Status and progress of SHERPA

Parton Showers and Resummation 2023 in Milan June 6 2023

Enrico Bothmann (ITP, U Göttingen) on behalf of the SHERPA collaboration

Deutsche Forschungsgemeinschaft

German Research Foundation

The SHERPA event generator framework

v2.2 release series [Sherpa collab. 1905.09127]

- Two multi-purpose matrix element (ME) generators: Амедіс, Соміх
- Two parton showers (PS) generators: CSSHOWER, DIRE
- A multiple interaction simulation à la PYTHIA
- A cluster fragmentation module
- A hadron and τ -lepton decay package
- A higher-order QED generator using YFS resummation
- Many add-ons

SHERPA's Traditional strength is the perturbative part of the event: LO, NLO, NNLO, LOPS, NLOPS, NNLOPS, MEPS, MENLOPS, MEPS@NLO

Showcase

ATLAS Observation of electroweak $Z\gamma jj$ production [ATLAS collab. 2305.19142]

- QCD production MEPS@NLO $pp \rightarrow Z\gamma jj + 0, 1j@$ NLO + 2, 3j@ LO
- "Differential cross-section measurements [...] found to be consistent with the SM predictions."

Showcase I **ATLAS prompt diphoton production** [ATLAS arXiv:2107.09330]

SHERPA MEPS@NLO diphoton production: $\gamma \gamma + 0.1 j @ \text{NLO} + 2.3 j @ \text{LO}$, loop-induced $gg \rightarrow \gamma \gamma @ \text{LO}$

SHERPA MEPS@NLO has larger uncertainties than NNLO calculation, but provides excellent description throughout phase space.

Status and progress of SHERPA

Efficiency

Precision

5

Simone Amoroso's demands

SHERPA status (checkmarks mine)

COMPUTING ASPECTS

- We don't just need better generators, we also need to run them at scale
- Public, fast, scalable
- Small fraction of negative weighted events
- Fast and efficient reweighting at least for scale and PDF variations
- Simple and efficient biasing in phase space (to populate tails)
- Support for heterogeneous computing (?)

SHERPA+LHADPF Performance for (HL-)LHC Overall profiling and tuning [EB et al. 2209.00843]

- Latest projection for computing resources: significant part is MC event gen.
- (HL-)LHC measurements in danger of being limited by MC statistics
- Explore reduction of CPU footprint for heaviest use cases, e.g. ATLAS default setup Z + 0,1,2j@ NLO + 3,4,5j@ LO
 - 1. LHAPDF improvement
 - 2. (LC)-MC@NLO: reduce matching accuracy to leading colour, neglect spin correlations, i.e. S-MC@NLO → MC@NLO also useful to reduce negative event fractions [Danziger, Höche, Siegert 2110.15211]
 - 3. pilot run: minimal setup until PS point accepted, then rerun full setup
 - 4. (LC)-MC@NLO-CSS: defer MC@NLO emission until after unweighting
 - 5. use analytical loop library where available here: OPENLOOPS → MCFM via interface [Campbell, Höche, Preuss 2107.04472]
 - 6. pilot scale definition in pilot run that requires no clustering small weight spread by correction to correct scale

SHERPA+LHAPDF Performance for (HL-)LHC [EB et al. 2209.00843] – Results

\rightarrow 39 \times speed-up for ATLAS e^+e^- + jets setup

\rightarrow 43× speed-up for ATLAS $t\bar{t} + jets$ setup

Why stop here? Port bottlenecks to GPU to increase physics range further

- HPC hardware increasingly heterogeneous
- other ongoing MC@GPU efforts: MADGRAPH5_AMC@NLO, PYSECDEC, MADFLOW [Valassi et al. 2303.18244], [Heinrich et al. 2305.19768], [Carrazza et al. 2106.10279]; also see Olivier Mattelaer's talk (Wed)
- After tuning, tree-level ME and phase-space nearly 70 % of CPU usage
- Ongoing development from scratch of both components on CPU & GPU
 - concentrate on heavy hitters (V+jets, tt+jets)
 - pick & adapt algorithms for GPU architecture
 - new ME generator PEPPER (previously BLOCKGEN) [EB, Giele, Höche, Isaacson, Knobbe 2106.06507]
 - new phase-space generator CHILI [EB et al. 2302.10449]
 - GPU accelerated production of (unweighted) parton-level events

