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Jet substructure

Instead of using jets as “monolithic” objects

look at their internal dynamics
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Almost the organiser’s request

This talk

Instead of giving yet-another overview of jet substructure glorifying its
wonderful achievements and merits in many areas of QCD, I will
instead...
... focus on only 2 examples directly connecting jet substructure to PSR

and glorifying its wonderful achievements and merits in 2 areas of QCD!
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Main message (in case you fall asleep after this, this should allow you to have sweet dreams)

The substructure of boosted jets is wonderful for PSR

Boosted jets have (by definition)

pt ≫ ΛQCD

i.e. a large phase-space for perturbative emissions
i.e. fall directly in the area of parton showers and resummations

a whole library of techniques/observables is readily available

many possibilities to design new tools focusing on specific tasks
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Plan

Introduction to make sure we are on the same page

Lund diagrams: a (historical) conceptual tool for parton showers and resummations

promoting to a practical tool for jet physics

Example #1: azimuthal correlations in the Lund plane

Example #2: quark/gluon tagging

More directly-related examples will be given in Alba Soto Ontoso’s talk
See also talks by Basem El-Menoufi, Matt Schwartz, Silvia Ferrario Ravasio and Alexander Karlberg
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Warmup: Lund diagrams

A useful representation of radiation in a jet
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Basic features of QCD radiations

Take a gluon emission from a (qq̄) dipole

pq

pq̄

k

Emission:

kµ ≡ zqp
µ
q + zq̄p

µ
q̄ + kµ⊥

3 degrees of freedom:

Rapidity: η = 1
2 log

zq
zq̄

Transverse momentum: k⊥
Azimuth: ϕ

In the soft-collinear approximation

dP =
αs(k⊥)CF

π2
dη

dk⊥
k⊥

dϕ
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Basic features of QCD radiations: the Lund plane

Lund plane: natural representation uses the 2 “log” variables η and log k⊥

log kt η = − log tan(θ/2)
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Multiple emissions in the Lund plane

log kt η = − log tan(θ/2)

E k
≤
1
2
m qq̄

q sideq̄ side

a

b

c

a
b c

Each emission spawns
its own plane/leaf

a, b primary
c secondary
...

Respects angular
ordering
(θc < θa)
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Lund planes:

promoting Lund diagrams to a practical tool
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The Lund plane(s) representation

larger angles smaller angles

θi

θj

zi

zj

Ti ≡ {θi , kt,i , zi , ψi ,mi , . . . }
Lund coordinates at each vertex

closely follows angular ordering
i.e. mimics partonic cascade

can be organised in Lund planes

primary
secondary
...

For a given jet

recluster (the constituents) with

the Cambridge/Aachen algorithm

∆R2
ij = (yi − yj)

2 + (ϕi − ϕj)
2

i.e. cluster from small to large angular distance

gives a tree structure on the jet

[F.Dreyer,G.Salam,GS,arXiv:1807.04758]

For jets in pp: (similar for ee)

η = − ln∆R

kt = pt,soft∆R, or z =
pt,soft
pt,parent

ψ ≡ azimuthal angle

ln kt ≈ zθ

η ≈ ln 1/θ

study either
the primary plane only

or the full tree

kt ≥ kt,cut
⇒ perturbative

watch out:
at commensurate angles
details of C/A matter
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Take-home messages

Message #1

Lund diagrams represent (multiple) radiation across scales

natural for thinking about resummations and parton showers

different physical regions (soft, collinear, hard, non-perturbative) well separated

organised in planes respecting angular ordering

Message #2

For a jet (or an ee event) one can construct a Lund-plane(s) structure capturing the
properties of Lund diagrams

Imposing a kt cut allows one to stay perturbative
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Application series #1: angular correlations
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Crafted observables: example ∆Ψ12

Azimuth between 1st and 2nd prim. declust.

