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N-Je%ness and Factoriza2on

‣ N-jeAness resolu6on variables: given an M-par6cle phase space point with  

‣ The limit               describes a N-jet event where the unresolved emissions                         can 
be either soH or collinear to the final state jets or ini6al state beams 

‣ Color singlet final state, relevant variable is 0-jeAness aka “beam thrust” 

‣ Colour singlet case: cross sec6on factorizes in the limit              [Stewart, Tackmann,Waalewijn 
`09,`10], three different scales arise

M ≥ N

way of overcoming the problem is to adjust the free parameters of the smooth cone isolation

algorithm to reproduce the e↵ects of the fixed cone procedure so that a comparison is at

least feasible. A second viable possibility, which has been recently investigated in [10, 44],

is the introduction of a hybrid cone isolation procedure which is very similar in spirit to

the smooth cone isolation. In this case the theoretical calculation is initially carried out

using the smooth cone isolation with a small radius parameter Riso such that only a tiny

slice of phase space around the photon direction is removed. As second step, the fixed cone

isolation procedure with a larger radius R � Riso is applied to the events which passed

the smooth cone criterion. In other words one initially applies very loose smooth cone

isolation cuts which are then tightened by the fixed cone procedure. In this paper we use

both the smooth cone and the hybrid isolation procedures. The first method is used for the

comparison to the results obtained with the MATRIX code [26] in subsection 4.3, while the

second isolation requirement is instead used for the comparison to the LHC data in section

5. The precise values of the isolation parameters, the selection cuts and the set of parton

distribution functions (PDF) which are employed in our calculations will be specified in

the sections below.

3 Resummation in Soft-Collinear E↵ective Theory

The N -jettiness [25] resolution variable is used within the Geneva framework to discrimi-

nate between resolved emissions with di↵erent jet multiplicities. Given anM -particle phase

space point �M with M � N , it is defined as

TN (�M ) =
X

k

min
�
q̂a · pk, q̂b · pk, q̂1 · pk, . . . , q̂N · pk

 
, (3.1)

where the sum over k runs over all QCD partons and where q̂i = ni = (1,~ni) are light-like

reference vectors parallel to the beam and jet directions. The limit TN ! 0 describes a

N -jet event, where the unresolved emissions can either be soft or collinear to the final state

jets or to the beams. This observation translates into a factorization formula [23] for the

TN spectrum in this limit. In the case of color singlet final state processes (such as Drell-

Yan, HV , diphoton production,. . . ) the relevant resolution variable which is resummed to

NNLL0 accuracy is the 0-jettiness (beam thrust). Starting from the general definition in

(3.1), the expression for 0-jettiness is considerably simplified [25]

T0 =
X

k

|~pkT | e
�|⌘k�Y | , (3.2)

where |~pkT | and ⌘k are the transverse momentum and the rapidity of the emission pk. The

0-jettiness cross section for small T0 obeys a factorization formula which has been derived

in [23, 24] originally for Drell-Yan, but it holds for any final state color singlet production

process

d�SCET

d�0dT0
=
X

ij

H��

ij
(Q2, t, µ)

Z
dta dtbBi(ta, xa, µ)Bj(tb, xb, µ)S

✓
T0 �

ta + tb
Q

,µ

◆
, (3.3)
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T0 ! 0

where the sum runs over all possible qq̄ pairs ij = {uū, ūu, dd̄, d̄d, . . .}. The factoriza-

tion formula depends on the hard H��

ij
, soft S and beam Bi,j functions which describe

respectively the square of the hard interaction Wilson coe�cients, the soft real emissions

between external partons and the hard emissions collinear to the beams. The hard func-

tions H��

ij
(Q2, t, µ) are process dependent objects and contain the information on the Born

and virtual squared matrix elements. In order to achieve NNLL0 accuracy they need to be

known up to two loops. They are regular functions of the Mandelstam invariants Q2 = s

and t and can be extracted from the two loop squared amplitude expressions [45] after

subtracting the infrared (IR) poles as explained in detail in appendix A. Their explicit

analytic expressions has been implemented in a dedicated numerical routine and can be

found in the repository of the Geneva code. The Bi(t, x, µ) are the inclusive (anti)quark

beam functions [23]. They depend on the virtualities ta,b of the initial state partons i and j

annihilated in the hard interaction and on the momentum fractions xa,b which are written

in terms of the diphoton rapidity Y�� and on the diphoton invariant mass Q = M��

xa =
Q

Ecm

eY�� , xb =
Q

Ecm

e�Y�� , (3.4)

where Ecm is the hadronic center-of-mass energy. The beam functions are calculated as an

operator product expansion (similarly for Bj)

Bi(ta, xa, µ) =
X

k

Z
1

xa

d⇠a
⇠a

Iik

✓
ta,

xa
⇠a

, µ

◆
fk(⇠a, µ) . (3.5)

The perturbatively computable part of the above equation are the matching coe�cients

Iik(ta, za, µ) which describe the collinear virtual and real initial state radiation (ISR) emis-

sions. The function fk(⇠a, µ) represents the usual PDF for parton k with momentum

fraction ⇠a. The matching coe�cient Iik(ta, za, µ) were computed to NNLO accuracy in

[46]. S(k, µ) is the quark hemisphere soft function for beam thrust and it has been com-

puted to the required NNLO accuracy including the scale independent terms in [47] [AB:

Is this the correct reference?]

The hard, beam and soft functions which appear in (3.3) are single-scale objects and

are evaluated at their own characteristic scale

µH = Q, µB =
p
QT0, µS = T0 , (3.6)

so that no large logarithmic corrections are present in their fixed-order perturbative ex-

pansions. The resummation of large logarithms proceeds via renormalization group (RG)

evolution functions Ui(µi, µ) which evolve the hard, soft and collinear functions from their

own characteristic scale µi to a common scale µ. The resummed formula for the T0 spec-

trum is then given by

d�NNLL
0

d�0dT0
=
X

ij

H��

ij
(Q2, t, µH)UH(µH , µ)

�⇥
Bi(ta, xa, µB)⌦ UB(µB, µ)

⇤

⇥
⇥
Bj(tb, xb, µB)⌦ UB(µB, µ)

⇤ 
⌦
⇥
S(µs)⌦ US(µS , µ)

⇤
, (3.7)
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N-jettiness as jet-resolution variable

I N-jettiness is a good resolution parameter. Global physical observable
with straightforward definitions for hadronic colliders, in terms of beams qa,b

and jet-directions qj

TN =
2

Q

X

k

min
�

q1 · pk, . . . , qN · pk

 
) TN =

2

Q

X

k

min
�

qa · pk, qb · pk, q1 · pk, . . . , qN · pk

 

Jet 2

Soft

Soft Jet 1

e+ e�

1

2 Jet 2

Jet b Jet a

Soft

Jet 3

Jet 1b

a

1

32

p p

`�

`+

I N-jettiness has good factorization properties, IR safe and resummable at
all orders. Resummation known at NNLL for any N in SCET [Stewart et al. 1004.2489,

1102.4344]I TN ! 0 for N pencil-like jets, TN � 0 spherical limit.
I TN < T cut

N limits the activity outside the jets
Simone Alioli | GENEVA | DESY 3/6/2021 | page 6
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N-Je%ness and Factoriza2on

‣ When an extra jet is present the relevant jet resolu:on variable                                                                   
is 1-je>ness 

‣ Class of geometric measures  (  dimensionless parameter), remove the 
dependence on the energies  and only depends on the direc:ons . Introduce frame 
dependence. 

‣ Choice of the  determines the frame in which the 1-je>ness is evaluated. We focus on 3 
choices: Laboratory frame, Underlying Born (UB) frame ( ), Color Singlet (CS) frame 
( ).

Qi = ρi 2 Ei ρi
Ei ̂qi

ρi
YVj = 0

YV = 0
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In the LAB frame we choose Qa,b = 2⇢a,bEa,b = ⇢a,b xa,bEcm = ⇢a,b QV j e
±YV j and QJ =

2⇢J EJ . (Note: for a massless jet EJ = (Q2

V j
�M

2

``
)/(2QV j) in terms of Mandelstam variables

QV j,M`` at the Born level). This means that the T1 definition reads

T1 =
X

k

min
�2qa · pk

Qa

,
2qb · pk
Qb

,
2qJ · pk

QJ

 
. (5)

with qa,b = xa,bEcmna,b/2 = QV j e
±YV jna,b/2. In order to minimize the power corrections

we set ⇢a,b = e
⌥YV j and ⇢J = 1 in the LAB frame. In the frame where the V j system has

YV j = 0 this results into the definition of T1

T̂1 =
X

k

min{n̂a · p̂k, n̂b · p̂k, n̂J · p̂k} . (6)

where the hat notation denotes the YV j = 0 frame.
It is possible to choose appropriate values for the ⇢i, where i = a, b, J such that we can

express the T1 definition in the laboratory frame in terms of the momenta defined in the
YV j = 0 frame. Starting from the following definition

T
LAB

1
=
X

k

min{
n̂a · p̂k

⇢a
,
n̂b · p̂k

⇢b
,
n̂J · p̂k

⇢J
} , (7)

where the n̂i and p̂k are evaluated in the YV j = 0 frame, we find the following values for the
⇢i’s:

⇢a = e
ŶLAB ,

⇢b = e
�ŶLAB ,

⇢J =
e
�ŶLAB(p̂J)+ + e

ŶLAB(p̂J)�

2ÊJ

, (8)

where all the hatted quantities are evaluated in the YV j = 0 frame. In particular ŶLAB is the
rapidity of the laboratory frame as seen in the YV j = 0 frame and (p̂J)⌥ are the projections
of the constructed massless jet 4-momentum in the YV j = 0 frame. For configurations with
up to 1 extra parton the YV j = 0 frame corresponds to the CM frame. It is then possible to
express the ŶLAB in terms of the partonic center of mass rapidity seen in the laborary frame
as ŶLAB = �Y

LAB frame

CM
.

The same reasoning can be used to obtain the ⇢i to express the T1 definition in the color
singlet frame YV = 0 in terms of the momenta defined in the YV j = 0 frame. We have

⇢a = e
ŶV ,

⇢b = e
�ŶV ,

⇢J =
e
�ŶV (p̂J)+ + e

ŶV (p̂J)�

2ÊJ

, (9)

where now ŶV is the rapidity of the color singlet as seen in the YV j = 0 frame. For config-
urations with up to 1 extra parton the YV j = 0 frame corresponds to the CM frame so this
can be expressed in terms of rapidities in the laboratory frame as ŶV = YV � YCM.