 - Bonus: reuse of expensive partonic events samples, e.g. for fast shower/hadronisation uncertainty studies etc.
 - very useful for Machine Learning studies, since training can happen exclusively on GPU

• Write out partonic unweighted event files (LHE-like HDF5), read-in to SHERPA (or any generator) for showering, merging and soft physics

Why stop here? Port bottlenecks to GPU to increase physics range further

→ Color-summed Berends-Giele recursion on GPU gives best performance in relevant multiplicity range, up to 150× speed-up

Upcoming publication of GPU-accelerated partonic event generator

 \rightarrow traditional phase-space parametrisation contains many channels that are not relevant for standard LHC event samples; CHILI uses much simpler (MCFM inspired) structure while achieving comparable sampling efficiency

Machine Learning assisted event generation paradigm: improve efficiency, but don't compromise on accuracy

Focus on same bottlenecks: partonic matrix elements, phase-space sampling.

normalizing flows

- Diffeomorphism \bullet parametrised by NN
- Drop-in replacement for VEGAS to optimise sampling

- Bayesian inference to optimise sampling
- Rich tooling available
- Short Markov chains: non-zero but low auto-correlation

Make use of our Physics understanding.

- use fast NN-based surrogate to reduce expensive ME evaluations
- recover true distribution by second unweighting step with exact ME

[Handley, Janßen, Schumann, Yallup 2205.02030]

Status and progress of SHERPA

Efficiency

Precision

13

New NLL-accurate shower algorithm

ALARIC \rightarrow see D. Reichelt's talk (Wed) for details

- Framework to quantify log accuracy of parton showers established in [Dasgupta et al. 1805.09327, 2002.11114], also see Silvia Ferrario Ravasio's talk (Wed) & more refs. therein
- NLL accuracy requires that kinematics mapping of $n \rightarrow n+1$ phase space should not distort effects of pre-existing emissions on observables
 - extract NLL relevant effects by taking limit $\alpha_s \rightarrow 0$ at fixed $\lambda = \alpha_s \log v$, where v = resummed observable
 - PANSCALES developed & proven to fulfill requirements See Silvia's and Alexander Karlberg's talks (Wed) & refs. therein
 - pre-existing showers in SHERPA do not meet this requirement
- new shower ALARIC [Herren Höche Krauss Reichelt Schönherr 2208.06057]
 - partial fractioning of eikonal \rightarrow positive definite splitting function with full phase space coverage inspired by Catani & Seymour's treatment of identified hadrons
 - price: dependence of splitting functions on azimuthal angle
 - global kinematics scheme enables analytic proof of NLL accuracy + numerical validation

New NLL-accurate shower algorithm ALARIC \rightarrow see D. Reichelt's talk (Wed) for details

15

EW Sudakov logarithms Automated implementation for all processes

- Corrections due to soft/coll. EW gauge bosons coupled to external legs in high-energy limit (e.g. $p_T \gtrsim 1 \text{ TeV} \rightarrow \mathcal{O}(10\%)$ corrections)
- Corrections worked out in full generality [Denner, Pozzorini (2001) hep-ph/0010201]
- partial implementation in ALPGEN [Chiesa et al 1305.6837]
- In SHERPA fully automated as universal ME-level **corrections** [EB, Napoletano 2006.14635]
- Applied to MEPS@NLO diboson production $pp \rightarrow 0.1j@NLO + 2.3j@LO$ [EB et al. 2111.13453]
 - EW_{virt} for \mathcal{S} events, EW_{sud} for \mathcal{H} and LO events
 - YFS resummation for QED FSR

EW Sudakov logarithms **Automated implementation for all processes**

(Approximate) EW corrections outside of MEPS@NLO QCD uncertainty band

Resumming soft photons with YFS Recent developments in Sherpa

- photon splitting $\gamma \rightarrow e^+e^-$ [Flower, Schönherr 2210.07007]
- Example: Dilepton invariant mass for $pp \rightarrow e^+e^-$:

Corrections up to 1 %, can be reigned in by refined dressing algorithm

- YFS in ISR for future lepton colliders [Krauss, Price, Schönherr 2203.10948]
- Application to Higgsstrahlung processes at lepton collider:

Process-independent implementation of YSF for ISR

Neutrino physics **ACHILLES + SHERPA**

- ACHILLES is a newly developed neutrino event generator [Höche, Isaacson, Lopez Gutierrez, Rocco 2110.15319]
- paradigm: transfer LHC expertise+tooling in neutrino physics, developed in close collaboration with SHERPA
 - ACHILLES for nuclear physics effects
 - SHERPA's COMIX for calculating leptonic currents, incl. BSM effects via Comix' UFO interface
 - study of ν_{τ} needs control over angular distribution of τ -lepton decay products
 - use interface to SHERPA for decays, incl. spin correlations across production and decays, QED showers [Isaacson, Höche, Siegert, Wang 2303.08104]
- other use as a module: GENEVA + SHERPA as a shower in HH production [Alioli et al. 2212.10489] Also see Alessandro Broggio's talk (Wed)

 $1/N dN/dx_{\pi}$

Momentum fraction for tau decay to single pion folded over DUNE's far-detector flux

BSM physics via UFO interface [Höche, Kuttimalai, Schumann, Siegert 1412.6478]

- full support for UFO model [Degrande et al. CPC183(2012)1201]
- UFO2 ongoing [Darmé et al. 2304.09883]
- Lorentz and colour structures built fully automatically
- automatic inclusion in hard decay module
 - identification of all $1 \rightarrow 2$ and $1 \rightarrow 3$ decay channels and calculation of LO widths
 - can select individual channels
 - spin correlations using spin density matrices [Richardson JHEP11(2201)029, Knowles CPC58(1990)271]

BSM physics Calculating AGC limits using Sherpa+UFO [Biekötter, Gregg, Krauss, Schönherr 2102.01115]

- LO multi-leg with SMEFT model defined via UFO

use public ATLAS and CMS SM measurements to constrain SMEFT parameters

Status and progress of SHERPA

Conclusions

22

Status and progress of SHERPA Conclusions

- Efficiency improvements (= increase physics range)
 - tuning exercise → factor-40 speed-up for heavy hitter ATLAS setups
 - porting bottlenecks to GPU \rightarrow PEPPER+CHILI, interfaced with Sherpa via HDF5
 - ML assisted event generation → NF, Nested Sampling, NN unweighting
- Precision physics
 - new NLL-accurate shower ALARIC
 - Fully automated EW_{sud} logarithms: application to ZZ production
 - YFS developments: $\gamma \rightarrow e^+e^-$ splittings and ISR
 - Neutrino physics via ACHILLES+SHERPA
 - BSM physics via UFO

Status and progress of SHERPA Conclusions

- Efficiency improvements (= increase physics range)
 - tuning exercise → factor-40 speed-up for heavy hitter ATLAS setups
 - porting bottlenecks to GPU → PEPPER+CHILI, interfaced with Sherpa via HDF5
 - ML assisted event generation → NF, Nested Sampling, NN unweighting
- Precision physics
 - new NLL-accurate shower ALARIC
 - Fully automated EW_{sud} logarithms: application to ZZ production
 - YFS developments: $\gamma \rightarrow e^+e^-$ splittings and ISR
 - Neutrino physics via ACHILLES+SHERPA
 - BSM physics via UFO

Status and progress of SHERPA

Backup

25

SHERPA+LHADPF Performance for (HL-)LHC Overall profiling and tuning [EB et al. 2209.00843]

LHAPDF 6.2.3 → 6.4.0

- PDF grid caching for given (x, Q^2) point
 - repeated calls for different flavours / replicas benefit
 - caller side might need to reorder calls to benefit
- Use same interpolation grid structure across flavours
- Cache universal terms of polynomial interpolation
- up to 3x faster for single flavour, ~10x for all flavours

