\pi}\right) \left(\frac{\alpha}{2\pi}\right) \delta^{(1,1)} + \cdots \right)
$$

o resonant on-shell

- ‣ pole expansion [Dittmaier, Huss, Schwinn '14,'15]
- \triangleright **on-shell Z** (QCD \times QED) [Delto, Jaquier, Melnikov, Röntsch '19]
- $\sim \sigma_Z^{\rm tot}$ [Bonciani, Buccioni, Rana, Vicini '20]
- ‣ on-shell

[Buccioni, Caola, Delto, Jaquier, Melnikov, Roentsch '20] [Behring, Buccioni, Caola, Delto, Jaquier, Melnikov, Röntsch '20]

 $\sigma^{\rm NLO_{\rm s\oplus ew}} \sim 1, \; \delta^{(1,0)}, \; \delta^{(0,1)}$ $\sigma^{\text{NNLO}_{\text{s@ew}}} \sim 1, \; \delta^{(1,0)}, \; \delta^{(0,1)}, \; \delta^{(1,1)}$ NNLO_{s⊗ew} ~ 1, $\delta^{(1,0)}$, $\delta^{(0,1)}$, $\delta^{(1,0)} \times \delta^{(0,1)}$

off-shell

‣ W

‣ Z

[Buonocore, Grazzini, Kallweit, Savoini, Tramontano '21]

[Bonciani, Buonocore, Grazzini, Kallweit, Rana, Tramontano, Vicini '21] [Buccioni, Caola, Chawdhry, Devoto, Heller, von Manteuffel, Melnikov, Rontsch, Signorile-Signorile '22]

σ

notation

$\mathcal{O}(\alpha_{s} \alpha)$ — RESONANCE REGION

ous partonic channels is also shown (see text). [Bonciani, Buonocore, Grazzini, Kallweit, Rana, Tramontano, Vicini '21]

8ew

- naive product not able to capture
	- ← fails below resonance (m_{e} ^e) \hookrightarrow fails away from shoulder (p_T^{μ}) T
	- ⇔ well-captures full result here

๏ N3LO evolution

↔ 4-loop splitting functions

๏ aN3LO PDFs (MSHT)

N3LO PARTON DISTRIBUTION FUNCTIONS

[Moch, Ruijl, Ueda, Vermaseren, Vogt '17,'18,'22]; [Herzog, Falcioni, Moch, Vogt '23], in progress…

[McGowan, Cridge, Harland-Lang, Thorne '22]

ggH: $\delta \sigma^{\text{N}^3\text{LO}}$ \ VBF: $\delta \sigma^{\text{N}^3\text{LO}}$ \

FIDUCIAL ACCEPTANCES & y_H sei talveen
.

Linear ptH dependence of H acceptance, f(ptH) → impact on perturbative series IANCE $f(p_T^{\Pi})$ momentum imbalance between the two objects, where perturbative calculations could be a↵ected by enhanced (though integrable) logarithms of the imbalance. Ultimately, the discussions in those papers resulted in the widespread adoption of so-called "asymmetric" ACCEPTANCE *f*(*p*^H $\frac{\text{H}}{\text{T}}$

a linear dependence on the Higgs boson transverse momentum *pt,*^h [15, 16]:

Z *d*dl

.
.

$\frac{1}{\sqrt{1-\frac{1$ \bullet Linear $p_T^{\rm H}$ dependence T

mann '1 t '21; $\frac{1}{2}$ *.* (1.1) CWATER 21, ALUMITIE COUL *idem + Michel & Stewart '20* [Frixione, Ridolfi '97; Ebert, Tackmann '19 + Michel, Stewart '21; Alekhin et al. '21]

$$
f(p_T^H) = f_0 + f_1 \cdot p_T^H + \mathcal{O}((p_T^H)^2)
$$

[Frixione, Ridolfi '97; Ebert, Tackmann '19 + Michel, Stewart '21;

$$
m_H = 125 \text{ GeV}
$$

\n $m_H = 125 \text{ GeV}$
\n $\frac{1}{2} \frac{1}{2} \frac{\frac{1}{6}}{2} = 25.0$
\n $\frac{1}{2} \frac{1}{2} \frac{1}{2} = 25.0$
\n $m_H = 125 \text{ GeV}$
\n $\frac{1}{2} \frac{1}{2} \frac{1}{2} = 25.0$
\n $m_H = 125 \text{ GeV}$
\n $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = 25.0$
\n[Salam, Slade '21]