2
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Monte Carlo implementa2on
‣ GENEVA [Alioli,Bauer,Berggren,Tackmann, Walsh `15], [Alioli,Bauer,Tackmann,Guns `16], [Alioli,Broggio,Lim, 

Kallweit,Ro^oli `19],[Alioli,Broggio,Gavardi,Lim,Nagar,Napoletano,Kallweit,Ro^oli `20-`21] combines 3 
theore6cal tools that are important for QCD predic6ons into a single framework 

‣ fully differen6al fixed-order calcula6ons, up to NNLO via 0-jeAness or  subtrac6on 

‣ up to NNLL` resumma6on for 0-jeAness in SCET or N LL for  via RadISH for colour singlet 
processes 

‣ shower and hadronize events (PYTHIA8) 

‣ IR-finite defini6on of events based on resolu6on parameters            and 

qT

3 qT

IR-safe definitions of events beyond leading-order

Fisrt step of any NNLO+PS: an IR safe definition of events with up to two extra
emissions. Using 0-jet and 1-jet resolution parameters for color singlets

I Emissions below T
cut

N
are unresolved ( i.e. integrated over) and the kinematic

considered is the one of the event before the extra emission(s).
I Emissions above T

cut

N
are retained and the kinematics is fully specified.

An M-parton event is considered a N-jet event, N  M , fully differential in �N

• power corrections in T
cut

N
due to phase-space projection.

• vanish for IR-safe observables as T
cut

N
! 0

Iterating the procedure, the phase space is sliced into jet-bins

Different choices are possible for the resolution parameters. Assume zero- and
one-jettiness if not explicitly stated. Simone Alioli | GENEVA | CERN TH WS 1/7/2020 | page 4

T cut
0

where the convolution between the di↵erent functions is written in schematic form. The

scale setting procedure will be explained in the next section where we will introduce the

profile functions which are employed to switch-o↵ resummation outside its kinematical

range of validity. At NNLL0 accuracy, we need to know the boundary conditions of the

evolutions, namely the hard, beam and soft functions up to NNLO accuracy, and the

cusp(non-cusp) anomalous dimensions up to three(two)-loop order. The expressions for the

anomalous dimensions to the required order can be found in [21, 48–51]. The gluon fusion

channel contribution is included in the present calculation only at fixed-order accuracy.

We leave for future work the resummation of this channel.

4 Implementation within the Geneva framework

In this section we briefly review the Geneva framework and present the implementation

of the diphoton production process within this Monte Carlo code by highlighting the main

di↵erences compared to the previous processes such as Drell-Yan [40] and HV production

[42]. We refer to [39, 40, 42] for more details on the general features of the Geneva method.

An event generator produces N -jet physical events where all of the IR divergences are

canceled on an event-by-event basis. TN is used as the N -jet resolution variable which

defines the Geneva Monte Carlo (MC) cross sections by including the contributions of all

the unresolved emissions below a certain resolution cuto↵ TN < T
cut

N
. In the present case,

exclusive cross sections for events with 0, 1 and 2 jets are defined by employing cuts on the

T0 and T1 resolution variables as

�0 events:
d�mc

0

d�0

(T cut

0 ) ,

�1 events:
d�mc

1

d�1

(T0 > T
cut

0 ; T cut

1 ) ,

�2 events:
d�mc

�2

d�2

(T0 > T
cut

0 , T1 > T
cut

1 ) . (4.1)

The jet definition used here, contrary to an ordinary jet algorithm, depends on a phase

space map �N (�M ) (with N  M) which projects the M -body phase space unresolved

emissions onto �N points. Using (4.1) the cross section for a generic observable X is

written as

�(X) =

Z
d�0

d�mc

0

d�0

(T cut

0 )MX(�0)

+

Z
d�1

d�mc

1

d�1

(T0 > T
cut

0 ; T cut

1 )MX(�1)

+

Z
d�2

d�mc

�2

d�2

(T0 > T
cut

0 , T1 > T
cut

1 )MX(�2) , (4.2)

where MX(�N ) is the measurement function that computes the observable X for the N -

parton final state point �N . The above defined cross section is not equivalent to a fixed

order calculation. Indeed for any unresolved emission the observable is computed on the

projected point �N (�M ) rather than the exact �M point. However the di↵erence vanishes

– 7 –

T cut
1

‣ When we take                   , large logarithms of          ,        appear and need to be resummed 

‣ Including the higher-order resumma6on will improve the accuracy of the predic6ons across 
the whole spectrum
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Higgs Pair produc-on
Based on arXiv:2212.10489, S. Alioli, G. Billis, AB, A. Gavardi, S. Kallweit, M.A. Lim, G. Marinelli, R. Nagar and D. Napoletano

Partonic results
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Higgs pair produc-on

‣ Interface to three different showers: 

‣ Pythia 8 

‣ Pythia 8 Dire 

‣ Sherpa 

‣ Need to include top mass correc6ons for 
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Higgs boson produc-on via gluon fusion
Based on arXiv:2301.11875 S. Alioli, G. Billis,  AB, A. Gavardi, S. Kallweit, M.A. Lim, G. Marinelli, R. Nagar and D. Napoletano

‣ Calcula6on done in the Heavy Top Limit (HTL). Rescaling of HTL result by a factor equal to the 

ra6o between the LO -exact result and that obtained in pure EFT (rEFT) 

‣ Improved spliAng func6ons

mt
Here we use the primed counting for the resummation order as in e.g. ref. [53]. For the

case of a single extra emission we have two contributions: that above T
cut
0

d�mc
1

d�1
(T0 > T

cut
0 ; T cut

1 ) =

("
d�NNLL0

d�0dT0
�

d�NNLL0

d�0dT0

����
NLO1

#
P(�1) + (B1 + V C

1 )(�1)

)

⇥ U1(�1, T
cut
1 ) ✓(T0 > T

cut
0 )

+

Z 
d�2

d�T
1

B2(�2) ✓
�
T0(�2) > T

cut
0

�
✓(T1 < T

cut
1 )

�
d�2

d�C

1

C2(�2) ✓(T0 > T
cut
0 )

�

�B1(�1)U
(1)
1 (�1, T

cut
1 ) ✓(T0 > T

cut
0 ) , (2.2)

and the nonsingular below T
cut
0 , arising from non-projectable configurations,

d�mc
1

d�1
(T0  T

cut
0 ; T cut

1 ) = (B1 + V1)(�1)⇥
FKS
map (�1) ✓(T0 < T

cut
0 ) . (2.3)

Similarly the case of two extra emissions also receives two contributions,

d�mc
�2

d�2
(T0 > T

cut
0 , T1 > T

cut
1 ) =

(
d�NNLL0

d�0dT0
�

d�NNLL0

d�0dT0

����
NLO1

�
P(e�1)

+ (B1 + V C

1 )(e�1)

)
U 0

1(e�1, T1) ✓(T0 > T
cut
0 )

���e�1=�T
1 (�2)

⇥ P(�2) ✓(T1 > T
cut
1 )

+
n
B2(�2) ✓(T1 > T

cut
1 )�B1(�

T

1 )U
(1)0
1

�e�1, T1
�

⇥ P(�2)⇥(T1 > T
cut
1 )

o
✓
�
T0(�2) > T

cut
0

�
, (2.4)

and

d�mc
�2

d�2
(T0 > T

cut
0 , T1  T

cut
1 ) = B2(�2)⇥

T

map(�2) ✓(T1 < T
cut
1 ) ✓

�
T0(�2) > T

cut
0

�
, (2.5)

above and below T
cut
1 , respectively.

In the formulae above, Bn, Vn and Wn are the 0-, 1- and 2-loop matrix elements for

n QCD partons in the final state (including parton densities); analogously, we denote by

NkLOn a quantity with n additional partons in the final state computed at NkLO accuracy.

Since it is necessary to evaluate the resummed and resummed-expanded terms on phase

space points resulting from a projection from a higher to a lower multiplicity, we introduce

a shorthand for such projected phase space points, e�N . We use the abbreviation

d�M

d�O

N

= d�M �[e�N � �O

N (�M )]⇥O(�M ) (2.6)

to indicate an integration over the portion of the �M phase space which can be reached

from a �N point while keeping some observable O also fixed, with N < M . The ⇥O(�M )

– 4 –

+…

term additionally limits the integration to the phase space points belonging to the singular

contribution for the given observable O. For example, when generating 1-body events we

use
d�2

d�T
1

⌘ d�2 �[e�1 � �T

1 (�2)]⇥
T (�2) , (2.7)

where the 1 ! 2 mapping has been constructed to preserve T0, i.e.

T0(�
T

1 (�2)) = T0(�2) , (2.8)

and ⇥T (�2) guarantees that the �2 point is reached from a genuine QCD splitting of

the �1 point. The use of a T0-preserving mapping is necessary to ensure that the point-

wise singular T0 dependence is alike among all terms in eqs. (2.2) and (2.4) and that the

cancellation of said singular terms is guaranteed on an event-by-event basis.

The non-projectable regions of �1 and �2, on the other hand, are assigned to the cross

sections in eqs. (2.3) and (2.5). These events are entirely nonsingular in nature. We denote

the constraints due to the choice of map by ⇥map, using the FKS map [69] for the �1 !
e�0

projection and, as mentioned above, a T0-preserving map for the �2 ! e�1 projection.

Their complements are denoted by ⇥map.

The term V C

1 denotes the contributions of soft and collinear origins in a standard NLO

local subtraction,

V C

1 (�1) = V1(�1) +

Z
d�2

d�C

1

C2(�2) , (2.9)

with C2 a singular approximant of B2; in practice we use the subtraction counterterms

which we integrate over the radiation variables d�2/d�C

1 using the singular limit C of the

phase space mapping.

In the formulae involving one or two extra emissions, U1 is a next-to-leading-logarithmic

(NLL) Sudakov factor which resums large logarithms of T1, and U 0
1 its derivative with

respect to T1; the O(↵s) expansions of these quantities are denoted by U (1)
1 and U (1)0

1

respectively.

We extend the di↵erential dependence of the resummed terms from the N -jet to the

(N+1)-jet phase space using a normalised splitting probability P(�N+1) which satisfies
Z

d�N+1

d�NdTN
P(�N+1) = 1 . (2.10)

The two extra variables are chosen to be an energy ratio z and an azimuthal angle �. The

functional forms of the P(�N+1) are in principle only constrained by eq. (2.10). However,

in order to correctly model the soft-collinear limit behaviour, we find it useful to write them

in terms of the Altarelli-Parisi splitting kernels, weighted by parton distribution functions

(PDFs).

