Jet substructure for parton showers and resummations

Gregory Soyez,

with Frederic Dreyer, Andrew Lifson, Gavin Salam, Adam Takacs, and PanScales

IPhT, CNRS, CEA Saclay, CERN

Parton Showers and Resummations (PSR), 6-8 June 2023

Jet substructure

Jet substructure

Almost the organiser's request

This talk

Instead of giving yet-another overview of jet substructure glorifying its wonderful achievements and merits in many areas of QCD, I will instead...

... focus on only 2 examples directly connecting jet substructure to PSR

Almost the organiser's request

This talk

Instead of giving yet-another overview of jet substructure glorifying its wonderful achievements and merits in many areas of QCD, I will instead...

... focus on only 2 examples directly connecting jet substructure to PSR and glorifying its wonderful achievements and merits in 2 areas of QCD!

The substructure of boosted jets is wonderful for PSR

• Boosted jets have (by definition)

 $p_t \gg \Lambda_{\text{QCD}}$

- i.e. a large phase-space for perturbative emissions i.e. fall directly in the area of parton showers and resummations
- a whole library of techniques/observables is readily available
- many possibilities to design new tools focusing on specific tasks

 \bullet Introduction to make sure we are on the same page

- Lund diagrams: a (historical) conceptual tool for parton showers and resummations
- promoting to a practical tool for jet physics

 \bullet Example $\#1$: azimuthal correlations in the Lund plane

 \bullet Example #2: quark/gluon tagging

More directly-related examples will be given in Alba Soto Ontoso's talk See also talks by Basem El-Menoufi, Matt Schwartz, Silvia Ferrario Ravasio and Alexander Karlberg

 Ω

Warmup: Lund diagrams A useful representation of radiation in a jet

Basic features of QCD radiations

Take a gluon emission from a $(q\bar{q})$ dipole

Emission:

$$
k^{\mu} \equiv z_q p_q^{\mu} + z_{\bar{q}} p_{\bar{q}}^{\mu} + k_{\perp}^{\mu}
$$

3 degrees of freedom:

- Rapidity: $\eta = \frac{1}{2}$ $rac{1}{2}$ log $rac{z_q}{z_{\overline{q}}}$
- Transverse momentum: k_1
- Azimuth: ϕ

In the soft-collinear approximation

$$
d\mathcal{P} = \frac{\alpha_s(k_\perp)C_F}{\pi^2} d\eta \frac{dk_\perp}{k_\perp} d\phi
$$

Lund plane: natural representation uses the 2 "log" variables η and log k_{\perp}

 QQ

Lund plane: natural representation uses the 2 "log" variables η and log k_{\perp}

Gregory Soyez Substructure and PS&R PSA 2023 8 / 21

 QQ

Lund plane: natural representation uses the 2 "log" variables η and log k_{\perp}

Gregory Soyez Substructure and PS&R PSA 2023 8 / 21

Lund plane: natural representation uses the 2 "log" variables η and log k_{\perp}

Multiple emissions in the Lund plane

Multiple emissions in the Lund plane

Lund planes: promoting Lund diagrams to a practical tool

For a given jet

• recluster (the constituents) with the Cambridge/Aachen algorithm

$$
\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2
$$

i.e. cluster from small to large angular distance

e gives a tree structure on the jet

[F.Dreyer,G.Salam,GS[,arXiv:1807.04758\]](https://arxiv.org/abs/1807.04758)

 $\mathcal{T}_i \equiv \{\theta_i, k_{t,i}, z_i, \psi_i, m_i, \dots\}$ Lund coordinates at each vertex

For a given jet

• recluster (the constituents) with the Cambridge/Aachen algorithm

$$
\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2
$$

i.e. cluster from small to large angular distance

e gives a tree structure on the jet

For jets in pp: (similar for ee)
\n
$$
\eta = -\ln \Delta R
$$
\n
$$
k_t = p_{t,soft} \Delta R, \text{ or } z = \frac{p_{t,soft}}{p_{t,parent}}
$$
\n
$$
\psi \equiv \text{azimuthal angle}
$$

[F.Dreyer,G.Salam,GS[,arXiv:1807.04758\]](https://arxiv.org/abs/1807.04758)

• closely follows angular ordering i.e. mimics partonic cascade

←□

- closely follows angular ordering i.e. mimics partonic cascade
- o can be organised in Lund planes
	- primary

в

- closely follows angular ordering i.e. mimics partonic cascade
- o can be organised in Lund planes
	- primary
	- secondary

...