- *pt,*^h $\frac{1}{2}$ T dependence
1 growth for fixed-order (*n* 1)! ‣ **factorial growth** for fixed-order
- *n*=1 • *sensitivity* to very low $p_{\textrm{T}}^{\textrm{H}}$ T

Growth [Salam, Slade '21]

Linear ptH dependence of H acceptance, f(ptH) → impact on perturbative series asymmetric and symmetric cuts yield an acceptance for *H* ! decays, *f*(*pt,*h), that has **Replace cut on leading photon → cut on product of photon pt's** momentum imbalance between the two objects, where perturbative calculations could be a↵ected by enhanced (though integrable) logarithms of the imbalance. Ultimately, the discussions in those papers resulted in the widespread adoption of so-called "asymmetric" ACCEPTANCE *f*(*p*^H $\frac{\text{H}}{\text{T}}$

Z *d*dl

$$
f(p_T^{\rm H}) = f_0 + f_2 \cdot p_T^{\rm H} + f_2 \cdot (p_T^{\rm H})^2 + \mathcal{O}((p_T^{\rm H})^3)
$$

with cuts"/ no cuts"

\n
$$
\mathbf{0.001}_{\mathbf{a}^T} = \n\mathbf{0.001}_{\mathbf{a}^T} = \n\mathbf{0.002}_{\mathbf{a}^T} = \n\mathbf{0.003}_{\mathbf{a}^T} = \n\mathbf{0.004}_{\mathbf{a}^T} = \n\mathbf{0.005}_{\mathbf{a}^T} = \n\mathbf{0.001}_{\mathbf{a}^T} = \n\mathbf{0.001}_{\mathbf{a}^T} = \n\mathbf{0.002}_{\mathbf{a}^T} = \n\mathbf{0.003}_{\mathbf{a}^T} = \n\mathbf{0.004}_{\mathbf{a}^T} = \n\mathbf{0.001}_{\mathbf{a}^T} = \n\mathbf{0.001}_{\mathbf{a}^T} = \n\mathbf{0.002}_{\mathbf{a}^T} = \n\mathbf{0.003}_{\mathbf{a}^T} = \n\mathbf{0.001}_{\mathbf{a}^T} = \n\mathbf{0.004}_{\mathbf{a}^T} = \n\mathbf{0.001}_{\mathbf{a}^T} = \n\mathbf{0.001}_{\mathbf{a}^T} = \n\mathbf{0.002}_{\mathbf{a}^T} = \n\mathbf{0.003}_{\mathbf{a}^T} = \n\mathbf{0.001}_{\mathbf{a}^T} = \n\mathbf{0.001}_{\mathbf{a}^T} = \n\mathbf{0.002}_{\mathbf{a}^T} = \n\mathbf{0.003}_{\mathbf{a}^T} = \n\mathbf{0.001}_{\mathbf{a}^T} = \n\mathbf{0.004}_{\mathbf{a}^T} = \n\mathbf{0.005}_{\mathbf{a}^T} = \n\mathbf{0.001}_{\mathbf{a}^T} = \n\mathbf{0.001}_{\mathbf{a}^T} = \n\mathbf{0.002}_{\mathbf{a}^T} = \n\mathbf{0.003}_{\mathbf{a}^T} = \n\mathbf{0.001}_{\mathbf{a}^T} = \n\mathbf{0.001}_{\mathbf{a}^T} = \
$$

$$
\bullet
$$
 Quadratic p_T^H dependence

$$
\cdot
$$
 suppress factorial growth

.
.

a a a a correspondence on the Higgs boson the Higgs boson transverse momentum *particles in the Higgs boson transverse momentum particles in the Higgs boson transverse momentum particles in the Higgs boson transverse momen*

- *pt,*^h X (*n* 1)! ²
2/_{*n* ved order \sim} .idi gru # ◆*ⁿ* rial growth bpr ss fa s factorial growth ‣ *suppress* factorial growth
	- ad org <u>rder</u> 4*n* 4(*n*!) ‣ fixed order resummation ≃

Z *d*dl

Ind $\frac{1}{2}$ $\frac{1}{2$ θ_{test} arises and \log_{∞}^{2n-1} and $\frac{1}{3n}$ p_{ref} is all-order to f_0 -inspired to $\frac{1}{2}$ power-law dependence of the acceptance for ρ ^t, in a perturbative series for the series for the series for the perturbative series for the perturbative series for the series for the series for the series for the series $f_{\rm eff}$ $f_{\rm 0}$ $f_{\rm 0}$ coming pred $Im \varphi = 125$ GeV cause of t_{β} e speev isign factorial growth induced renormalized by induced t_{β} . In the t_{β} $CDZ5m_H$ 2 ACCEP ACCEPTAN ACCEPTANCE ACCEPTANCE $f(p)$