~n1 ~n2

∆ψ12

P1

P2

∆ψ12

~p1
~p3

~p2
~p4

~p5

2 primaries
w comensurate kt

Selection

select the 2 emissions with the largest kt
−0.6 < αs ln

kt1
Q

< −0.5, 0.3 < kt2
kt1

< 0.5, αs → 0

QCD expectation

ΣNLL(∆Ψ12) = constant
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~n1 ~n2
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P1

P2

∆ψ12

~p1
~p3

~p2
~p4

~p5
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w comensurate kt

0 /4 /2 3 /4
| 12|

0.8

1.0

1.2

1.4

1.6

1.8

M
C
/

N
LL

(
12

,k
t2

|k
t1

)

-0.6 < slogkt, 1
Q < -0.5, 0.3 < kt2

kt1
< 0.5

12, s 0
PanLocal( =0,dipole)
PanLocal( =1

2 ,dipole)
PanLocal( =1

2 ,antenna)
PanGlobal( =0)
PanGlobal( =1

2 )
Dipole(Dire v1)
Dipole(Py8)

Expected ratio of 1 at NLL

NLL failures for “standard” showers
“New” PanScales shower OK at NLL

[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,2002.11114]
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Crafted observables: example ∆Ψ12

Azimuth between 1st and 2nd prim. declust.

~n1 ~n2

∆ψ12

P1

P2

∆ψ12

~p1
~p3

~p2
~p4

~p5

primary + secondary

both hard-collinear

Selection

first (primary) emission (k1) with z > zcut
+ first 2ndary emission from k1 with z > zcut

fixed zcut = 0.1; αs → 0

QCD expectation

some ∆Ψ12 dependence due to
(collinear) spin correlations

analytic expressions available for EEEC
(2011.02492)
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1
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n
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g
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1
>

0
.1

,
z
2
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0
.1

all

gg

qq̄
rest

all
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qq̄
rest

all
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qq̄
rest

all

gg

qq̄
rest

∆ψ12

PanGlobal (β = 0)
PanLocal (dip. β = 0.5)

PanLocal (ant. β = 0.5)
Toy shower

−5
0
5 all

×10−3
PS−toy

toy

−5
0
5 g

g

−5
0
5 qq̄

−5
0
5 rest

−π −π/2 0 π/2 π

∆ψ

0.000
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0.004
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1
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d
Σ
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∆
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α
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1
0 −

7
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1
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gg

qq̄

rest

all

gg

qq̄

rest

all

gg

qq̄

rest

all

gg

qq̄

rest

EEEC

−5
0
5 all

×10−3
PS−toy

toy

−5
0
5 g

g

−5
0
5 qq̄

−π −π/2 0 π/2 π

∆ψ

−5
0
5 rest

All-order γ∗ → qq̄, λ = −0.5

clear sensitivity to (collinear) spin
“New” PanScales shower have spin at NLL

EEEC also OK albeit less sensitive

[A.Karlberg,G.Salam,L.Scyboz,R.Verheyen,2103.16526]
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Crafted observables: example ∆Ψ12

Azimuth between 1st and 2nd prim. declust.

~n1 ~n2

∆ψ12

P1

P2

∆ψ12

~p1
~p3

~p2
~p4

~p5

primary soft
secondary hard-collinear

Selection

first (primary) emission (k1) with |η| < ηcut
+ first 2ndary emission from k1 with z > zcut

fixed ηcut = 1; zcut = 0.1; αs → 0

QCD expectation

some ∆Ψ12 dependence due to (soft)
spin correlations

no (all-order) analytic expressions
known
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Crafted observables: example ∆Ψ12

Azimuth between 1st and 2nd prim. declust.

~n1 ~n2

∆ψ12
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Collinear spin
Soft + collinear spin
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P
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G
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g
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1 |
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1
,
z
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0
.1
,α
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1
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λ
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0
.5

−π −π/2 0 π/2 π

∆ψ12

0.5

1.0

1.5

1
σ

to
t

d
σ

d
∆
ψ

1
2

×10−2 qq̄ channel

−π −π/2 0 π/2 π

∆ψ12

1.0

1.5

2.0

×10−3 Rest channel

γ∗ → qq̄

Sensitive to (soft) spin
“New” PanScales shower have spin at NLL
shower gives first NLL all-order result

[K.Hamilton,A.Karlberg,G.Salam,L.Scyboz,R.Verheyen,2111.01161]
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Quark/gluon discrimination