- closely follows angular ordering i.e. mimics partonic cascade
- o can be organised in Lund planes
	- primary
	- secondary

...

- closely follows angular ordering i.e. mimics partonic cascade
- o can be organised in Lund planes
	- primary
	- secondary

...

Message $#1$

Lund diagrams represent (multiple) radiation across scales

- natural for thinking about resummations and parton showers
- different physical regions (soft, collinear, hard, non-perturbative) well separated
- **•** organised in planes respecting angular ordering

Application series $#1$: angular correlations

 \leftarrow

目目 のへぐ

Azimuth between 1^{st} and 2^{nd} prim. declust.

Selection

select the 2 emissions with the largest k_t $-0.6 < \alpha_s$ In $\frac{k_{t1}}{Q}$ < −0.5, 0.3 < $\frac{k_{t2}}{k_{t1}}$ < 0.5, $\alpha_s \to 0$

QCD expectation

 $\Sigma_{\rm NLL}(\Delta\Psi_{12}) = \text{constant}$

Gregory Soyez **Sovez Substructure and PS&R** PSR 2023 14 / 21

 α

[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS[,2002.11114\]](https://arxiv.org/abs/2002.11114)

Azimuth between 1^{st} and 2^{nd} prim. declust.

Selection

first (primary) emission (k_1) with $z > z_{\text{cut}}$ + first 2^{ndary} emission from k_1 with $z > z_{\text{cut}}$ fixed $z_{\text{cut}} = 0.1$; $\alpha_s \rightarrow 0$

QCD expectation

- some $\Delta\Psi_{12}$ dependence due to (collinear) spin correlations
- analytic expressions available for EEEC [\(2011.02492\)](https://arxiv.org/abs/2011.02492)

Azimuth between 1^{st} and 2^{nd} prim. declust.

 $primary + secondary$ both hard-collinear

clear sensitivity to (collinear) spin "New" PanScales shower have spin at NLL EEEC also OK albeit less sensitive

Gregory Soyez Substructure and PS&R PSR 2023 14 / 21

▶ 제품 ▶ 제품 ▶ 품(됨) ⊙ Q ⊙

Azimuth between 1^{st} and 2^{nd} prim. declust.

Selection

first (primary) emission (k_1) with $|\eta| < \eta_{\text{cut}}$ + first 2^{ndary} emission from k_1 with $z > z_{\text{cut}}$ fixed $\eta_{\text{cut}} = 1$; $z_{\text{cut}} = 0.1$; $\alpha_s \rightarrow 0$

QCD expectation

- some $\Delta \Psi_{12}$ dependence due to (soft) spin correlations
- no (all-order) analytic expressions known

Azimuth between 1^{st} and 2^{nd} prim. declust.

[K.Hamilton,A.Karlberg,G.Salam,L.Scyboz,R.Verheyen[,2111.01161\]](https://arxiv.org/abs/2111.01161)

Sensitive to (soft) spin "New" PanScales shower have spin at NLL shower gives first NLL all-order result

Quark/gluon discrimination

Gregory Soyez Substructure and PS&R PSR 2023 15 / 21

重目 のへぐ

B

4日下

∢母 → < 3 \rightarrow

Quark/gluon discrimination

Note: not totally trivial to define what is a "quark jet" or a "gluon jet". Let us say that we work at small jet radius R so that we can at least focus on "universal" effects i.e. aspects depending on the overall process are suppressed as R^2 . One can then test e.g. quark/gluon jets in $Z+$ jet v. dijets. (see also [arXiv:1704.03878\)](https://arxiv.org/abs/1704.03878)

 Ω

Quark v. gluon jets, part I: approaches

Optimal discriminant (Neyman–Pearson lemma) $\mathbb{L}_{\text{prim,tree}} = \frac{p_{\mathcal{g}}(\mathcal{L}_{\text{prim,tree}})}{p_{\mathcal{g}}(\mathcal{L}_{\text{prim,tree}})}$ $p_q(\mathcal{L}_{\text{prim,tree}})$

Quark v. gluon jets, part I: approaches

Optimal discriminant (Neyman–Pearson lemma) $\mathbb{L}_{\text{prim,tree}} = \frac{p_{\mathcal{g}}(\mathcal{L}_{\text{prim,tree}})}{p_{\mathcal{g}}(\mathcal{L}_{\text{prim,tree}})}$ $p_q(\mathcal{L}_{\text{prim,tree}})$