"with context of $\frac{1}{p}$
 σ_{fid} σ_{fid} σ_{Fe}
 σ_{Fe} σ_{Fe}
 σ_{Fe} σ_{Fe}
 σ_{Fe} σ_{Fe}
 σ_{Fe} σ_{Fe} ACCEPTANCE $f(p_T^H)$

"with cuts

"with cuts
 $\tau_{\text{tot}}\left\{\begin{array}{l}\text{for }p_T^{\text{sc}}\\ \text{of }\theta\end{array}\right\}$
 $\tau_{\text{tot}}\left\{\begin{array}{l}\text{for }p_T^{\text{sc}}\\ \text{of }\theta\end{array}\right\}$
 $\tau_{\text{tot}}\left\{\begin{array}{l}\text{on }\theta\end{array}\right\}$
 $\tau_{\text{tot}}\left\{\begin{array}{l}\text{on }\theta\end{array}\right\}$
 $\tau_{\text{tot$ ACCEPTANCE $f(p_T^H)$

"with cuts"/

Ttot 0.80 $\frac{p_T^H p_T^H k_t - 2}{p_T^H p_T^H k_t^H}$
 $\frac{p_T^H p_T^H k_t^H}{\frac{p_T^H p_T^H k_t^H}{\sum_{i=1}^{n-1} p_i^H k_i^H}$
 $\frac{p_T^H p_T^H k_t^H}{\sum_{i=1}^{n-1} p_T^H k_t^H}$
 $\frac{p_T^H p_T^H k_t^H}{\sum_{i=1}^{n-1} p_T^H k_t^H k_t^H}$ ACCEPTANCE $f(p_T^H)$

"with cuts"/"nc

"with cuts"/"nc
 $\frac{1}{2}$ for $\frac{1}{2}$ for $\frac{1}{2}$ for $\frac{1}{2}$ for $\frac{1}{2}$
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ ACCEPTANCE $f(p_T^H)$

"with cuts"/"no cu

Ttot $\begin{cases} \frac{\sqrt{p_{\text{tr}}\mathbf{g}_{\text{tr}}}}{\sqrt{p_{\text{tr}}\mathbf{g}_{\text{tr}}}} = \frac{1}{2}g_{\text{tr}}^2\mathbf{g}_{\text{tr}}^2\mathbf{g}_{\text{tr}}^2\mathbf{g}_{\text{tr}}^2\mathbf{g}_{\text{tr}}^2\mathbf{g}_{\text{tr}}^2\mathbf{g}_{\text{tr}}^2\mathbf{g}_{\text{tr}}^2\mathbf{g}_{\text{tr}}^2\math$ ACCEPTANCE $f(p_T^H)$

"with cuts"/"no cuts"

Ttot 0.80 $\frac{|\sqrt{p_t\mathcal{B}_t}-\gamma_0\cdot\mathcal{B}_T|}{|\mathcal{B}_t|}\sqrt{\frac{2(n+1)}{n+1}-\frac{2(n+1)}{n+1}}$

That $\frac{1}{\sum_{i=1}^{n}p_{t,i}}$ (Hitter) $\frac{dp}{dp}$
 $-\frac{1}{\sum_{i=1}^{n}p_{t,i}}$ $-\frac{1}{\sum_{i=1}^{n}p_{t,i}}$ $-\frac$ 12]. Furthermore, it turns out that to obtain the correct N3LO prediction, it is necessary ACCEPTANCE $f(p_T^H)$

"with cuts"/"no cuts"
 $\frac{1}{2}$ over $\frac{1}{2}$ ov ACCEPTANCE $f(p_T^H)$

"with cuts"/"no cuts"

Ttot $\begin{cases} \n\oint_C \frac{p_T^H f}{p_T^H f} \frac{\partial^2 f}{\partial x \partial y} \frac{\partial^2 f}{\partial y \partial z} \frac{\partial^2 f}{\partial y \partial x} \frac{\partial^2 f}{\partial z \partial y \partial z} \frac{\partial^2 f}{\partial z$ ACCEPTANCE $f(p_T^H)$

"with cuts"/"no cuts"