Note: not totally trivial to define what is a “quark jet” or a “gluon jet”.
Let us say that we work at small jet radius R so that we can at least focus on “universal” effects

i.e. aspects depending on the overall process are suppressed as R2.
One can then test e.g. quark/gluon jets in Z+jet v. dijets. (see also arXiv:1704.03878)
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Quark v. gluon jets, part I: approaches

Optimal discriminant (Neyman–Pearson lemma)

Lprim,tree =
pg (Lprim,tree)

pq(Lprim,tree)
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Quark v. gluon jets, part I: approaches

Optimal discriminant (Neyman–Pearson lemma)

Lprim,tree =
pg (Lprim,tree)

pq(Lprim,tree)

Approach #1

Deep-learn Lprim,tree

LSTM with Lprim or Lund-Net with Ltree
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Quark v. gluon jets, part I: approaches

Optimal discriminant (Neyman–Pearson lemma)

Lprim,tree =
pg (Lprim,tree)

pq(Lprim,tree)

Approach #1

Deep-learn Lprim,tree

LSTM with Lprim or Lund-Net with Ltree

Approach #2

Use pQCD to calculate pq,g (Lprim,tree)

Only splittings with kt ≥ kt,cut to stay perturbative

Resum logs to all orders in αs , up to single logs
▶ single logs from “DGLAP” collinear splittings

Pi=q,g (Lparent) = Si (∆prev,∆)
∑

j,k=q,g

P̃i→jk (z)pj (Lhard)pk (Lsoft)

▶ some single logs for emissions at commensurate angles
(correct only for (any number of) pairs of commensurate-angle emissions via a matrix-element correction)

At double-log:
pg
pq

=
(
CA
CF

)nprim ⇒ reproduces the Iterated SoftDrop multiplicity nprim
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Quark v. gluon jets, part II: performance

pp → Zq v. pp → Zg (pt ∼ 500 GeV, R = 0.4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.01

2

5

10

20

50

100

200

gl
uo

n 
re

je
ct

io
n 

fa
ct

or
, 1

/
g

Pythia8, Z+jet

500 < pt < 550 GeV, R = 0.4
ln kt/[1 GeV]>0.0,with 

Lund density
nSD

analytic (prim)
analytic (tree)
Lund+LSTM (prim)
Lund-Net (tree)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
quark efficiency, q

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

ra
tio

 to
 d

en
sit

y

ROC: Pythia sample

kt > 1 GeV, clear performance ordering:

Lund+ML > Lund analytic > ISD
tree > prim

several potential effects “learned” by network: subleading, large

R, fixed order, > 2 commensurate angles, non-pert, MPI, ...

larger gains with no kt cut

Suggests that there is quite a lot of differences between quarks

and gluon in the NP region (“learned” by the network)
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Quark v. gluon jets, part II: performance
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Quark v. gluon jets, part III: towards asymptotics

Ares Under Curve:
lower is better
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Idea

Asymptotics towards NLL
αsL = cst, αs → 0 (L → ∞)

Larger αs (lower L)

ML > analytics > nSD
little help beyond primary

Larger αs (lower L)

tree > primary > nSD
ML ≈ analytics

develop accurate
parton-showers for ML
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Quark v. gluon jets, part IV: ML validation

our analytic discriminant is exact/optimal in the dominant collinear limit θ1 ≫ θ2 ≫ · · · ≫ θn
⇒ ML expected to give the same performance
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Converges for large-enough networks
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Non-global logarithms

Recent progress

next-to-single-log resummations available!
[Banfi,Dreyer,Monni,2104.06416,2111.02413]

[Becher, Rauh, Xu, 2112.02108] + Thomas’ talk

Improved accuracy on a delicate part of resummations

Should provide an extra bone to chew on for parton-shower developments

Other things worth noticing:

Beyond leading-Nc Hatta,Ueda,1304.6930

Inclusion of heavy quarks [Balsiger, Becher, Ferroglia, 2006.00014]

NGLs and substructure

applying grooming techniques (mMDT/SoftDrop) largely removes NGLs

still left with non-trivial clustering effects at some point

Gregory Soyez substructure and PS&R PSR 2023 20 / 21

https://arxiv.org/abs/2104.06416
https://arxiv.org/abs/2111.02413
https://arxiv.org/abs/2112.02108
https://arxiv.org/abs/1304.6930
https://arxiv.org/abs/2006.00014


