Quantum computing for LHC applications

Stefano Carrazza

June 6th, 2023

PSR2023, UNIMIB

We are moving towards new technologies, in particular hardware accelerators:

Moving from general purpose devices \Rightarrow application specific

Physics context: Hadronic collisions at the LHC

Monte Carlo event simulation is very intensive and requires lots of computing power.

Parton-level Monte Carlo generators

Theoretical predictions in hep-ph are based on:

 $\sum_{a,b} \int_{x_{\min}}^{1} dx_1 dx_2 |\mathcal{M}_{ab}(\{p_n\})|^2 \mathcal{J}_m^n(\{p_n\}) f_a(x_1, Q^2) f_b(x_2, Q^2),$

a multi-dimensional integral where:

- $|\mathcal{M}|$ is the matrix element,
- $f_i(x, Q^2)$ are Parton Distribution Functions (PDFs),
- $\{p_n\}$ phase space for n particles,
- \mathcal{J}_m^n jet function for n particles to m.

 \Rightarrow Procedure driven by the integration algorithm.

Monte Carlo generator pipeline

Quantum computing challenges

Applications towards quantum advantage must preserve synergy between simulation and hardware.

Quantum Technologies

Superconducting loops

A resistance-free current oscillates back and forth around a circuit loop. An injected microwave signal excites the current into superposition states. Trapped ions Electrically charged atoms, or ions, have quantum energies that depend on the location of electrons. Tuned lasers cool and trap the ions, and put them in superposition states.

Silicon quantum dots

These "artificial atoms" are made by adding an electron to a small piece of pure silicon. Microwaves control the electron's quantum state.

Topological qubits

Quasiparticles can be seen in the behavior of electrons channeled through semiconductor structures. Their braided paths can encode quantum information.

Diamond vacancies

A nitrogen atom and a vacancy add an electron to a diamond lattice. Its quantum spin state, along with those of nearby carbon nuclei, can be controlled with light.

	Number entangled 9	14	2	N/A	6
	Company support				
	Google, IBM, Quantum Circuits	ionQ	Intel	Microsoft, Bell Labs	Quantum Diamond Technologies
	Pros Fast working. Build on existing semiconductor industry.	Very stable. Highest achieved gate fidelities.	Stable. Build on existing semiconductor industry.	Greatly reduce errors.	Can operate at room temperature.
l	Cons Collapse easily and must be	Slow operation. Many lasers	Only a few entangled. Must be	Existence not vet confirmed.	Difficult to entangle.
	kept cold.	are needed.	kept cold.		0

(a) Superconducting device assembled by IBM

(b) Chip based on trapped ions techology

\Rightarrow We are in a Noisy Intermediate-Scale Quantum era \Leftarrow

(i.e. hardware with few noisy qubits)

How can we contribute?

- Develop new algorithms
 - \Rightarrow using classical simulation of quantum algorithms
- Adapt problems and strategies for current hardware
 - \Rightarrow hybrid classical-quantum computation

Quantum Algorithms

Some families of algorithms:

Gate Circuits

- Search (Grover)
- QFT (Shor)
- Deutsch

• • • •

Variational (AI inspired)

- Eigensolvers
- Autoencoders
- Classifiers

• • • •

- Annealing
 - Direct Annealing
 - Adiabatic Evolution
 - QAOA
 - • •

Quantum software challenges

Researcher's needs (lab and theory):

• Access to interdisciplinary set of software tools for:

Open-source software linked to benchmarks and publications.

S Collaborative development and definition of standards.

Quantum simulation approaches

- Frameworks provide similar features.
- Performance is not always consistent among libraries.