Ttot 6.60 $\frac{[p_T^H R_t - \sum_{i=1}^{n} \sum_{j=1}^{n} B_i^T R_{t,i}]}{[p_T^H R_t - \sum_{i=1}^{n} (B_{t,i})]}\n\frac{q_T^H P_t}{[p_T^H R_t^H]}\n\frac{q_T^H P_t}{[p_T^H R_t^H]}\n\frac{q_T^H P_t}{[p_T^H R_t^H]}\n\frac{q_T^H P_t}{[p_T^H R_t^H]}\n\frac{q_T^H P_t$ ACCEPTANCE $f(p_T^H)$

"with cuts"/"no cuts"
 $\tau_{tot}\left\{\begin{array}{l}\n\delta_0 \frac{1}{\sqrt{p_{\text{TX}}p_{\text{C}}-p_{\text{A}}}p_{\text{B}}p_{\text{B}}n_{\text{H}}} \frac{1}{2(n)!}\n\delta_{\text{Hd}} \equiv \frac{1}{\sqrt{1-\frac{p_{\text{A}}p_{\text{A}}p_{\text{B}}p_{\text{B}}}}p_{\text{B}}p_{\text{B}}n_{\text{H}}} \frac{1}{2(n)!}\n\end{array}\right\}$
 $-\$ ACCEPTANCE $f(p_1^H)$

"with cuts"/"no cuts"

Ttot $\oint \oint \frac{p_1 \sqrt{p_1 \sqrt{p_2 p_1}} - \gamma \beta_1 \beta_1 \theta_1 p_1}{2(n_1)}$, \oint
 \oint \oint \oint \oint $\frac{1}{2} \int_{10}^{10} \frac{p_1 \sqrt{p_1 \sqrt{p_2 p_1}} - \gamma \beta_1 \beta_1 \theta_1 p_1}{2(n_1 \sqrt{p_1})}$
 $\oint \oint \frac{p_1 \sqrt{p_1$ with cuts"/"no cuts"

Ttot 0.60 $\frac{p_0P_0 + p_1P_1}{p_0P_1P_2}$, $\frac{p_0P_2P_0}{p_0P_1P_1P_2}$, $\frac{p_0P_1}{p_0P_1P_1P_2}$, $\frac{p_0P_1}{p_0P_1P_1P_2}$, $\frac{p_0P_1}{p_0P_1P_1P_2}$, $\frac{p_0P_1}{p_0P_1P_1P_2}$, $\frac{p_0P_1}{p_0P_1P_1$ f (*pt*,^H) = f ₀
coming p
0.65 *·^pt,*^h $\frac{1}{10}$ $-\frac{2}{1}$ $f(p_{t,\mathrm{H}})$
m2llogs H
D+2{ *m*² Y. $\frac{1}{2}$ $\frac{2(n!)}{2(n!)}$ *.*ACCEPTANCE $f(p_T^H)$

"with cuts"/"no cuts"
 \mathcal{F}_{tot} ($\mathbf{\hat{a}}_1 \cdot \mathbf{\hat{b}}_2 \cdot \mathbf{\hat{c}}_3 \cdot \mathbf{\hat{b}}_1 \cdot \mathbf{\hat{c}}_2 \cdot \mathbf{\hat{b}}_1 \cdot \mathbf{\hat{b}}_2 \cdot \mathbf{\hat{c}}_3 \cdot \mathbf{\hat{b}}_1 \cdot \mathbf{\hat{c}}_2 \cdot \mathbf{\hat{c}}_3 \cdot \mathbf{\hat{b}}_1 \cdot \mathbf{\hat{c}}_3 \cdot \mathbf{\hat{c}}$ ACCEPTANCE $f(p_T^H)$

"with cuts"/"no cuts"
 $\frac{1}{2} \int_{r \to 0}^{r} \frac{p_{0}^H \sqrt{p_{0}^H p_{0}}}{\sqrt{p_{0}^H p_{0}^H p_{0}^H p_{0}^H p_{0}^H p_{0}^H p_{0}^H p_{0}^H p_{0}^H}}$
 $\frac{f(p_T^H) = f_0 + f_0$
 $\frac{f_0^H \sqrt{p_{0}^H p_{0}^H p_{0}^H p_{0}^H p_{0}^H p_{0}^H p_{0}$ with cuts" /"no cuts"