Conclusions

Basic “substructure” facts

1 Substructure tools are now well establishes

2 Many interesting techniques based on reconstructing Lund diagrams/planes
mimics angular ordering, separate different physical effects (e.g. kt,cut reduces NP effects)

Take-home message from this talk: connections between substructure and PSR

PSR → substructure

parton showers have helped
designing many substructure tools

boosted jets ⇒ resummations

substructure → PSR

can design substructure variables sensitive to
specific parton-shower/resummation effects
⇒ connected to several recent parton-shower developments

⇒ connected to several QCD measurements at the LHC

+ connections with machine-learning approaches from pQCD

Showcases the need to develop PS&R and the role of substructure

Gregory Soyez substructure and PS&R PSR 2023 21 / 21



Conclusions

Basic “substructure” facts

1 Substructure tools are now well establishes

2 Many interesting techniques based on reconstructing Lund diagrams/planes
mimics angular ordering, separate different physical effects (e.g. kt,cut reduces NP effects)

Take-home message from this talk: connections between substructure and PSR

PSR → substructure

parton showers have helped
designing many substructure tools

boosted jets ⇒ resummations

substructure → PSR

can design substructure variables sensitive to
specific parton-shower/resummation effects
⇒ connected to several recent parton-shower developments

⇒ connected to several QCD measurements at the LHC

+ connections with machine-learning approaches from pQCD

Showcases the need to develop PS&R and the role of substructure

Gregory Soyez substructure and PS&R PSR 2023 21 / 21



Conclusions

Basic “substructure” facts

1 Substructure tools are now well establishes

2 Many interesting techniques based on reconstructing Lund diagrams/planes
mimics angular ordering, separate different physical effects (e.g. kt,cut reduces NP effects)

Take-home message from this talk: connections between substructure and PSR

PSR → substructure

parton showers have helped
designing many substructure tools

boosted jets ⇒ resummations

substructure → PSR

can design substructure variables sensitive to
specific parton-shower/resummation effects
⇒ connected to several recent parton-shower developments

⇒ connected to several QCD measurements at the LHC

+ connections with machine-learning approaches from pQCD

Showcases the need to develop PS&R and the role of substructure

Gregory Soyez substructure and PS&R PSR 2023 21 / 21



Conclusions

Basic “substructure” facts

1 Substructure tools are now well establishes

2 Many interesting techniques based on reconstructing Lund diagrams/planes
mimics angular ordering, separate different physical effects (e.g. kt,cut reduces NP effects)

Take-home message from this talk: connections between substructure and PSR

PSR → substructure

parton showers have helped
designing many substructure tools

boosted jets ⇒ resummations

substructure → PSR

can design substructure variables sensitive to
specific parton-shower/resummation effects
⇒ connected to several recent parton-shower developments

⇒ connected to several QCD measurements at the LHC

+ connections with machine-learning approaches from pQCD

Showcases the need to develop PS&R and the role of substructure

Gregory Soyez substructure and PS&R PSR 2023 21 / 21



Backup
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Promoting to a practical tool

Construct the Lund tree in practice: use the Cambridge(/Aachen) algorithm
Main idea: Cambridge(/Aachen) preserves angular ordering

e+e− collisions

1 Cluster with Cambridge (dij = 2(1−cos θij ))

2 For each (de)-clustering j ← j1j2:
η = − ln θ12/2
kt = min(E1,E2) sin θ12
z = min(E1,E2)

E1+E2

ψ ≡ some azimuth,...

Jet in pp

1 Cluster with Cambridge/Aachen (dij = ∆Rij )

2 For each (de)-clustering j ← j1j2:
η = − ln∆R12

kt = min(pt1, pt2)∆R12

z = min(pt1,pt2)
pt1+pt2

ψ ≡ some azimuth,...