In previous implementations of the Geneva method, the splitting functions P(�N+1)

were computed using a “hit-or-miss” method based on precomputed upper bounds, which

did not require knowledge of an analytic expression for the integration limits of z and � (see

section II.B.4 of ref. [4] for the definition of the splitting function and Appendices C and

– 5 –
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Figure 2: Comparison of the fixed-order, singular, and nonsingular distributions at

NNLO+NNLL0, both for T0 (left) and pH
T

(right). We show the singular and nonsin-

gular distributions both for the original and improved versions of the splitting function

implementation in Geneva.

mic behaviour of the NLO1 result, as it appears to miss a single logarithmic contribution

⇠ 1/pH
T
. This is implied by the fact that the improved nonsingular contribution converges

to a nonzero constant at low values of pH
T
. This must however be compared with the orig-

inal approach, Porig, where the divergent behaviour of the nonsingular plot suggests that

that implementation also fails to capture the logarithmic structure up to ⇠ ln2(pH
T
)/pH

T
.

We examine the e↵ects of the Pimpr implementation on the Drell-Yan process in App. A,

where we compare di↵erent Geneva results with the ATLAS experimental data.

3.2 Independent scale variations

In traditional implementations of fixed-order QCD calculations, a di↵erentiation is made

between the factorisation scale µF and the renormalisation scale µR. The former is associ-

ated with the scale of collinear factorisation, while the latter is introduced in dimensional

regularisation in order to render the strong coupling dimensionless.

To date, implementations of Geneva have assumed these scales to be equal. Doing

so facilitated the matching to the resummed calculation, where a sole “nonsingular” scale

µNS appears as the endpoint of the RGE running, typically taken to be a hard scale Q of

the problem. The two scales were then varied in a correlated fashion (“diagonal” in the

{µR, µF } space) when probing the higher order uncertainties. This approach, however,

can hinder a complete and thorough uncertainty estimation as it neglects those variations

– 15 –

going as a constant
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Higgs boson produc-on via gluon fusion

Geneva ggHiggs Matrix

�NNLO, rEFT
gg!H

[pb] 42.33+4.39
�4.34 42.35+4.55

�4.41 42.33+4.54
�4.40

Table 1: Comparison of the Geneva, ggHiggs, and Matrix results for the gg ! H

inclusive cross section. The results are obtained at NNLO in the HTL approximation, and

rescaled with the rEFT factor.

4.1 Partonic results at NNLO

Here we validate the NNLO accuracy of the total cross section obtained with Geneva

and that of the only di↵erential inclusive quantity available, the Higgs boson rapidity.

We compare the total cross section with the independent calculations implemented in

ggHiggs [62, 118–121] and Matrix [122], and the rapidity distribution with Matrix only.

The Matrix predictions are based on the qT -subtraction approach and are extrapolated

towards the zero qT -cut value. We set the input parameters of our calculations as described

in sec. 2.2, and we choose the central factorisation and renormalisation scales equal to each

other and to the Higgs boson mass, µR = µF = mH . We set our resolution cuto↵s to

T
cut
0 = T

cut
1 = 1 GeV. We employ the PDF set PDF4LHC15 nnlo 100 from LHAPDF [123],

and take the value of ↵s(mZ) from the same set, so that ↵s(mH) = 0.11263.

In table 1 we report the values of the inclusive gg ! H cross section and the associ-

ated 7-point scale variations calculated at NNLO and rescaled with the rEFT factor using

Geneva, ggHiggs, and Matrix.2 We observe excellent agreement between the three pre-

dictions; by choosing T
cut
0 = 1 GeV, the neglected power-suppressed terms in Geneva are

at the permille level and amount to an acceptable ⇠ 0.02 pb error for the central value.

In fig. 4 we compare the Higgs rapidity spectrum obtained with Geneva with the

NNLO result provided by Matrix, including the 7-point scale variations. We observe very

good agreement both in the central values and in the envelope of the scale variations, up to

large values of |yH |. The symmetry of the pp collider allows us to show only the absolute

value of yH , and thus further reduce the Monte Carlo uncertainty.

4.2 Interface with PYTHIA8

In this section we briefly recap the main features of the interface used in Geneva to match

the partonic results to the Pythia8 [124] parton shower. As this is not the main focus of

this work, however, we refer the interested reader to ref. [4] for a detailed discussion and

ref. [15] for additional details on the accuracy of the matched calculation. Given that so far

we have constructed partonic results with NNLL0 accuracy in the resolution variable T0,

we wish to preserve this resummed accuracy after the parton shower as far as is possible.

At the same time, for all other observables we need to guarantee that the accuracy of the

2
The impact of the 7-point scale variations on Higgs production via gluon fusion is small to moderate.

For this process, scale variations are largely driven by µR variations, and therefore an independent variation

of µR and µF leads to a theory uncertainty that is not extremely di↵erent from the one obtained by varying

those scales homogeneously. We find that the scale uncertainty bands increase from roughly ±9% to ±10%

for both the total cross-section and the Higgs rapidity distribution.
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Figure 4: Comparison of Geneva and Matrix at NNLO for the yH distribution.

parton shower is preserved. This is a nontrivial condition: since the ordering variable of the

Pythia8 parton shower is the relative transverse momentum while the resolution variable

we use is the N -jettiness, the shower can in principle produce emissions which double-count

regions of the phase space.

To avoid this issue, we perform the matching employing the following prescription. We

set the starting scale of the parton shower by taking the maximum relative k? determined

by the lower scale of the resummation. The latter is defined on an event-by-event basis

and corresponds to either T
c

N
⌘ T

cut
0 , T cut

1 or T1 (�2), depending on whether the relative

partonic configuration has N = 0, 1 or 2 jets, respectively. We then let the shower run

down to the internal minimum p?, which produces a certain number of emissions k. Lastly,

we check that the resulting event fulfils the condition

TN (�N+k)  T
c

N , (4.1)

which ensures that both accuracies are correctly preserved. For unshowered events with

one jet in the final state, we perform the first shower emission directly within Geneva, by

implementing eqs. (48) and (49) of ref. [9]. Showered events will therefore almost exclusively

originate from events with either zero or two final state partons.

In fig. 5 we show the e↵ect of the Pythia8 shower on the pH
T

and yH partonic distri-

butions. For the results presented in this section we use the default Pythia8 parameters

for the shower and the hadronisation model. The rapidity distribution, being an inclusive

observable, is exactly preserved by the shower, as expected. The Higgs transverse momen-

tum is an exclusive observable, and the shower can therefore have a significant impact on

its shape: in this case we see an e↵ect of ⇠ 15% in the pH
T

< 15 GeV bin, and smaller

e↵ects . 5% in the rest of the spectrum, especially in the tail of the distribution. After

hadronisation, we find that most of these discrepancies are reduced.
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Figure 7: Comparison of the ATLAS data [66] with the Geneva+Pythia8 results at

13 TeV. We show the fiducial cross sections for di↵erent values of Njets (top left), as well

as the distributions of |yH | (top right), pH
T

(bottom left), and pj1
T

(bottom right).

Also in this case, jets are constructed using the anti-kT algorithm with R = 0.4, and are

required to have pj
T
> 30 GeV. Jets with |⌘j | < 2.5 are used for observables with one extra

jet or to count the number of jets, while a looser cut |⌘j | < 4.7 is applied for observables

requiring at least two jets in the final state.

Due to the lack of availability of these analyses in the Rivet [125] framework, we

have implemented the ATLAS and CMS analyses within the Geneva code. The H ! ��

decay is inserted by the Pythia8 particle decays handler on top of the events produced

by Geneva. Its kinematics are treated at leading order in QCD, and we set the branching

ratio to BR(H ! ��) = 2.27 ⇥ 10�3, i.e. the value reported in ref. [126] and calculated
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Figure 3: Comparison of the yH (left) and T0 (right) distributions with di↵erent choices

of µH .

whereas for exclusive predictions we use

�2
excl = �2

FO +�2
res +�2

' . (3.40)

In the Geneva implementation of the gg ! H process we use the hardfunc module

from scetlib [94] for the hard function evaluation and evolution in the complex plane.

Since for this process we set Q = mH , we pick

µH = �imH . (3.41)

With this choice, we observe a di↵erence in the total cross section result with respect to the

µH = mH case that can be substantial despite being formally of higher order. The e↵ects

of the complex choice of scale µH on di↵erential observables are illustrated in fig. 3, where

we compare predictions at NNLO+NNLL0 for the T0 and yH distributions with µH = mH

and µH = �imH . In this and the following figures, the theoretical uncertainty is shown

as a shaded band, while the Monte Carlo integration errors are shown as thin vertical

bars. For the Higgs boson rapidity distribution, we observe an increase of around 10%

that is almost independent of yH , and a reduction in the uncertainty band as expected.

The T0 spectrum shows a larger e↵ect, especially in the tail of the distribution, where our

prediction is entirely driven by the fixed-order result. Nonetheless, we observe a reduction

in the uncertainty band particularly in the peak and transition regions of the spectrum,

between 5 and 45 GeV.

4 Validation of the gg ! H process

In this section we validate our predictions. We first compare our partonic NNLO results

with two independent calculations, and then discuss the interface to the Pythia8 shower.
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Zero-je%ness resumma-on for top-quark pair 
produc-on at the LHC

Based on arXiv:2111.03632, S. Alioli, AB, M.A. Lim



Alessandro Broggio    07/06/2023 11

0-je%ness resumma2on for  produc2ontt̄

‣ NNLO+PS for  produc6on available in MINNLOPS framework [Mazzitelli, Monni, Nason, Re, Wiesemann, 
Zanderighi `20, `21]. GENEVA will include higher-order resumma6on. 