Approach #1

Deep-learn $\mathbb{L}_{\text{prim, tree}}$ LSTM with $\mathcal{L}_{\text{prim}}$ or Lund-Net with $\mathcal{L}_{\text{tree}}$

Quark v. gluon jets, part I: approaches

Optimal discriminant (Neyman–Pearson lemma) $\mathbb{L}_{\text{prim,tree}} = \frac{p_{\mathcal{g}}(\mathcal{L}_{\text{prim,tree}})}{p_{\mathcal{g}}(\mathcal{L}_{\text{prim,tree}})}$ $p_q(\mathcal{L}_{\text{prim,tree}})$

Approach #2

Use pQCD to calculate $p_{q,g}(\mathcal{L}_{\text{prim,tree}})$

- Only splittings with $k_t \geq k_{t,\text{cut}}$ to stay perturbative
- Resum logs to all orders in α_{s} , up to single logs
	- ▶ single logs from "DGLAP" collinear splittings

$$
P_{i=q,g}(\mathcal{L}_{\text{parent}}) = S_i(\Delta_{\text{prev}}, \Delta) \sum_{j,k=q,g} \tilde{P}_{i \rightarrow jk}(z) p_j(\mathcal{L}_{\text{hard}}) p_k(\mathcal{L}_{\text{soft}})
$$

Approach #1

Deep-learn $\mathbb{L}_{\text{prim,tree}}$ LSTM with $\mathcal{L}_{\text{prim}}$ or Lund-Net with $\mathcal{L}_{\text{tree}}$

Quark v. gluon jets, part II: performance

$pp \rightarrow Zq$ v. $pp \rightarrow Zg$ ($p_t \sim 500$ GeV, $R = 0.4$)

• $k_t > 1$ GeV, clear performance ordering: \bullet Lund+ML $>$ Lund analytic $>$ ISD $\overline{2}$ tree > prim

several potential effects "learned" by network: subleading, large R, fixed order, > 2 commensurate angles, non-pert, MPI, ...

 298

 \rightarrow \equiv

Quark v. gluon jets, part II: performance

$pp \rightarrow Zq$ v. $pp \rightarrow Zg$ ($p_t \sim 500$ GeV, $R = 0.4$)

• $k_t > 1$ GeV, clear performance ordering: \bullet Lund+ML $>$ Lund analytic $>$ ISD 2 tree $>$ prim

several potential effects "learned" by network: subleading, large R, fixed order, > 2 commensurate angles, non-pert, MPI, ...

• larger gains with no k_t cut

Suggests that there is quite a lot of differences between quarks and gluon in the NP region ("learned" by the network)

 298

医尿囊的

Ares Under Curve: lower is better

gluon rejection: higher is better

Asymptotics towards NLL $\alpha_{s}L = \text{cst}, \ \alpha_{s} \to 0 \ (L \to \infty)$

Gregory Soyez Substructure and PS&R PSR 2023 18 / 21

|星|≡ の≪ぐ

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Ares Under Curve: lower is better

Idea

4 **EL F** ∢母

Asymptotics towards NLL $\alpha_{s}L = \text{cst}, \ \alpha_{s} \to 0 \ (L \to \infty)$

Larger α_s (lower L) $ML >$ analytics $> n_{SD}$ little help beyond primary

医毛囊 医牙骨

드바람

Ares Under Curve: lower is better

gluon rejection: higher is better

Idea

4 D F ∢母

Asymptotics towards NLL $\alpha_{s}L = \text{cst}, \ \alpha_{s} \to 0 \ (L \to \infty)$

Larger α_s (lower L) tree $>$ primary $>$ nsp ML \approx analytics

医阿里氏阿里

II

Ares Under Curve: lower is better

gluon rejection: higher is better

Idea

Asymptotics towards NLL $\alpha_{s}L = \text{cst}, \ \alpha_{s} \to 0 \ (L \to \infty)$

Larger α_s (lower L) $ML >$ analytics $> n_{SD}$ little help beyond primary

Larger α_s (lower L) tree $>$ primary $>$ n_{SD} ML \approx analytics

> develop accurate parton-showers for ML

Quark v. gluon jets, part IV: ML validation

our analytic discriminant is exact/optimal in the dominant collinear limit $\theta_1 \gg \theta_2 \gg \cdots \gg \theta_n$ \Rightarrow ML expected to give the same performance

 Ω

Quark v. gluon jets, part IV: ML validation

our analytic discriminant is exact/optimal in the dominant collinear limit $\theta_1 \gg \theta_2 \gg \cdots \gg \theta_n$ \Rightarrow ML expected to give the same performance