Primary Lund plane

Starting from the jet, de-cluster following the “hard branch” (largest E or pt)
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The Lund plane(s) representation: C/A (de)-clustering

use Cambridge/Aachen to iteratively recombine the closest pair

hard
hard

hard hard

hard

hard

so
ft

so
ft

so
ft

soft

so
ft

soft

consider the (de-)clusterings in the sequence

Note: conceptually the largest-energy (pt or z) branch ≡ emissions from the “leading parton”
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Obvious comparisons MC vs. data (1/2)

parton shower hadronisation

“standard” data vs. Monte Carlo comparison

Recall that different Lund regions are sensitive
to different physics:

Primary Lund-plane regions

soft-collinear

hard-collinear (large
z)

IS
R
(larg

e
Δ
)

M
PI/U

E non-pert. (small kt)

ln(1/Δ)

ln
(k

t/
G
eV
)
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Obvious comparisons MC vs. data (2/2)
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T

ln(k

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 R
)

∆
)d

ln
(R

/
T

dl
n(

k
em

is
si

on
s

 N2 d
 

je
ts

N
1

AK8 jets
| < 1.7

jet
 > 700 GeV, |yjet

T
p

PreliminaryCMS  (13 TeV)-1138 fb

Data

PYTHIA8+DIRE

PYTHIA8+VINCIA

HERWIG7 dipole

SHERPA

 R) < 1.000∆0.667 < ln(R/
 R < 0.411∆0.294 < 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
/GeV)

T
ln(k

0.8
1

1.2
1.4

P
re

d.
/D

at
a

10 210

 [GeV]Tk

Large spread between Monte Carlo
generators also observed by CMS

see CMS-PAS-SMP-22-007 for additional comparisons
(scales, tunes, ...)
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Revisiting “standard” substructure observables [skip if needed]

Equivalent to angularities/EECs:

Sβ =
∑
i∈L

Ei e
−βηi

Mβ = max
i∈L

Ei e
−βηi

✓ subjets allows for the use of “max”
✓ sum ̸=max at NLL
✓ can be defined in pp -0.1 0.0

M = 1

S = 1

Thrust
M = 1

2

S = 1
2

FC1
2

M = 0

S = 0

FC1

BW

BT

y23

Dipole
Pythia8

-0.1 0.0

PanLocal
( = 1

2 ,dip.)

-0.1 0.0

PanLocal
( = 1

2 ,ant.)

-0.1 0.0

PanGlobal
( = 0)

-0.1 0.0
lim

s 0 [ PS / NLL 1 ]  for = 1
2

PanGlobal
( = 1

2 )

s
{0

.0
02

5,
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00
5,

0.
01

},
 sy

st
=0

.1
%

, 
=

18

NLL accuracy tests  NODS method

[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,2002.11114]

[K.Hamilton,R.Medves,G.Salam,L.Scyboz,GS,2011.10054]N-subjettiness-like: sum excluding the N largest

τβ,LundN =
∑
i∈AN

Ei e
−βηi with AN = argminX⊂L,|L\X |=N−1

✓ Could replace sum by max (likely gaining a simpler resummation structure)
✓ Could be defined on the primary plane only
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Interesting Lund-plane(s)-based observables

Many Lund-based observables potentially interesting/measurable at the LHC

Lund densities

already proven useful

potential extensions
(e.g. multiplicities)

heavy quarks (e.g. b jets)
dead cone is a relatively small

phase-space, but b ∼ light over

large region

other processes? Z + j?
top quarks?

∆Ψ12

Sensitivity to log accuracy
and spin correlations

More generally: probes
correlations between 2

emissions

expect subleading effects
(compared to above
asymptotic studies)

Others?

Large flexibility to

(re-)interpret existing
tools
(grooming, angularities,

N-subjettiness, ...)

design taylored
observables
(measurements, MC

constraints, heavy ions, ...)
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Towards full-event tagging

e+e− → Z → qq̄ v. e+e− → H → gg (
√
s = 125 GeV, no ISR)
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Lund-Net+ID
Pythia8.306, s = 125 GeV

ROC curve: Z qq v. H gg

tag each  hemispheres

observed performance:

tagging both hemispheres
i.e. both jets should be tagged

full event clearly worse that (jet)2

double Lund-Net tag

Lund-Net for the full event
Another performance gain

Open questions/work in progress

How does the analytic do?
e.g. what gain from full-event tagging?

Applications to other cases (e.g. at the LHC)?
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Lund-Net for the full event
Another performance gain

Open questions/work in progress

How does the analytic do?
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