visit cuts"
 $r_{\text{tot}}\left(\frac{\sqrt{P_{\text{tot}}P_{\text{tot}}}-\sqrt{P_{\text{tot}}P_{\text{tot}}}}{\sqrt{P_{\text{tot}}P_{\text{tot}}P_{\text{tot}}}\right) + \sqrt{P_{\text{tot}}P_{\text{tot}}P_{\text{tot}}}\right)$
 $\sigma_{\text{fid}} = \int \frac{\sqrt{P_{\text{tot}}P_{\text{tot}}P_{\text{tot}}}}{\sqrt{P_{\text{tot}}P_{\text{tot}}P_{\text{tot}}}\sqrt{P_{\text{tot}}P_{\text{tot$ port dependence of the accuse of the acceptance of the acceptance of the acceptance of the acceptance ρ_t , ρ_t and ρ_t are ρ_t and ρ_t and ρ_t are ρ |
|
|
|
|
| 0 results in a perturbative series for the fid 0.0 COILVC 12.5
cause of the steevisign *s* duy
5.0
fact Factorial growth in the value of θ_{E} (here θ_{E} on θ_{E} of θ $f(\theta)$ and $f(\theta)$ and The same of the s context, the smallest term in the suppress factorial growth
 $\frac{1}{\pi}$ $\frac{1}{\pi}$ $\frac{1}{\pi}$ $\frac{1}{\pi}$ for $\frac{1}{\pi}$ is $\frac{1}{\pi}$ for $\frac{1}{\pi}$ for $\frac{1}{\pi}$ for $\frac{1}{\pi}$ for $\frac{1}{\pi}$ for $\frac{1}{\pi}$ for $\frac{1}{\pi$ **and the alternation of the alternation**
 $\frac{1}{\sqrt{2}}$ for alternation $\frac{1}{\sqrt{2}}$
 $\frac{1}{\sqrt{2}}$ for $\frac{1}{\sqrt{2}}$ for $\frac{1}{\sqrt{2}}$
 $\frac{1}{\sqrt{2}}$ for $\frac{1}{\sqrt{2}}$ for $\frac{1}{\sqrt{2}}$
 $\frac{1}{\sqrt{2}}$ for $\frac{1}{\sqrt{2}}$ for $\frac{1}{$ $\frac{d\mathbf{y}_{\text{off}}}{dt}$ and $\frac{d\mathbf{y}_{\text{off}}}{dt}$ fixed-order \approx resummation.
 $\frac{d\mathbf{y}_{\text{off}}}{dt}$ fixed-order \approx resummation.
 $\frac{d\mathbf{y}_{\text{off}}}{dt}$ fixed-order \approx resummation.
 $\frac{d\mathbf{y}_{\text{off}}}{dt}$ for $\frac{d\mathbf{y}_{\text{off$ perturbation calculations in the section of $\frac{a_{\text{prod}}}{2}$ is section than the section of $\frac{a_{\text{prod}}}{\sigma_0 f_0}$
 $\Rightarrow 125 \text{ GeV}$ with implies $\frac{a_{\text{prod}}}{\sigma_0 f_0} \approx 0.005_{\alpha_s} + 0.002_{\alpha_s^2} - 0.001_{\alpha_s^3} + ...$
 $\Rightarrow 0.006 \text{ @$ **Solution**, Staat 21, Exercise 1, Exercise 2018, Staat 21, Exercise 2018, Staat 21, Exercise 2019, Staat 21, Exercise 2019, Staat 2019, St ✓*pt,*^h ◆² minant $\frac{\text{H}_\text{C}}{\text{H}}$ "with cuts" / "no cuts" $\sigma_{\rm fid}$ \pm $\frac{\partial t}{\partial \mu}$ $dp_{t,\mathrm{H}}$ $f(p_{t,H})dp_{t,H}$ e arise *f*⁰ + *f*¹ \sum ∞ *n*=1 (1)
(1)
(1) $f(x)$ ($f(x)$) ($f(x)$) ($f(x)$) (1) $f(x)$) $\mathcal{F}_{\text{tot}}\left\{\text{for }\frac{1}{2}n\right\}$ $\mathbf{F}^{\boldsymbol{\beta}}$ $\frac{\infty}{1}$ n $\stackrel{W}{=}1$ $\frac{t}{2}$ = $\frac{0.35(2m)}{2(n)}$
 $\frac{1}{2}$ = $\frac{1}{2}$ $\left(\frac{(2m)!}{2(n!)}\right)$ *d*dl *dpt,*^h \bigoplus p vot *pt,*^h $\sum_{i=1}^n$ ∞ *n*=1 $\lim_{n\to\infty} \frac{2n-1}{n}$ $\frac{\partial}{\partial P}p^{\prime}$ $\frac{1}{2}$ f (*pt*,H) = f_0 + f_0 + f_1 + f_0 [from sides by Salam, Les Houches 221]

*d*dl

X

.