Non-global logarithms

Recent progress

next-to-single-log resummations available!

```
[Banfi,Dreyer,Monni,2104.06416,2111.02413]
```

```
[Becher, Rauh, Xu, 2112.02108] + Thomas' talk
```
- Improved accuracy on a delicate part of resummations
- Should provide an extra bone to chew on for parton-shower developments

Other things worth noticing:

- \bullet Beyond leading- N_c Hatta, Ueda, 1304.6930
- Inclusion of heavy quarks [Balsiger, Becher, Ferroglia, [2006.00014\]](https://arxiv.org/abs/2006.00014)

NGLs and substructure

applying grooming techniques (mMDT/SoftDrop) largely removes NGLs

still left with non-trivial clustering effects at some point

Gregory Soyez Substructure and PS&R PSR 2023 20 / 21

Basic "substructure" facts

- **1** Substructure tools are now well establishes
- ² Many interesting techniques based on reconstructing Lund diagrams/planes mimics angular ordering, separate different physical effects (e.g. $k_{t,\text{cut}}$ reduces NP effects)

Basic "substructure" facts

- **1** Substructure tools are now well establishes
- ² Many interesting techniques based on reconstructing Lund diagrams/planes mimics angular ordering, separate different physical effects (e.g. k_t _{cut} reduces NP effects)

Take-home message from this talk: connections between substructure and PSR

 $PSR \rightarrow$ substructure

- **•** parton showers have helped designing many substructure tools
- boosted jets \Rightarrow resummations

 $substructure \rightarrow PSR$

can design substructure variables sensitive to specific parton-shower/resummation effects

 \Rightarrow connected to several recent parton-shower developments ⇒ connected to several QCD measurements at the LHC

 Ω

Basic "substructure" facts

- **1** Substructure tools are now well establishes
- ² Many interesting techniques based on reconstructing Lund diagrams/planes mimics angular ordering, separate different physical effects (e.g. k_t _{cut} reduces NP effects)

Take-home message from this talk: connections between substructure and $\widehat{\text{PSR}}$

 $PSR \rightarrow$ substructure

- **•** parton showers have helped designing many substructure tools
- boosted jets \Rightarrow resummations

 $substructure \rightarrow PSR$

can design substructure variables sensitive to specific parton-shower/resummation effects

 \Rightarrow connected to several recent parton-shower developments \Rightarrow connected to several QCD measurements at the LHC

 $+$ connections with machine-learning approaches from $pQCD$

 Ω

Basic "substructure" facts

- **1** Substructure tools are now well establishes
- ² Many interesting techniques based on reconstructing Lund diagrams/planes mimics angular ordering, separate different physical effects (e.g. k_t _{cut} reduces NP effects)

Take-home message from this talk: connections between substructure and PSR

 $PSR \rightarrow$ substructure

- **•** parton showers have helped designing many substructure tools
- boosted jets \Rightarrow resummations

 $substructure \rightarrow PSR$

can design substructure variables sensitive to specific parton-shower/resummation effects

 \Rightarrow connected to several recent parton-shower developments \Rightarrow connected to several QCD measurements at the LHC

 $+$ connections with machine-learning approaches from $pQCD$

Showcases the need to develop PS&R and the role of substructure

Gregory Soyez Substructure and PS&R PSR 2023 21 / 21

Backup

イロト (御) (言) (言) 追(言) のんぐ

Promoting to a practical tool

Construct the Lund tree in practice: use the Cambridge(/Aachen) algorithm Main idea: Cambridge(/Aachen) preserves angular ordering

e $^+e^-$ collisions

- **1** Cluster with Cambridge $(d_{ii} = 2(1-\cos\theta_{ii}))$
- 2 For each (de)-clustering $j \leftarrow j_1 j_2$: $\eta = -\ln \theta_{12}/2$ $k_t = \min(E_1, E_2) \sin \theta_{12}$ $z = \frac{\min(E_1, E_2)}{E_1 + E_2}$ E_1+E_2 $\psi \equiv$ some azimuth,...