‣ To reach NNLO+PS accuracy in GENEVA: NLO calcula6ons for  and +jet and resummed calcula6on at 
NNLL` in  

‣ Defini6on of 0-jeAness has to be adapted with top-quarks in the final state, we choose to treat them 
like EW par3cles and exclude them from the sum over radia6on. First develop resumma6on framework.

tt̄

tt̄ tt̄
T0

dσ
dΦ0dτB

= M ∑
ij={qq̄,q̄q,gg}

∫ dta dtb Bi(ta, za, μ) Bj(tb, zb, μ) Tr[Hij(Φ0, μ) Sij(MτB −
ta + tb

M
, Φ0, μ)]

We derived a factoriza6on formula (see 2111.03632 Appendix A) using SCET+HQET in the region   when 

 are all hard scales (in case of boosted regime  situa6on similar to 
[Fleming, Hoang,Mantry,Stewart `07][Bachu,Hoang,Mateu,Pathak,Stewart `21])

T0 ! 0

Mtt̄ ∼ mt ∼ ̂s Mtt̄ ≫ mt

Hard func6ons (colour matrices) 
known to NLO [Ahrens, Ferroglia, Neubert, 

Pecjak, Yang, 1003.5827]

SoH func6ons (colour matrices) 
computed to NLO

Beam func6ons [Stewart, 
Tackmann, Waalewijn, [1002.2213], 

known up to N LO3
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‣ We have: beam func6ons at NNLO (both for  and gg channels), hard func6ons at NLO, soH func6ons at 

NLO, by knowing the two-loop soH anomalous dimensions we can solve the RG equa6ons order by order and 

obtain all the NNLO logarithmic contribu6ons, we miss  terms at NNLO

qq̄

�(T0)

‣ We can resum to NNLL. We are missing   terms (NNLO hard func6ons and NNLO soH). If we include 

everything we know we obtain a NNLL  result 

‣ We construct an approximate (N)NLO formula which reproduces the fixed-order behaviour of the spectrum 

(for )

�(T0)

′ a

T0 > 0

Figure 1: Approximate fixed order results for the T0 distribution obtained from our

factorisation theorem compared with full calculations at LO (left) and NLO (right). The

approximate results correctly reproduce the fixed order behaviour in the T0 ! 0 limit.

cross section as a function of ⌧B relative to the fixed order calculation. This is shown at

LO1 and NLO1 accuracy in fig. 2. We see that the singular contribution to the cross section

becomes of a similar size to the fixed order when ⌧B is just above 0.2. The behaviour at

di↵erent orders is very similar. We therefore make the choices

y0 = 1.0GeV/M , {y1, y2, y3} = {0.1, 0.175, 0.25} . (4.3)

We now discuss the resummed results. In order to estimate the theoretical uncer-

tainties, we vary the central choices for the profile scales in eq. (4.1) independently while

keeping the hard scale fixed. This gives us four independent variations. In addition, we

consider two more profile functions where we shift all the yi transition points together by

±0.05 while keeping all of the scales fixed at their central values. Hence, we obtain in

total six profile variations. We consider the maximal absolute deviation in the results with

respect to the central prediction as the resummation uncertainty.

In fig. 3, we show the peak region of the resummed T0 distribution. We compare

predictions at di↵erent primed and unprimed levels of accuracy from NLL to NNLL0
a.

Examining the unprimed results, we see a large shift in the central value between the NLL

and NNLL results, though the central prediction for the NNLL result remains within the

scale uncertainty band of lower order calculation. We also observe that the size of the band

does not reduce substantially when moving from one order to the next. On the other hand,

comparing the NLL0 and NNLL0
a results we observe both a more stable central value and

– 19 –

Fixed-order comparisons, approximate NLO and approximate NNLO vs LO  and NLO1 1

Singular vs Fixed order
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Resummed results

Figure 3: Resummed T0 distribution at successive unprimed (left) and primed (right)

orders. Compared to the full NNLL0 result, the approximate NNLL0
a prediction shown

on the right misses only finite O(↵2
s ) terms proportional to �(T0) in the hard and soft

functions.

In Geneva implementations at NNLL0+NNLO, it acts as a subtraction term local in T0,
which requires the fixed order calculation to use a T0-preserving mapping. This can have

the positive feature of reducing the impact of fiducial power corrections compared to a

simple slicing approach [80, 81].

Finally, in fig. 5 we present our best predictions across the whole spectrum. In order

to highlight the e↵ect of these higher-order corrections we show the resummed results

at various resummation orders matched to the appropriate fixed order calculations. We

divide the spectrum into the peak region, where resummation e↵ects are most important,

the transition, where resummed and fixed order contributions compete for importance, and

the tail, where the fixed order is dominant. Examining the peak region, we notice slightly

larger uncertainty bands for the NNLL+LO1 compared to the NLL0+LO1. The uncertainty

bands are, however, significantly reduced once NNLL0
a+NLO1 accuracy is reached. In the

transition and tail regions, a clear di↵erence between the NNLL0
a+NLO1 and the lower

order results emerges above ⇠ 60 GeV due to the additional contributions of the NLO1

calculation.

– 21 –

NNLL   is our best predic6on, it includes NNLO beam func6ons, all mixed NLO x NLO terms, NNLL 
evolu6on matrices, all NNLO soH logarithmic terms. Resumma6on is switched off via profile scales

′ a
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Matched results to fixed-order

Figure 2: Comparison of the absolute values for the singular and nonsingular contributions

to the T0 distribution with fixed order results at LO (left) and NLO (right) accuracy.

also a sizeable reduction of the theoretical uncertainties. This highlights the need for full

NNLL0 accuracy in this process, which we hope to report on in future work.

As mentioned in sec. 3.2, for the production of coloured particles there is a certain

amount of ambiguity in whether one should expand terms or instead keep them inside the

exponential prefactor. This ambiguity starts at NNLL accuracy, since these terms are the

first to contribute at O(↵s) in the logarithmic counting of the exponent. Indeed, while it is

necessary to evaluate the non-diagonal evolution matrix u as a perturbative expansion, the

product between the diagonal evolution matrix U and the generating function appearing

e.g. in the first line of eq. (3.14) may be expanded in the same way or kept exact. We

choose the former by default; however, it is interesting to assess the (formally higher order)

e↵ect of making the other choice. In fig. 4, we compare the resummed distribution with

and without this expansion, at both NNLL and NNLL0
a accuracy. We observe very little

di↵erence between the expanded and unexpanded results, suggesting that the e↵ects of

these missing higher order terms in the expanded results are minimal.

We now consider the matching of the resummed and fixed order calculations. We per-

form an additive matching, following the same spirit as recent Geneva implementations

(see e.g. Ref. [49]). The appropriate combinations of resummed and fixed order accuracies

are given in Tab. 1. The total perturbative uncertainty is calculated by adding in quadra-

ture the previously discussed fixed order and resummation uncertainties. We define our

matched spectrum as

d�match

dT0
=

d�resum

dT0
+

d�FO

dT0
�

d�resum

dT0

�

FO

, (4.4)

where the final term removes double-counting between the resummed and fixed order pieces.

– 20 –

Figure 4: Resummed T0 distribution with and without the expansion of U in eq. (3.2), at

both NNLL (left) and NNLL0
a accuracy (right).

Figure 5: Resummed predictions matched to the appropiate fixed order for the T0 distri-

bution at increasing accuracy in the peak (left), transition (centre) and tail (right) regions.

– 22 –
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One-je%ness resumma-on for Z+jet produc-on 
at the LHC

work in progress…
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‣ Start from expression for 1-je>ness in the Born frame, where  

‣ 1-je>ness in the color singlet frame by making a different choice of the ’s (similar way 
to go to the laboratory frame) 

‣ We also employ a Fully-Recursive (FR) version of one-je>ness which is used in the fixed 
order calcula:ons. Closest par:cles in the one-je>ness metric are merged together. 

‣ Factoriza:on formula in the region                                            [Stewart, Tackmann,Waalewijn 
`09,`10]

ρi = 1

ρi

1-je%ness

<latexit sha1_base64="/YTn3PcHYL18tAw3fOw9Qg7dQII=">AAACjXicbZHLahsxFIY107RN3UvcZtmNiCl0UcxMaXqjLaFdJHiVQJwELDOckTWxsC5TSVMwQm/TJ8qub1N5PIvYyQHBr/N/B0m/ylpw67LsX5I+2Hn46PHuk97TZ89f7PVfvrqwujGUjakW2lyVYJngio0dd4Jd1YaBLAW7LBe/Vv7lH2Ys1+rcLWs2lXCteMUpuNgq+n+JBDenIDyZg/PnIRQ5/o6JbWSxwK1ppJdcBeJJZYCuud+hAEJn2uF2W4diETwxc11AeLfJlfdz5TY32uRGHTcKJBT9QTbM2sJ3Rd6JAerqtOjfkJmmjWTKUQHWTvKsdlMPxnEqWOiRxrIa6AKu2SRKBZLZqW/TDPhN7MxwpU1cyuG2e3vCg7R2KctIruKx296qeZ83aVz1eeq5qhvHFF0fVDUCO41XX4Nn3DDqxDIKoIbHu2I6h5iRix/YiyHk20++Ky7eD/OPw8OzD4Ojn10cu+g1OkBvUY4+oSN0gk7RGNGkl2TJl+Rrupcept/SH2s0TbqZfbRR6fF/ixHLvQ==</latexit>

T̂1 =
X

k

min{ q̂a · p̂k
⇢a

,
q̂b · p̂k
⇢b

,
q̂J · p̂J
⇢J

}

In the LAB frame we choose Qa,b = 2⇢a,bEa,b = ⇢a,b xa,bEcm = ⇢a,b QV j e
±YV j and QJ =

2⇢J EJ . (Note: for a massless jet EJ = (Q2

V j
�M

2

``
)/(2QV j) in terms of Mandelstam variables

QV j,M`` at the Born level). This means that the T1 definition reads

T1 =
X

k

min
�2qa · pk

Qa

,
2qb · pk
Qb

,
2qJ · pk

QJ

 
. (5)

with qa,b = xa,bEcmna,b/2 = QV j e
±YV jna,b/2. In order to minimize the power corrections

we set ⇢a,b = e
⌥YV j and ⇢J = 1 in the LAB frame. In the frame where the V j system has

YV j = 0 this results into the definition of T1

T̂1 =
X

k

min{n̂a · p̂k, n̂b · p̂k, n̂J · p̂k} . (6)

where the hat notation denotes the YV j = 0 frame.
It is possible to choose appropriate values for the ⇢i, where i = a, b, J such that we can

express the T1 definition in the laboratory frame in terms of the momenta defined in the
YV j = 0 frame. Starting from the following definition

T
LAB

1
=
X

k

min{
n̂a · p̂k

⇢a
,
n̂b · p̂k

⇢b
,
n̂J · p̂k

⇢J
} , (7)

where the n̂i and p̂k are evaluated in the YV j = 0 frame, we find the following values for the
⇢i’s:

⇢a = e
ŶLAB ,

⇢b = e
�ŶLAB ,

⇢J =
e
�ŶLAB(p̂J)+ + e

ŶLAB(p̂J)�

2ÊJ

, (8)

where all the hatted quantities are evaluated in the YV j = 0 frame. In particular ŶLAB is the
rapidity of the laboratory frame as seen in the YV j = 0 frame and (p̂J)⌥ are the projections
of the constructed massless jet 4-momentum in the YV j = 0 frame. For configurations with
up to 1 extra parton the YV j = 0 frame corresponds to the CM frame. It is then possible to
express the ŶLAB in terms of the partonic center of mass rapidity seen in the laborary frame
as ŶLAB = �Y

LAB frame

CM
.

The same reasoning can be used to obtain the ⇢i to express the T1 definition in the color
singlet frame YV = 0 in terms of the momenta defined in the YV j = 0 frame. We have

⇢a = e
ŶV ,

⇢b = e
�ŶV ,

⇢J =
e
�ŶV (p̂J)+ + e

ŶV (p̂J)�

2ÊJ

, (9)

where now ŶV is the rapidity of the color singlet as seen in the YV j = 0 frame. For config-
urations with up to 1 extra parton the YV j = 0 frame corresponds to the CM frame so this
can be expressed in terms of rapidities in the laboratory frame as ŶV = YV � YCM.