(*n*
1)
1) november - Alexander Contractor (1)
1) november - Alexander Contractor (1)

(1)*n*¹ 2 log2*n*¹ *^m*^h

2*pt,*h

✓2*CA*↵*^s*

dpt,^h

=

 $\frac{1}{2}$

pt,^h

.

(*n* 1)!

⇡

m^h

[Salam, Slade '21]

- ✓ fiducial cuts, d*σ* ⇝ arbitrary distributions, …
- ✗ computationally expensive $\mathcal{O}(10^5\text{-}10^6)$ h

- ✗ limited to *σ*tot
- √ very efficient Ô(sec)

 q_T^{cut} as small as possible \leftrightarrow q_T^{cut} as large as possible

 \hookrightarrow suppress power corrections \hookrightarrow numerical stability & efficiency

- ๏ expand to fixed order
- \circ $\mathcal{O}(\alpha_s^3)$ ingredients:
- \cdot hard function $H_{q\bar{q}}$ [Gehrmann, Glover, Huber, Ikizlerli, Studerus '10]
- ‣ soft function *S*(**b**⊥) [Li, Zhu '16]
- ‣ beam function

[Luo, Yang, Zhu, Zhu '19] [Ebert, Mistlberger, Vita '20]

GOING DIFFERENTIAL @ N³LO — QT SUBTRACTION

FULLY INCLUSIVE

FULLY DIFFERENTIAL

⇝

- ๏ converges to correct result for
- - potentially uncontrolled systematics

VALIDATION order. The bottom panel contains the nonsingular re-VALIDATION

- [Chen, Gehrmann, Glover, AH, Yang Zhu '21, '22]
- ๏ *fully independent* calculation of the
- ๏ analytic result - - ↭ [Duhr, Dulat, Mistlberger '20]
- \bullet "fake" plateau: $q_T^{\text{cut}} \in [2, 5]$ GeV

FIDUCIAL CUTS AND LINEAR POWER CORRECTIONS — N3LO SLICING **CONGING SLICING**

● fiducial cuts $→$ can induce linear power corrections [Tackmann, Ebert '19][Alekhin, Kardos, Moch, Trócsányi '21][Salam, Slade '21]

 \cdot can jeopardise q_T slicing q_T slicing $\mathcal{O}\left((q_T^{\text{cut}}/Q)\right)$ 2 $[q_T^{\text{cut}} \lesssim 1 \text{ GeV}]$

$$
((q_T^{\text{cut}}/Q)^2) \rightsquigarrow \mathcal{O}(q_T^{\text{cut}}/Q) \qquad \qquad \sum_{p_T^2} \qquad \qquad \text{Final} \atop \text{zero}
$$

 $T^{\text{cut}}(Q)$ $T_{\text{T}}^{\text{cut}} \lesssim 1 \text{ GeV}$] [$q_{\text{T}}^{\text{cut}} \lesssim 10^{-2} \text{ GeV}$?!]

FIDUCIAL CUTS AND LINEAR POWER CORRECTIONS — N3LO SLICING **CONGING SLICING**

● fiducial cuts $→$ can induce linear power corrections [Tackmann, Ebert '19][Alekhin, Kardos, Moch, Trócsányi '21][Salam, Slade '21]

 \cdot can jeopardise q_T slicing q_T slicing $\mathcal{O}\left((q_T^{\text{cut}}/Q)\right)$ $[q_T^{\text{cut}} \lesssim 1 \text{ GeV}]$

$$
((q_T^{\text{cut}}/Q)^2) \rightsquigarrow \mathcal{O}(q_T^{\text{cut}}/Q) \qquad \qquad \sum_{p_T^2} \qquad \qquad \text{Final} \atop \text{zero}
$$

\sim a: *M* specific choice of cuts \vdash can *compute* & *subtract* the linear term: **Drell-Yan** production cuts (ATLAS, CMS, LHCb…) \hookrightarrow simple hoost of $V \rightarrow \ell \ell$ system \sim SHIPIC DOOR OF \prime (2000) space in → simple boost of $V \rightarrow \ell \bar{\ell}$ system

(pure kinematics & acceptance effect)

[Catani, de Florian, Ferrera, Grazzini '15] [Ebert, Michel, Stewart, Tackmann '21]