Negative weight fractions

- explored three methods to improve the neg. weight fraction in SHERPA
 - 1) reduce matching accuracy to leading colour, neglect spincorrelations
 - 2) include jet veto on \mathbb{H} -events, as originally formulated arXiv:2012.5030
 - 3) use local K-factor in NLO \rightarrow LO merging from core configuration instead of highest multiplicity
- public since SHERPA-2.2.8 (Sep '19)

Danziger, Höche, Siegert, arXiv:2110.15211, ATLAS arXiv:2112.09588

SHERPA: performance and statistics

SHERPA+LHADPF Performance for (HL-)LHC Overall profiling and tuning [EB et al. 2209.00843]

weight distribution broadening due to the use of a Pilot scale

effective reduction in efficiency from using the pilot scale typically ≤ 2 computing time reduction reduced by this, but in most cases still beneficial

Port bottlenecks to GPU **PEPPER vs. COMIX runtime per partonic event**

Matrix Element timing of $Z[e^+e^-] + \text{Jets}$

Port bottlenecks to GPU Снігі vs. Соміх runtime for given accuracy target

Process / MC accu	Defaul Time	t PS $\mid \# \text{ pts}$	$\begin{vmatrix} \text{New PS} \\ \text{Time} & \# \text{ pts} \end{vmatrix}$		Process / MC accu	Default PS Time $ \# pts$		$\begin{array}{c c} New PS \\ Time & \# pts \end{array}$	
W+1j / 1‰ W+2j / 3‰ W+3j / 1%	$4m 52s \\ 17m 12s \\ 46m 24s$	10.3M 5.52M 7.48M	2m 32s 13m 52s 20m 16s	$\begin{array}{c} 3.10 \mathrm{M} \\ 2.53 \mathrm{M} \\ 1.15 \mathrm{M} \end{array}$	$tar{t}$ +0j / 1‰ $tar{t}$ +1j / 3‰ $tar{t}$ +2j / 1%	$\begin{array}{c} 4m \ 38s \\ 3m \ 12s \\ 11m \ 58s \end{array}$	3.15M 1.38M 1.47M	$\begin{array}{c c} 4m \ 0s \\ 3m \ 4s \\ 11m \ 20s \end{array}$	3.59M 1.47M 0.89M
H+1j / 1‰ H+2j / 3‰ H+3j / 1%	2m 20s 4m 36s 18m 12s	1.83M 2.32M 2.32M	$1m \ 36s \\ 4m \ 4s \\ 12m \ 56s$	1.50M 0.71M 0.63M	2j / 1‰ 3j / 3‰ 4j / 1%	$\begin{array}{ c c c c c } 12m & 48s \\ 22m & 48s \\ 1h & 25m \end{array}$	2.98M 6.80M 6.95M	$\begin{array}{c c} 7m \ 44s \\ 23m \ 12s \\ 50m \ 24s \end{array}$	1.80M 2.39M 0.91M

[EB et al. 2302.10449]

Normalizing Flows Slide by Timo Janßen

- diffeomorphism parameterized by NNs
- layered mapping: $h = h_L \circ \cdots \circ h_2 \circ h_1$
- each coupling layer transforms part of input
- triangular Jacobian ~> determinant costs $\mathcal{O}(d)$
- replacement for VEGAS

Swikimedia.org File:Diffeomorphism of a square.svg

Müller et al.: SIGGRAPH 2019

Normalizing Flows Gain factors for V + n jets [Gao et al. 2001.10028]