2
<latexit sha1_base64="d0g+391qSA9u+rKp8dQG4ksem5Q=">AAACHHicbVDNS8MwHE3n15xfVY9egkPwIKP1+zj04kWYsC9YS0mzdAtL2pqkwij9Q7z4r3jxoIgXD4L/jVnXg24+CLy89/uRvOfHjEplWd9GaWFxaXmlvFpZW9/Y3DK3d9oySgQmLRyxSHR9JAmjIWkpqhjpxoIg7jPS8UfXE7/zQISkUdhU45i4HA1CGlCMlJY888ThSA0xYmkz82yHMXjrpYxljqQcOvJeqFRmML9po3kEteeZVatm5YDzxC5IFRRoeOan049wwkmoMENS9mwrVm6KhKKYkaziJJLECI/QgPQ0DREn0k3zcBk80EofBpHQJ1QwV39vpIhLOea+npxEkbPeRPzP6yUquHRTGsaJIiGePhQkDKoITpqCfSoIVmysCcKC6r9CPEQCYaX7rOgS7NnI86R9XLPPa2d3p9X6VVFHGeyBfXAIbHAB6uAGNEALYPAInsEreDOejBfj3fiYjpaMYmcX/IHx9QP9B6Hs</latexit>

T1 ⌧ Mll ⇠
p
s ⇠ MT,ll

One jettiness resummation for colour singlet plus jet

Various

May 4, 2023

1 Factorisation theorem in Laplace space

We assume a factorisation formula of the form

d�

d�1dT1

=
X

={qq̄g,qgq,ggg}

H(�1)

Z
dtadtbdsJ Ba

(ta)Bb
(tb)JJ

(sJ)

⇥ S

✓
na,b · nJ , T1 �

ta

Qa

�
tb

Qb

�
sJ

QJ

◆
, (1)

where the index  runs over all relevant partonic channels, with a, b, J denoting the
individual parton types ( ⌘ {a,b,J}).

Taking the Laplace transform with respect to T1,

L


d�

d�1dT1

�
=

Z
dT1 e

��T1
X

={qq̄g,qgq,ggg}

H(�1)

Z
dtadtbdsJ Ba

(ta)Bb
(tb)JJ

(sJ)

⇥ S

✓
na,b · nJ , T1 �

ta

Qa

�
tb

Qb

�
sJ

QJ

◆
, (2)

and defining ⌦ ⌘ T1 �
ta

Qa

�
tb

Qb

�
sJ

QJ

, we have that

L


d�

d�1dT1

�
=

X



Z
d⌦e��⌦

H(�1)S(na,b · nJ ,⌦)

Z
dtae

��
ta

QaBa
(ta)

Z
dtbe

��
t
b

Q
bBb

(tb)

Z
dsJ e

��
sJ

QJ JJ
(sJ) . (3)

Using the definitions of the Laplace transforms of the beam, soft and jet functions and
defining �E = e

��E/�, we arrive at

L


d�

d�1dT1

�
=

X



H(�1) S̃

⇣
ln

�
2

E

µ2

⌘
B̃a

✓
ln

Qa �E

µ2

◆
B̃b

✓
ln

Qb �E

µ2

◆
J̃J

⇣
ln

QJ �E

µ2

⌘
.

(4)

1

Dependence on the 
frame
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Hard, SoF, Beam and Jet func2ons

‣ Hard func6ons: two-loop amplitudes for  known from [T. Gehrmann and L. Tancredi 
1112.1531]. Recently available also the axial vector couplings [T. Gehrmann,T. Peraro,L. Tancredi 
2211.13596] but not-included yet. IR-finite func6ons taken from [T. Becher, G. Bell, C. Lorentzen, S. Mar6 

1309.3245].  added, squared amplitude complete analy6c result. At NNLL` accuracy 
included the 1loop squared . 

‣ Beam and quark Jet func6ons known up to N LO [M. Ebert, B. Mistlberger, G. Vita 2006.03056] and [R. 
Bruser, Z.L. Liu, M. Stahlhofen 1804.09722], only needed up to NNLO here Beams [J.R. Gaunt, M. 
Stahlhofen, F. Tackmann 1401.5478, 1405.1044] and Jets [T. Becher and M. Neubert 0603140], [T. Becher and G. 
Bell 1104.4108]. 

‣ SoH func6on boundary terms at NLO implemented as on-the-fly integrals using results in [T.T. 
Jou^enus, I.W. Stewart, F. Tackmann, W. Waalewijn 1302.0846], kept full dependence on       frame 
dependence. 

‣ Frame dependent NNLO soH func6on boundary contribu6on is provided by using the SoHSERVE 
[G. Bell, R. Rahn, J. Talbert 1812.08690, 2004.08396] method (thanks to Bahman Dehnadi, Guido Bell, 
Rudi Rahn) in the form of an interpola6on grid over the parameters  

‣ Valida6on against NLO result in different frames, at NNLO validated in UB frame against the 
interpola6on in MCFM [J. Campbell, K. Ellis, R. Mondini, C. Williams, 1711.09984]. In CS and Lab frames 
new results.

qq̄ → Zg

γ*/Z* → l+l−

gg → Zg

3

{cos θJ,1/ρa,1/ρJ}

<latexit sha1_base64="LV2kTobzcaG7FvLsJEcI2veoQsg=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsKfUE7lEyaaUMzyZhkCmXod7hxoYhbP8adf2OmnYW2HggczrmXe3KCmDNtXPfbKaytb2xuFbdLO7t7+wflw6OWlokitEkkl6oTYE05E7RpmOG0EyuKo4DTdjC+z/z2hCrNpGiYaUz9CA8FCxnBxkp+L8JmRDBPG7O+1y9X3Ko7B1olXk4qkKPeL3/1BpIkERWGcKx113Nj46dYGUY4nZV6iaYxJmM8pF1LBY6o9tN56Bk6s8oAhVLZJwyaq783UhxpPY0CO5mF1MteJv7ndRMT3vopE3FiqCCLQ2HCkZEoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1buuXj1eVmp3eR1FOIFTOAcPbqAGD1CHJhB4gmd4hTdn4rw4787HYrTg5DvH8AfO5w++EZIY</latexit>

T1



Alessandro Broggio    07/06/2023 18

Resumma2on formula to NNLL′ 

REPLACED THE NEW HARD EVOLUTION UNTIL HERE
The final expression therefore reduces to

d�

d�1dT1

=
X



exp

⇢
4(Ca

+ Cb
)K�cusp(µB, µH) + 4CJ

K�cusp(µJ , µH)

� 2(Ca
+ Cb

+ CJ
)K�cusp(µS, µH)� 2CJ

LJ ⌘�cusp(µJ , µH)

� 2(Ca
LB + Cb

L
0
B
)⌘�cusp(µB, µH) +


Ca

ln

✓
Q

2

a
u

st

◆
+ Cb

ln

✓
Q

2

b
t

su

◆

+ Cj
ln

✓
Q

2

J
s

tu

◆
+ (Ca

+ Cb
+ CJ

)LS

�
⌘�cusp(µS, µH) +K�tot

�

⇥ B̃a
(@⌘B + LB, xa, µB)B̃b

(@⌘0
B
+ L

0
B
, xb, µB) J̃J

(@⌘J + LJ , µJ)

⇥H(�1, µH)S̃


T1

✓
@⌘S + LS, µS

◆
Q

�⌘tot

T
1�⌘tot
1

⌘tot e
��E⌘tot

�(1 + ⌘tot)
+O

✓
T1

Q

◆
. (104)

The expression in eq. (104) does not include any additional approximation apart from the

leading-power expansion on which SCET is based – which we have indicated via the O
⇣

T1
Q

⌘

term – and it is formally valid at any logarithmic order. Depending at which order in ↵s the
anomalous dimensions and the boundary terms are available one can extract predictions at
di↵erent logarithimc orders. To this purpose we introduce the notation

S̃


T1(LS,�1, µs) = S̃
, (0)

T1 +
↵s

4⇡
S̃
, (1)

T1 +

✓
↵s

4⇡

◆2

S̃
, (2)

T1 +O(↵3

s
) , (105)

B̃i(Lc, x, µB) = B̃
(0)

i
(x, µB) +

↵s

4⇡
B̃

(1)

i
+

✓
↵s

4⇡

◆2

B̃
(2)

i
+O(↵3

s
) , (106)

J̃i(Lc, µJ) = J̃
(0)

i
+

↵s

4⇡
J̃
(1)

i
+

✓
↵s

4⇡

◆2

J̃
(2)

i
+O(↵3

s
) , (107)

where the order zero contributions of the soft and jet functions are S̃
, (0)

1
= J̃

, (0) = 1 and
the order zero contribution to the beam functions is just the parton distribution function
B̃

(0)

i
(x, µB) = fi(x, µB).

3.0.1 Fixed order expansion of the 1-jettiness soft function

The single di↵erential soft function is defined as the projection of the fully di↵erential via

S


T1(k, µ) =
Y

i=a,b,c

⇣Z
dki

⌘
S3({ki}, µ) �(k � ka � kb � kc) . (108)

where we leave implicit its dependence in products of the jet axes ni · nj. It satisfies the
RGE

µ
d

dµ
S


T1(k, µ) = �


T1(k, µ)⌦k S


T1(k, µ) ⌘

Z
d` �

T1(k � `, µ)S

T1(`, µ) , (109)

24

the common scale Q to break the the powers of the scales such that they can be moved
to the left of the derivative operators and up into the exponent, generating the logarithmic
shifts in the soft, beam and jet functions, we obtain

d�

d�1dT1

=
X

={qq̄g,qgq,ggg}

H(�1, µH) (100)

exp

⇢
4c̄K�cusp(µH , µ) + 2K�



C
(µH , µ)� 2 [c̄LH + Re{c̄

L
}] ⌘�cusp(µH , µ)

� 4K�

G
(µH , µ) + 2⌘�

G
(µH , µ)LH + 2⌘�

GL
(µH , µ) + 2K�



F
(µH , µ)

+ 4(Ca
+ Cb

)K�cusp(µB, µ) + 4CJ
K�cusp(µJ , µ) +K�

a

B
(µB, µ) +K

�

b

B

(µB, µ)

+K
�
J

J

(µJ , µ) + 4c̄K�cusp(µS, µ) +K�


S
(µS, µ)

+ 2


c


s
ln

✓
s

QaQb

◆
+ c



t
ln

✓
�t

QaQJ

◆
+ c



u
ln

✓
�u

QbQJ

◆
� c̄


LS

�
⌘�cusp(µS, µ)

� 2


Ca

LB + Cb
L
0
B

�
⌘�cusp(µB, µ)� 2CJ

LJ ⌘�cusp(µJ , µ)

�

+ B̃a
(@⌘B + LB, xa, µB)B̃b

(@⌘0
B
+ L

0
B
, xb, µB) J̃J

(@⌘J + LJ , µJ)

⇥ S̃


T1

✓
@⌘S + LS, µS

◆
Q

�⌘tot

T
1�⌘tot
1

⌘tot e
��E⌘tot

�(1 + ⌘tot)
.