The quantum circuit model considers a sequence of unitary quantum gates:

$$\left|\psi'\right\rangle = U_2 U_1 \left|\psi\right\rangle \quad \rightarrow \quad \left|\psi\right\rangle - U_1 - U_2 - \left|\psi'\right\rangle$$

The final state $|\psi'\rangle$ is given by:

$$\psi'({m\sigma}) = \sum_{{m\sigma}'} U_1 U_2({m\sigma},{m\sigma}') \psi(\sigma_1,\ldots\sigma'_{i_1},\ldots,\sigma'_{i_{N_{ ext{targets}}}},\ldots,\sigma_N),$$

where the sum runs over qubits targeted by the gate.

- U_2 and U_1 are gate matrices which act on the state vector.
- ψ is a state and it is bounded by memory.

Quantum gates

	Operator	Gate(s)		Matrix
	Pauli-X (X)	- x -	-—	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
 Single-qubit gates 	Pauli-Y (Y)	- Y -		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli gates	Pauli-Z (Z)	- z -		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
 Hadamard gate 	Hadamard (H)	- H -		$\frac{1}{\sqrt{2}}\begin{bmatrix}1&&1\\1&&-1\end{bmatrix}$
 Phase shift gate 	Phase (S, P)	- 5 -		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
 Rotation gates 	$\pi/8$ (T)	- T -		$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
• Two-qubit gates	Controlled Not			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
 Controlled gates 	(CNOT, CX)	$-\oplus$		
• Swap gate	Controlled Z (CZ)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
• fSim gate			x	
• Three-qubit gates	SWAP	_X_	_ × _	$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
• Toffoli	Toffoli	_		$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
	(CCNOT, CCX, TOFF)			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
				Fo o o o o o i o

Quantum simulation hardware

- Frameworks are mostly designed for single-node setups.
- GPUs usage is becoming popular (see cuQuantum SDK).
- Multi-node setups are not simple to deploy.

Introducing Qibo

Introducing Qibo

Qibo is an open-source hybrid operating system for self-hosted quantum computers.

Laboratory	Country	Technology	Qubits	
INFN	Italy	Superconducting	1	
UNIMIB	Italy	Superconducting	1*	
TII	UAE	Superconducting	1, 2, 5, 25	
Qilimanjaro	Spain	Superconducting	1 and 2	
CQT	Singapore	SC and trapped ion	10	

Quantum simulation benchmarks

State vector simulation solves:

$$\psi'(\sigma_1,\ldots,\sigma_n) = \sum_{\boldsymbol{\tau}'} G(\boldsymbol{\tau},\boldsymbol{\tau}')\psi(\sigma_1,\ldots,\boldsymbol{\tau}',\ldots,\sigma_n)$$

The number of operations scales exponentially with the number of qubits.

Qibo uses just-in-time technology:

Quantum simulation benchmarks

Major features:

- Supports CPU, GPU and multi-GPU.
- NVIDIA and AMD GPUs support.
- Reduced memory footprint.

Benchmark library: https://github.com/qiboteam/qibojit-benchmarks [arXiv:2203.08826]

Qibo vs other libraries

Benchmark library: https://github.com/qiboteam/qibojit-benchmarks [arXiv:2203.08826]

Applications in HEP

Parton distribution functions (Machine Learning)

Rational for Variational Quantum Circuits

Rational:

Deliver variational quantum states \rightarrow explore a large Hilbert space.

$$U(\vec{\alpha}) = U_n \dots U_2 U_1$$

$$U_1$$

$$U_1$$

$$U_2$$

$$U_4$$

Rational for Variational Quantum Circuits

Rational:

Deliver variational quantum states \rightarrow explore a large Hilbert space.

Idea:

Quantum Computer is a machine that generates variational states.

⇒ Variational Quantum Computer

Let $\{U_i\}$ be a dense set of unitaries. Define a circuit approximation to V:

 $|U_k \dots U_2 U_1 - V| < \delta$

Scaling to best approximation

$$k \sim \mathcal{O}\left(\log^c \frac{1}{\delta}\right)$$

where c < 4.

 \Rightarrow The approximation is efficient and requires a finite number of gates.

How do we parametrize models using a quantum computer?