Jet in pp

 \bullet Cluster with Cambridge/Aachen ($d_{ii} = \Delta R_{ii}$)

• For each (de)-clustering
$$
j \leftarrow j_1 j_2
$$
:
\n
$$
\eta = -\ln \Delta R_{12}
$$
\n
$$
k_t = \min(p_{t1}, p_{t2}) \Delta R_{12}
$$

$$
z = \frac{\min(p_{t1}, p_{t2})}{p_{t1} + p_{t2}}
$$

$$
\psi \equiv \text{some azimuth,...
$$

rimary Lund plane

Starting from the jet, de-cluster following the "hard branch" (largest E or p_t)

 298

メ海 トメミ トメミ トラビ

Gregory Soyez Substructure and PS&R PSR 2023 3 / 8 Section 1 2023 3 / 8

Gregory Soyez Substructure and PS&R PSR 2023 3 / 8 Section 1 2023 3 / 8

Gregory Soyez Substructure and PS&R PSR 2023 3 / 8

 QQ

Gregory Soyez Substructure and PS&R PSR 2023 3 / 8 Section 1 2023 3 / 8

Gregory Soyez Substructure and PS&R PSR 2023 3 / 8 Section 1 2023 3 / 8

Gregory Soyez Substructure and PS&R PSR 2023 3 / 8 Section 1 2023 3 / 8

use Cambridge/Aachen to iteratively recombine the closest pair

 $Q \cap$

"standard" data vs. Monte Carlo comparison

Recall that different Lund regions are sensitive to different physics:

←□

Obvious comparisons MC vs. data (2/2)

Large spread between Monte Carlo generators also observed by CMS

see CMS-PAS-SMP-22-007 for additional comparisons (scales, tunes, ...)

←□

 298

 \triangleright \rightarrow \equiv

Revisiting "standard" substructure observables [skip if needed]

Equivalent to angularities/EECs:

$$
S_{\beta} = \sum_{i \in \mathcal{L}} E_i e^{-\beta \eta_i}
$$

$$
M_{\beta} = \max_{i \in \mathcal{L}} E_i e^{-\beta \eta_i}
$$

- subjets allows for the use of "max"
- $sum \neq max$ at NLL
- can be defined in pp

$$
\tau_N^{\beta,\text{Lund}} = \sum_{i \in A_N} E_i e^{-\beta \eta_i} \qquad \text{with} \quad A_N = \text{argmin}_{X \subset \mathcal{L}, |\mathcal{L} \setminus X| = N-1}
$$

Could replace sum by max (likely gaining a simpler resummation structure) Could be defined on the primary plane only

4 0 F

[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS[,2002.11114\]](https://arxiv.org/abs/2002.11114)

그리 말 ...

Many Lund-based observables potentially interesting/measurable at the LHC

Lund densities

- already proven useful
- potential extensions (e.g. multiplicities)
- \bullet heavy quarks (e.g. b jets) dead cone is a relatively small phase-space, but $b \sim$ light over large region
- other processes? $Z + i$? top quarks?

$\Delta\Psi_{12}$

Sensitivity to log accuracy and spin correlations

More generally: probes correlations between 2 emissions

expect subleading effects (compared to above asymptotic studies)

Others?

Large flexibility to

 \bullet (re-)interpret existing tools

> (grooming, angularities, N-subjettiness, ...)

o design taylored observables

(measurements, MC

constraints, heavy ions, ...)

K 伊 K K ヨ K モ K ヨ ヨ ヨ つんぺ

$e^+e^- \to Z \to q\bar{q}$ v. $e^+e^- \to H \to gg$ ($\sqrt{s} = 125$ GeV, no ISR)

observed performance:

• tagging both hemispheres i.e. both jets should be tagged

full event clearly worse that $(iet)^2$

$e^+e^- \to Z \to q\bar{q}$ v. $e^+e^- \to H \to gg$ ($\sqrt{s} = 125$ GeV, no ISR)

observed performance:

- **•** tagging both hemispheres
- o double Lund-Net tag

train separately on hard & soft hemispheres use another NN (or MVA) to combine the two

clear performance gain

$e^+e^- \to Z \to q\bar{q}$ v. $e^+e^- \to H \to gg$ ($\sqrt{s} = 125$ GeV, no ISR)

observed performance:

- tagging both hemispheres
- o double Lund-Net tag
- Lund-Net for the full event Another performance gain

$e^+e^- \to Z \to q\bar{q}$ v. $e^+e^- \to H \to gg$ ($\sqrt{s} = 125$ GeV, no ISR)

observed performance:

- **•** tagging both hemispheres
- o double Lund-Net tag
- **Q.** Lund-Net for the full event Another performance gain

Open questions/work in progress

- How does the analytic do?
	- e.g. what gain from full-event tagging?
- Applications to other cases (e.g. at the LHC)?