In the previous equation we used the definitions

LH = ln

✓
Q

2

µ
2

H

◆
, LB = ln

✓
QaQ

µ
2

B

◆
, L

0
B
= ln

✓
QbQ

µ
2

B

◆
,

LJ = ln

✓
QJQ

µ
2

J

◆
and LS = ln

✓
Q

2

µ
2

S

◆
.

The previous equation can be further simplified considering that
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the common scale Q to break the the powers of the scales such that they can be moved
to the left of the derivative operators and up into the exponent, generating the logarithmic
shifts in the soft, beam and jet functions, we obtain
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Combine the solu6ons to the RG equa6ons for the hard, soH, beam and jet func6ons to obtain

where we defined
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Singular vs Nonsingular

‣ Different frame choices for one-jeAness defini6on have different sizes of power correc6ons 
(fully-recursive results below, only fixed-order is different for ) 

‣ CS frame as good as UB frame for different cuts, Lab. frame is worse 

𝒯1 > 0
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Singular vs Nonsingular
<latexit sha1_base64="tyIT5Vgi2hJqchRs5nEj4auP5iQ="></latexit>

⌧1 = 2 T1/
q

M2
l+l� + q2T‣ Reduced defini6on  

‣ When we use as born defining cut the Z boson transverse momentum ,                        
differences in power correc6ons among the different defini6ons are reduced 

qT
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Resummed results up to NNLL’

‣ We use profile scales to switch off resumma6on at μH = M2
l+l− + q2

T
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N LL Resumma2on3
for the case of three colored partons, we have
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where the sums run over all the external hard partons and the case i = j is excluded.
For n = 3 external (hard) partons, all addends in eq. (133) correspond to color diagonal

terms. While this is obvious for the terms in the first two lines, an explicit calculation of the
D

R

iijj
and D

R

iiij
is necessary to prove it. For generic parton indices, they are defined [18]
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D
R

ijkl
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j
Tc

k
Td

l
, (135)

where (. . .)+ denotes the sum of all possible permutations of the color operators normalized
to the factorial of that number and d

abcd

R
= trR(TaTbTcTd)+.

The cusp (�cusp[↵s]) and noncusp (�i

C
[↵s]) anomalous dimensions are given in App. A

of [18] both for the quark and gluon cases.3 The CRi
correspond to the quadratic Casimir of

the particle i (⌘ q or g) that is in representation R. The functions f(↵s) and g
R(↵s) (R = F

for the fundamental and R = A for the adjoint representation) are given in eq. (61) and
eq (68). of [18], respectively.

To show that the operators in eq. (133) are color diagonal, we consider their action at
the n=3 jet amplitude in color space |Mi for each partonic channel . In the present case
there are only three relevant, namely,  = {qq̄, qg, q̄g} for which the |Mi is the same,

|Mi = t
a

ji
|i j ai . (136)

The i (j) denotes the color of the quark (antiquak) and a that of the gluon. We proceed by
calculating separately for each channel the action of the color operators as a function of the
number of colors Nc.

Channel qq̄:

First we consider the contribution of Tiijj in eq. (133)
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(137)

3In the notation of [18] we have �cusp[↵s] ⌘ �cusp(↵s) and �
i
C [↵s] ⌘ �

i(↵s).
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7 Applications

The most important accomplishment of our analysis is that it provides explicit and complete
expressions for the anomalous-dimension matrices needed to perform resummations of large
logarithms in n-jet cross sections with next-to-next-to-next-to-leading logarithmic (N3LL) ac-
curacy. At this order, one resums logarithms of the form αn

sL
k with (n − 2) ≤ k ≤ 2n in

the logarithm of a cross section. This requires that one knows the logarithmically enhanced
terms in the anomalous dimension (the so-called “cusp logarithms”) to four-loop order and
the remaining terms to three-loop accuracy. The appearance of cusp logarithms is a character-
istic feature of anomalous dimensions associated with amplitudes sensitive to Sudakov double
logarithms. Note that N3LL resummation is what is needed to perform a consistent matching
onto NNLO fixed-order expressions for the cross sections, which is becoming state-of-the-art
in perturbative QCD. From our general result (42), we obtain

Γ({s}, µ) =
∑
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2
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5
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−sij

)
.

(79)

Based on our analysis, the terms involving cusp logarithms are now known to four-loop order,
while the remaining contributions in the third line are known to three-loop order.

As a second application, we briefly consider the important case of processes involving only
a small number of external particles. While the form-factor case (n = 2) has already been
discussed in Section 5, we now study the case of three particles (n = 3). This is relevant
for resumming large QCD corrections to important collider processes such as e+e− → 3 jets
(which involves e+e− → qq̄g at the parton level) and pp → H + jet (which involves qq̄ → Hg,
qg → Hq and gg → Hg at the parton level). For the special case of three-particle amplitudes,
many of the multi-particle correlations do not contribute, and other terms can be simplified
using color conservation. We find that the general form of the anomalous dimension in (42)
reduces to

Γ({s}, µ) =
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2
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(80)
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For every channel ( , , ,…), hard anomalous dimension has the form [T. Becher and M. Neubert 1908.11379]qq̄g qgq ggg

4-loop

3-loop

we explicitly evaluated these contribu6ons as func6ons of  using colour space formalismNc

3 Reduction to symmetrized color structures

One can further simplify the connected webs shown in Figure 2 by symmetrizing the attach-
ments to the Wilson lines, as we did in [11]. Explicitly, the corresponding symmetrized color
structures are (sums over repeated color indices are implied)1

Dij = T
a
i T

a
j ≡ Ti · Tj , starting at one-loop order,

Tijk = ifabc
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a
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b
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+
, starting at two-loop order,
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Tijklm = ifadff bcgf efg
(
T

a
i T

b
j T

c
kT

d
l T

e
m

)
+
, starting at four-loop order.
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Here

da1...anR = TrR
(
T

a1 . . .T an
)
+
≡

1

n!

∑

π

Tr
(
T

aπ(1)
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aπ(n)

R

)
(21)

are symmetric invariant tensors given in terms of traces over symmetrized products of group
generators in the representation R. The (. . . )+ prescription only acts on generators attached to
the same particle line, e.g. Tijij = fadef bce (T a

i T
c
i )+(T

b
j T

d
j )+ for i "= j. For the structures Dij...

there is no need to write a (. . . )+ prescription, because they are totally symmetric in their color
indices. Note that (at least up to four-loop order) symmetric structures with an odd number of
indices do not arise. In particular, the color-symmetric three-gluon web dabcR T a

i T
b
j T

c
k does not

appear in perturbative calculations of the three-gluon vertex function up to four-loop order
[38–40]. In [40], an argument based on Bose symmetry and charge-conjugation invariance was
given that this should hold to all orders in perturbation theory.

While the color structures Dij and DR
ijkl are totally symmetric in their indices, the various

T structures have more complicated symmetry properties. Tijk is totally antisymmetric in its
indices, and it vanishes if two or three indices coincide. The structure Tijkl obeys the same
symmetry relations as the conformal cross ratios βijkl in (6), i.e.

Tijkl = Tjilk = −Tikjl = −Tljki = Tklij . (22)

It vanishes if three or four indices coincide. For two identical indices, the non-vanishing
symbols are [11]

Tiijj = −Tijij = fadef bce
(
T

a
i T

b
i

)
+

(
T

c
j T

d
j

)
+
,

Tiijk = −Tijik = −Tjiki = Tjkii = fadef bce
(
T

a
i T

b
i

)
+
T

c
j T

d
k .

(23)

Useful identities for the 5-index symbol Tijklm have been derived in [21]. In particular, it
satisfies the relations

Tijklm = −Tikjlm = −Tljkim = −Tjilkm , (24)

1Compared with [21] we have included an extra factor of i in the definition of the 5-index symbol Tijklm.
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Finally, this allows us to write the hard function anomalous dimensions as
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. (187)

By exploiting the consistency relations we find that we can rewrite the �{ij}
G in terms of

quartic Casimirs of the external legs C4(Ri, R) and g
R(↵s) constants
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, (188)
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�
. (190)

These relations have a similar structure to the quadratic Casimir case in Eq. (23). The only
relevant di↵erence is given by the sum over the fundamental and adjoint representations
which are connected to particles appearing in the internal loops. By employing these expres-
sions the hard anomalous dimension in Eq. (133) could be further simplified and be written
in terms of quartic Casimirs. The following expression could be also simplified, for example

�k

G = �{qq̄}
G [↵s] + �{qg}

G [↵s] + �{q̄g}
G [↵s] =

X

R=F,A

g
R(↵s)

�
2C4(F,R) + C4(A,R)

�
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This expresssion is in complete analogy to the quadratic Casimir contribution
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�
2CF + CA

�
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We found the following rela6ons

�ij

G = �

X

R=F,A

g
R(↵s)

3hDR

iijj
i+ 4hDR

iiij
i

hM|Mi
. (183)

�

G = �{ab}
G + �{ac}

G + �{bc}
G (184)

�

GL
= �{ab}

G Ls + �{ac}
G Lt + �{bc}

G Lu (185)

�


F = f(↵s)
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A

8

�
CRa

+ CRb
+ CRc

�
�

X

i 6=j

hTiijji

hM|Mi

�
(186)

Finally, this allows us to write the hard function anomalous dimensions as

�

H
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�
�̄

cusp
[↵s] ln

Q
2

µ2
+ �̄

[↵s]
�
. (187)
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symmetrized 
in a, b

Quar6c Casimirs

The single-particle anomalous dimensions γi for quarks and gluons (i = q, g) are known
to three-loop order and are given in Appendix B. Explicit expressions for the function
F (x1, x2;αs) and the coefficient f(αs) can be derived from the three-loop results for the soft
anomalous dimension for three-particle amplitudes obtained in the pioneering paper [22]. This
yields

F (x1, x2;αs) = 2F(ex1, ex2)
(αs

4π

)3

+O(α4
s) ,

f(αs) = 16 (ζ5 + 2ζ2ζ3)
(αs

4π

)3
+O(α4

s) ,

(61)

where the function F(x, y) can be expressed in terms of Brown’s single-valued harmonic poly-
logarithms [57, 58]. Defining a complex variable z such that zz̄ = x and (1 − z)(1 − z̄) = y,
one finds that F(x, y) = L(1− z)− L(z), where

L(z) = L10101(z) + 2ζ2 [L001(z) + L100(z)] . (62)