unweighting efficiency				NLO QCD (RS)				
$\langle w angle / w_{ m max}$		n = 0	n = 1	n=2	n=3	n=4	n=0	n=1
$W^+ + n$ jets	Sherpa	$2.8\cdot10^{-1}$	$3.8\cdot 10^{-2}$	$7.5\cdot 10^{-3}$	$1.5\cdot 10^{-3}$	$8.3\cdot 10^{-4}$	$9.5 \cdot 10^{-2}$	$4.5\cdot 10^{-3}$
	NN+NF	$6.1 \cdot 10^{-1}$	$1.2\cdot 10^{-1}$	$1.0\cdot 10^{-2}$	$1.8\cdot 10^{-3}$	$8.9\cdot 10^{-4}$	$1.6\cdot 10^{-1}$	$4.1\cdot 10^{-3}$
	Gain	2.2	3.3	1.4	1.2	1.1	1.6	0.91
$W^- + n ext{ jets}$	Sherpa	$2.9\cdot10^{-1}$	$4.0\cdot 10^{-2}$	$7.7\cdot 10^{-3}$	$2.0\cdot 10^{-3}$	$9.7\cdot 10^{-4}$	$1.0\cdot 10^{-1}$	$4.5\cdot 10^{-3}$
	NN+NF	$7.0 \cdot 10^{-1}$	$1.5\cdot 10^{-1}$	$1.1\cdot 10^{-2}$	$2.2\cdot 10^{-3}$	$7.9\cdot 10^{-4}$	$1.5\cdot 10^{-1}$	$4.2\cdot 10^{-3}$
	Gain	2.4	3.3	1.4	1.1	0.82	1.5	0.91
Z + n jets	Sherpa	$3.1\cdot10^{-1}$	$3.6\cdot 10^{-2}$	$1.5\cdot 10^{-2}$	$4.7\cdot 10^{-3}$		$1.2\cdot 10^{-1}$	$5.3\cdot 10^{-3}$
	NN+NF	$3.8\cdot10^{-1}$	$1.0\cdot 10^{-1}$	$1.4\cdot 10^{-2}$	$2.4\cdot 10^{-3}$		$1.8\cdot 10^{-3}$	$5.7\cdot 10^{-3}$
	Gain	1.2	2.9	0.91	0.51		1.5	1.1

Nested Sampling Slide by Timo Janßen

Nested Sampling

Meta algorithm

- draw ensemble of live points (uniformly)
- **\triangleright** sort in order of likelihood, \mathcal{L}
- \blacktriangleright replace \mathcal{L}_{min} by sampling uniformly, requiring $\mathcal{L} > \mathcal{L}_{\mathsf{min}}$
- repeat until termination criterion reached
- dead points form representative sample of target distribution

Implementation

- PolyChord (Handley et al., 2015)
- ▶ use slice sampling (R. Neal, 2003) to evolve live points
- \rightarrow many short Markov chains \rightsquigarrow low autocorrelation
- J. Skilling: AIP Conference Proceedings 735, 395 (2004)

33

Surrogate unweighting

Algorithm [K. Danziger, TJ, S. Schumann, F. Siegert: SciPost Phys. 12, 164 (2022)]

Surrogate unweighting Slide by Timo Janßen

Factorisation-aware matrix element emulation

soft/collinear factorisation properties

$$|\mathcal{M}_{n+1}|$$

Ansatz

 $\langle |\mathcal{M}|^2 \rangle$

kinematic invariant

 \triangleright C_{ijk} : coefficients fit by neural network

D. Maître, H. Truong: JHEP 11 (2021) 066

 $|^2 \rightarrow |\mathcal{M}_n|^2 \otimes \mathbf{V}_{ijk}$

[Catani, Seymour Nucl.Phys. B485 (1997) 291-419]

$$\rangle = \sum_{\{ijk\}} C_{ijk} D_{ijk}$$

► $D_{ijk} = \langle V_{ijk} \rangle / s_{ij}$: spin-averaged Catani-Seymour dipoles divided by

Surrogate unweighting Slide by Timo Janßen

Factorisation-aware matrix element emulation

D. Maître, H. Truong: JHEP 11 (2021) 066

36

EWvirt & EWsud

Comparative study in ZZ production

[EB et al. 2111.13453]

- Both schemes capture dominant logs in Sudakov region \bullet
- EWvirt:
 - subleading Born (can be sizable, e.g. in 3-jet production) [Reyer Schönherr Schumann 1902.01763]
 - approx. integrated real emission
 - finite terms in virtual loop
 - not applied to real-emission events
 - no subleading logs from RG
 - requires virtual loop ME
- don't expect perfect agreement, but so far we see K factors consistent within couple percent
- **proposal:** apply EWvirt to lower multis and EWsud to real-emission terms and higher multis, in a single merged sample ("Hybrid")

Collider reach

- Plot taken from a talk by Marek Schönherr
- How far the integrated luminosity takes us into the Sudakov region