Using variational quantum circuits and data re-uploading algorithms:

Variational quantum algorithm

Pérez-Salinas et al. [arXiv:1907.02085]

Encode data directly "inside" circuit parameters:

(a) Neural network

(b) Quantum classifier

Determination of parton distribution functions using QML

A. Salinas et al, Determining the proton content with a quantum computer, PRD, 2011.13934.

Hardware-compatible quantum gradient descent (QGD)

Robbiati et al, 2210.10787.

- Implementation parameter-shift rules to evaluate gradients on hardware
- Results comparable to a genetic optimization.

Error mitigation impact on QGD algorithms

Robbiati et al, 2210.10787.

 Successfully fitting High Energy Physics (HEP) quarks parton density functions in simulation using mitigated-noisy circuits

Figure 1: PDF fit performed with different levels of noisy simulation. From left to right, exact simulation, noisy simulation, noisy simulation applying error mitigation to the predictions.

Event generation

Machine learning approach to event generation

Since 2018, many papers have approached event generation with machine learning techniques:

K. Danziger¹, T. Janßen², S. Schumann², F. Siegert¹

Main idea \Rightarrow train with a small dataset, use unsupervised machine learning models to learn the underlying distribution and generate for free a much larger dataset.

Monte Carlo event generation using QGAN

C. Bravo-Prieto et al, 2110.06933

Classical setup:

Hybrid quantum-classical setup:

Style-based quantum generator

Quantum generator: a series of quantum layers with rotation and entanglement gates

Style-based approach

the noise is inserted in every gate and not only in the initial quantum state

•
$$R_{y,z}^{l,m}(\phi_{g}, z) = R_{y,z}\left(\phi_{g}^{(l)} z^{(m)} + \phi_{g}^{(l-1)}\right)$$

Reminiscent of the reuploading scheme A. Pérez-Salinas, et al., *Quantum* **4**, 226 (2020) Testing the style-qGAN with real data: proton-proton collision $pp \rightarrow t\bar{t}$

Training and reference samples generated with MadGraph5_aMC@NLO J. Alwall, et al., JHEP 2014, 79 (2014)

Training set of 10^4 samples, Mandelstam variables (s, t) and rapidity y.

After training, we assess the performance with simulations: 3 qubits, 2 layers, 100 bins

Superconducting transmon qubits: *ibmq_santiago* with 2-neighbouring

site connectivity

Access via IBM Q cloud service

Trapped ion technology: *ionQ* with all-to-all connectivity

Access via Amazon Web Services

Testing different architectures

• Access constraints to *ionQ*: test limited to 1000 samples only

Very similar results: implementation largely hardware-independent

Monte Carlo Integration

Determining PDFs via adiabatic quantum computing

• Quantum GANs and Quantum Amplitude Estimation for scattering processes.

• Use quantum adiabatic machine learning for the determination of PDF and sampling:

41

Parton Shower +Scattering amplitudes

Scattering Amplitudes and Parton Shower

First steps towards generic scattering processes developments:

- Quantum algorithms for Feynman loop integrals
- Quantum circuits of colour in perturbative QCD

Ramirez-Uribe et al, 2105.08703. Chawdhry et al, 2303.04818.

Quantum-based parton shower algorithms:

- Polynomial time quantum final state shower
- Quantum walk approach

Bauer et al, 1903.03196. Bepari et al, 2109.13975.

• ...

• ...

Outlook

Software control challenges

Experimental Devices

How to characterize and calibrate qubits?

Open-source calibration library: https://github.com/qiboteam/qibocal [arXiv:2303.10397]

We have observed a great set of interesting proof-of-concept applications.

- Phase 1: reproduce classical results using quantum techniques.
- Phase 2: improve the quality of results.

For the future:

- Mitigate hardware noise, implement real-time error mitigation techniques.
- Consider simulations with realistic noise models for hardware emulation.
- Keep in mind that simulation can improve quantum hardware calibration (RB)
- Co-develop quantum hardware design (theory/experiment) for specific applications.