Of the remaining terms in (42), which start at four-loop order, only the coefficients gR can
be determined from presently available calculations. To this end, we exploit the fact that the
anomalous dimension Γ simplifies drastically for the case of n = 2 particles. We obtain (with
i = q, g)

Γ(s12, µ) = −

[
CRi

γcusp(αs) + 2
∑

R

gR(αs)D
R
iiii

]
ln

µ2

−s12
+ 2γi(αs) +O(α5

s) , (63)

where the right-hand side is proportional to the unit matrix in color space, and from here on
we omit the symbol 1 to indicate such terms. For i = q, g these quantities are the anomalous
dimensions of the quark and gluon form factors. The structure

DR
iiii = dabcdR T

a
i T

b
i T

c
i T

d
i = dabcdR

(
T

a
T

b
T

c
T

d
)
Ri

≡ C4(Ri, R) (64)

defines a quartic Casimir invariant, which commutes with all generators in the representation
R of the gauge group. If R is irreducible, then Schur’s lemma implies that C4(Ri, R) is
proportional to the unit matrix. One finds

C4(Ri, R) =
dabcdRi

dabcdR

NRi

≡
d(4)RiR

NRi

, (65)

where the symbol d(4)RiR
was introduced in [49], and NRi

is the dimension of the representation
Ri (with NF = Nc and NA = N2

c −1). For an SU(Nc) gauge theory the relevant combinations
are (we use TF = 1

2)

d(4)FF =
(N4

c − 6N2
c + 18)(N2

c − 1)

96N2
c

,

d(4)FA = d(4)AF =
Nc(N2

c + 6)(N2
c − 1)

48
,

d(4)AA =
N2

c (N
2
c + 36)(N2

c − 1)

24
.

(66)

17
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Resummed results up to N LL3

Very Preliminary!

‣ We use profile scales to switch off resumma6on at μH = M2
l+l− + q2

T
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Matched results
<latexit sha1_base64="QPjGLxjm24HMRM71wDDaBWuvdtg="></latexit>

d�match

dT1
=

d�resum

dT1
+

d�FO

dT1
�


d�resum

dT1

�

FO

‣  large correc:ons especially for small values of  

‣ We know that nonsingular in   is divergent for  

‣ We sum in quadrature profile scales varia:ons and fixed-order 
scale varia:ons 

𝒪(α3
s ) 𝒯cut

0

𝒯1 𝒯0 → 0
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Outlook

‣ Calculate and extract all the missing ingredients to reach NNLL  accuracy for the top-
quark pair produc:on process (hard and soZ func:ons). Implement in GENEVA event 
generator 

‣ Extend top-quark pair to study associated produc:on of a top-pair and a heavy boson  
( ) [AB,Ferroglia,Pecjak,Signer, Yang `15], [AB,Ferroglia,Pecjak,Ossola `16],
[AB,Ferroglia,Pecjak,Yang `16],[AB,Ferroglia,Pecjak,Ossola,Sameshima `17],[AB,Ferroglia,Frederix, 
Pagani,Pecjak,Tsinikos `19] 

‣ Implementa:on of Monte Carlo event generator for Z+jet produc:on.

′ 

tt̄V
V = H, W±, Z

Thank you!
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Backup slides
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N-Je%ness and Resumma2on

‣ At NNLO one needs a 0-jet and a 1-jet (for Z+j also 2-jet) resolu:on parameters 

‣ Emissions below            are unresolved (integrated over) and the kinema:c considered is 
the one of the event before extra emissions 

‣ Emissions above          are kept and the full kinema:cs is considered  

‣ When we take                   , large logarithms of          ,        appear and need to be 
resummed 

‣ Including the higher-order resumma:on will improve the accuracy of the predic:ons 
across the whole spectrum

T cut
N

T cut
N

T cut
N ! 0 T cut

N TN

Step 2: Combining resummation with fixed-order in
GENEVA

I The inclusion of the higher-order resummation is key to improve the
accuracy of the predictions across the whole spectrum.

I Assuming a counting in which ↵sL ⇠ 1, the first “next-to-leading-order”
correction to the spectrum enters at NNLL.

I To correctly match this to fixed-predictions one needs to include all singular
↵
2

s terms, hence the NNLL0 , and match to NNLO.
I These conditions set the minimum accuracy requirement for GENEVA.

Simone Alioli | GENEVA | DESY 3/6/2021 | page 8
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Matching to a parton shower

‣ Parton shower makes the calcula6on differen6al in higher mul6plici6es by filling the 0- and 
1-jet exclusive bins with radia6on and by adding more emissions to the inclusive 2-jet bin 

‣ Not allowed to affect the accuracy of the cross sec6ons reached at partonic level 

‣          constraints must be respected by the shower 

‣  events have              . The shower should restore the emissions which were integrated, but 
should respect the constraint                              . The shape is completely given by PYTHIA 

‣  events, the first shower emission should sa6sfy                             and                                 
(map)    First emission is done in GENEVA aHer that 

‣  events (>95% of total cross sec6on) with nonzero values of       and       : PYTHIA first 
emission affects the       distribu6on only beyond NNLL’ [Alioli,Bauer,Berggren,Tackmann, Walsh `15]

Φ0

Φ1

Φ2

Step 3: Adding the parton shower.

I Purpose of the parton shower is to fill the 0� and 1�jet exclusive bins with radiation
and add more emissions to the inclusive 2�jet bin

I Ideally it should not change accuracy reached at partonic level.
I If the shower is ordered in resolution variable, setting SCALUP would be enough.
I For different ordering variable, jet-boundaries constraints T

cut

k
need to be imposed

on hardest radiation (largest jet resolution scale)
I Impose the first emission has the largest jet resolution scale, by performing a

splitting by hand using a NLL Sudakov and the Tk-preserving map.

Simone Alioli | GENEVA | DESY 3/6/2021 | page 10

T cut
i

T0 = 0
T0(�N ) < T cut

0

T1(�2) < T cut
1 T0(�2) = T0(�1)

T1(�N ) < T cut
1

T0 T1
T0
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Factoriza2on

dσ
dΦ0dτB

= M ∑
ij={qq̄,q̄q,gg}

∫ dta dtb Bi(ta, za, μ) Bj(tb, zb, μ) Tr[Hij(Φ0, μ) Sij(MτB −
ta + tb

M
, Φ0, μ)]

We derived a factoriza6on formula (see 2111.03632 Appendix A) using SCET+HQET in the region   

when  are all hard scales (in case of boosted regime  situa6on similar to 
[Fleming, Hoang,Mantry,Stewart `07][Bachu,Hoang,Mateu,Pathak,Stewart `21])

T0 ! 0

Mtt̄ ∼ mt ∼ ̂s Mtt̄ ≫ mt

Hard func6ons (colour matrices) 
known to NLO [Ahrens, Ferroglia, Neubert, 

Pecjak, Yang, 1003.5827]

SoH func6ons (colour matrices) 
computed to NLO

Beam func6ons [Stewart, 
Tackmann, Waalewijn, [1002.2213], 

known up to N LO3

We have thus been able to express the di↵erential cross section as a product of functions

in Laplace space. Moreover, the Laplace-transformed soft function in eq. (2.8) can be

written as a polynomial in the logarithm of the Laplace variable , with function-valued

coe�cients.

We are now in a position to solve the evolution equations to all orders and hence

perform the resummation. We consider the various ingredients of the factorisation theorem

in turn.

2.4 The hard function and its evolution

The colour-decomposed hard functions Hij(�0, µ) for tt̄ production were first computed at

one-loop order in Ref. [32]. The two-loop amplitudes which are necessary for the construc-

tion of the NNLO hard functions can instead be found in Ref. [69]. From hereon we express

the �0 dependence in terms of the variables �t, ✓ defined in eq. (2.4) and the top-quark

pair invariant mass M . Dropping the channel subscripts for ease of notation, each hard

function satisfies the following RG equation [32]

d

d lnµ
H(M,�t, ✓, µ) = �H(M,�t, ✓, µ)H(M,�t, ✓, µ) +H(M,�t, ✓, µ)�

†

H
(M,�t, ✓, µ) ,

(2.9)

where we conveniently wrote the anomalous dimension

�H(M,�t, ✓, µ) = �cusp(↵s)

✓
ln

M2

µ2
� i⇡

◆
+ �

h(M,�t, ✓,↵s) . (2.10)

The non-cusp anomalous dimension matrices �
h were computed up to two-loop order in

Refs. [30, 31]. The all-order solution can be written as [32]

H(M,�t, ✓, µ) = U(M,�t, ✓, µh, µ)H(M,�t, ✓, µh)U
†(M,�t, ✓, µh, µ) , (2.11)

where µh is a hard scale of the process, e.g. the tt̄ invariant mass M , such that the hard

function is free from large logarithms. When evaluated at a generic scale µ instead of at

the hard scale µh, the matrix U performs the resummation of these hard logarithms.

For later convenience, we use the fact that U can be rewritten by separating out a

part which comes from the cusp evolution and is diagonal in colour space and a leftover

piece u which also contains non-diagonal contributions:

U(M,�t, ✓, µh, µ) = exp


2S(µh, µ)� a�(µh, µ)

✓
ln

M2

µ2

h

� i⇡

◆�
u(M,�t, ✓, µh, µ) . (2.12)

The double and single logarithmic resummation are provided by the functions S and a�
respectively, defined as

S(µa, µb) = �
Z

↵s(µb)

↵s(µa)

d↵
�cusp(↵)

�(↵)

Z
↵

↵s(µa)

d↵0

�(↵0)
,

a�(µa, µb) = �
Z

↵s(µb)

↵s(µa)

d↵
�cusp(↵)

�(↵)
. (2.13)

– 7 –

Hard func6on anomalous dimension: split into a cusp (diagonal in colour space) and non-cusp (not diagonal) part

[Ferroglia, Neubert, Pecjak, Yang,`09]

The renormalisation procedure also completely determines the structure of the O(↵s)

term Z(1)

S
, which allows us to extract the soft anomalous dimension at one-loop. We verified

that by doing so, this object satisfies consistency relations required by RG invariance of

eq. (2.6) (see eq. (2.35)). In addition, by exploiting this relation at one order higher, we

are able to extract the soft anomalous dimension at two-loop order.

2.5.2 Solving the soft RG equations at fixed order

A resummation at full NNLL0 accuracy would require knowledge of the two-loop contribu-

tions to the soft function, which have not yet been calculated. It is, however, possible to

obtain partial knowledge about the two-loop function by solving the renormalisation group

evolution equations at fixed order. In this way, one can obtain the logarithmic terms at

O(↵2
s) expressed in terms of coe�cients at lower order, leaving only the term proportional

to �(T0) to be determined by an explicit calculation.

The soft functions in Laplace space satisfy the following renormalisation group equa-

tions

d

d lnµ
S̃B(L,�t, ✓, µ) =


�cuspL � �

s
†
�
S̃B(L,�t, ✓, µ) + S̃B(L,�t, ✓, µ)


�cuspL � �

s

�
,

(2.24)

where we have dropped the channel subscript for simplicity. Since the expansions of �cusp

and the non-cusp soft anomalous dimension matrices �s start at O(↵s), defining

S̃B(L,�t, ✓, µ) = s(0) +
↵s

4⇡
S̃(1)

B
+

✓
↵s

4⇡

◆2

S̃(2)

B
+O(↵3

s) (2.25)

and expanding eq. (2.24) at NNLO we have

d

dL
S̃(2)

B
=

1

2
S̃(1)

B


(��(0)

cuspL� �0) + �
s(0)

�
+

1

2
s(0)


� �(1)

cuspL+ �
s(1)

�
+ h.c. (2.26)

Denoting further the logarithmic coe�cients of the soft function as

S̃B(L,�t, ✓, µ) =
1X

n=0

2nX

m=0

⇣↵s

4⇡

⌘
n

S̃(n,m)

B
(�t, ✓)L

m (2.27)

and again suppressing arguments for brevity, we find the solution

S̃(2,4)

B
= �1

8
S̃(1,2)

B
�(0)

cusp + h.c.

S̃(2,3)

B
=

1

6

⇣
�S̃(1,1)

B
�(0)

cusp + S̃(1,2)

B
�
s(0) � �0S̃

(1,2)

B

⌘
+ h.c. (2.28)

S̃(2,2)

B
=

1

4

⇣
�S̃(1,0)

B
�(0)

cusp + S̃(1,1)

B
�
s(0) � s(0)�(1)

cusp � �0S̃
(1,1)

B

⌘
+ h.c.

S̃(2,1)

B
=

1

2

⇣
S̃(1,0)

B
�
s(0) + s(0)�s(1) � �0S̃

(1,0)

B

⌘
+ h.c.

Upon transforming back to momentum space, we thus have all the soft ingredients

necessary to construct the T0 spectrum at approximate NNLO. We are only missing the

– 10 –

One can average over the two hemisphere momenta, soH func6on sa6sfies the RG equa6on in Laplace space, 
we used the consistency rela6on among anomalous dimensions

term S̃(2,0)

B
, which contributes only at the point T0 = 0 and must be computed separately.

This means that once we combine these with the contributions coming from the beam

and hard functions we are able to cancel all the singular pieces at small T0 of the NLO

calculation for tt̄+jet production.

2.5.3 Evolution

In Laplace space, the all-order solutions of the soft RG evolution in eq. (2.24) can be

written as

S̃B(L,�t, ✓, µ) = V†(,�t, ✓, µs, µ) S̃B(L,�t, ✓, µs)V(,�t, ✓, µs, µ) , (2.29)

where the unitary matrix V satisfies the di↵erential equation

d

d lnµ
V(,�t, ✓, µs, µ) =

✓
�cusp ln

2

µ2
� �s

◆
V(,�t, ✓, µs, µ) , (2.30)

and the soft scale µs ⇠ T0 minimises the logarithms in the soft functions. Proceeding

analogously to the hard function case and resumming the soft logarithms while evolving

from the soft scale to a generic scale µ, we find the solution

V(,�t, ✓, µs, µ) = exp [2S(µs, µ)]

✓
2

µ2
s

◆�a�(µs,µ)

v(�t, ✓, µs, µ), (2.31)

with the non-cusp soft evolution matrices given by

v(�t, ✓, µs, µ) = P exp

(
�
Z

↵s(µ)

↵s(µs)

d↵

�(↵)
�
s(�t, ✓,↵)

)
. (2.32)

Substituting these ingredients into eq. (2.29) we obtain

S̃B(L,�t, ✓, µ) = exp [4S(µs, µ)]v
†(�t, ✓, µs, µ) S̃B(@⌘s ,�t, ✓, µs)v(�t, ✓, µs, µ)

✓
2

µ2
s

◆⌘s

(2.33)

where ⌘s ⌘ �2a�(µs, µ). In the last equation we have rewritten the logarithms appearing as

an argument of the soft function in terms of partial derivatives acting on the last factor [71,

72]. Transforming back to momentum space yields

SB(l
+,�t, ✓, µ) = exp [4S(µs, µ)]v

†(�t, ✓, µs, µ) S̃B(@⌘s ,�t, ✓, µs)v(�t, ✓, µs, µ)

⇥ 1

l+

✓
l+

µs

◆2⌘s e�2�E⌘s

�(2⌘s)
. (2.34)

Due to the RG invariance of the full cross section we have the following relation between

the non-cusp anomalous dimensions of the hard, soft, and beam functions

�
s = �

h + �B 1 , (2.35)

where the non-diagonal part of the soft anomalous dimension arises entirely from the

non-cusp anomalous dimension of the hard function and �B is the non-cusp anomalous

– 11 –
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Beam func2ons

The beam func6ons are given by convolu6ons of perturba6ve kernels with the standard PDFs  fi(x, μ)

Bi(t, z, μ) = ∑
j

∫
1

z

dξ
ξ

Iij(t, z /ξ, μ) fj(ξ, μ)

RG equa6on in Laplace space is given by 

 kernels are known up to N LO, 
process independent

Iij
3

dimension for the beam function. The evolution formula in eq. (2.34) for the soft function

can therefore be rewritten as

SB(l
+,�t, ✓, µ) = exp

⇥
4S(µs, µ) + 2a�B (µs, µ)

⇤
(2.36)

⇥ u†(�t, ✓, µ, µs) S̃B(@⌘s ,�t, ✓, µs)u(�t, ✓, µ, µs)
1

l+

✓
l+

µs

◆2⌘s e�2�E⌘s

�(2⌘s)
,

where the order of the scale arguments in the u evolution matrices is now inverted relative

to the v matrices and

a�B (µs, µ) = �
Z

↵s(µ)

↵s(µs)

d↵
�B(↵)

�(↵)
. (2.37)

2.6 The beam functions and their evolution

The process-independent T0 beam functions Bi have been computed up to N3LO accuracy

and are available in the literature [62–66]. The quark and gluon beam functions satisfy the

following RG equation in Laplace space

d

d lnµ
B̃i(Lc, z, µ) =


� 2�cusp(↵s)Lc + �Bi (↵s)

�
B̃i(Lc, z, µ) , (2.38)

where the index i = {q, q̄, g}, Lc = ln
⇥
(M)/µ2

⇤
and �cusp = CD�cusp with CD = {CF , CA}

for the quark and the gluon beam functions respectively. The explicit expressions for the

non-cusp beam anomalous dimensions �B
i

up to NNLO can be found in e.g. Appendix D

of Ref [57]. Dropping the flavour index for brevity, the evolution equation has the solution

B̃(Lc, z, µ) = exp
⇥
�4S(µB, µ)� a�B (µB, µ)

⇤
B̃(@⌘B , z, µB)

✓
M

µ2

B

◆
⌘B

, (2.39)

where ⌘B ⌘ 2a�(µB, µ) and µB ⇠
p
T0M is the beam scale. Taking the inverse transform

again we find that, in momentum space,

B(t, z, µ) = exp
⇥
�4S(µB, µ)� a�B (µB, µ)

⇤
B̃(@⌘B , z, µB)

1

t

✓
t

µ2

B

◆
⌘B e��E⌘B

�(⌘B)
. (2.40)

3 Resummation via renormalisation group evolution

In this section, we combine the factorisation theorem and the perturbative ingredients

presented in sec. 2 to resum logarithms of T0/M . We present explicit formulæ for the

resummed T0 spectrum at NLL0, NNLL and NNLL0 order.

3.1 All-order solutions of the RG equations

Substituting the resummed expressions for the ingredients of eq. (2.6) which we have pre-

sented in sec. 2 and after integrating over the virtualities ta and tb, we are able to write

– 12 –

dimension for the beam function. The evolution formula in eq. (2.34) for the soft function

can therefore be rewritten as

SB(l
+,�t, ✓, µ) = exp

⇥
4S(µs, µ) + 2a�B (µs, µ)

⇤
(2.36)

⇥ u†(�t, ✓, µ, µs) S̃B(@⌘s ,�t, ✓, µs)u(�t, ✓, µ, µs)
1

l+

✓
l+

µs

◆2⌘s e�2�E⌘s

�(2⌘s)
,

where the order of the scale arguments in the u evolution matrices is now inverted relative
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2.6 The beam functions and their evolution
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�
B̃i(Lc, z, µ) , (2.38)

where the index i = {q, q̄, g}, Lc = ln
⇥
(M)/µ2

⇤
and �cusp = CD�cusp with CD = {CF , CA}
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i
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⇤
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✓
M

µ2

B

◆
⌘B

, (2.39)

where ⌘B ⌘ 2a�(µB, µ) and µB ⇠
p
T0M is the beam scale. Taking the inverse transform
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⇤
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t
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B

◆
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�(⌘B)
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3 Resummation via renormalisation group evolution

In this section, we combine the factorisation theorem and the perturbative ingredients

presented in sec. 2 to resum logarithms of T0/M . We present explicit formulæ for the

resummed T0 spectrum at NLL0, NNLL and NNLL0 order.

3.1 All-order solutions of the RG equations

Substituting the resummed expressions for the ingredients of eq. (2.6) which we have pre-

sented in sec. 2 and after integrating over the virtualities ta and tb, we are able to write
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with solu6on in momentum space

where  and the collinear log is given by  ηB ≡ 2aΓ(μB, μ) Lc = ln(Mκ /μ2)

Cki
γcusp → Cki

γcusp + 2∑
R

C4(Rki
, R)gR(αs) At N LL3
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Hard func2ons

The hard func6ons arise from matching the full theory onto the EFT, they can be extracted from colour 
decomposed loop amplitudes. At NLO it was first computed in [Ahrens, Ferroglia, Neubert, Pecjak, Yang, 
1003.5827]. They sa6sfy the RG equa6ons

We have thus been able to express the di↵erential cross section as a product of functions

in Laplace space. Moreover, the Laplace-transformed soft function in eq. (2.8) can be

written as a polynomial in the logarithm of the Laplace variable , with function-valued

coe�cients.

We are now in a position to solve the evolution equations to all orders and hence

perform the resummation. We consider the various ingredients of the factorisation theorem

in turn.

2.4 The hard function and its evolution

The colour-decomposed hard functions Hij(�0, µ) for tt̄ production were first computed at

one-loop order in Ref. [32]. The two-loop amplitudes which are necessary for the construc-

tion of the NNLO hard functions can instead be found in Ref. [69]. From hereon we express

the �0 dependence in terms of the variables �t, ✓ defined in eq. (2.4) and the top-quark

pair invariant mass M . Dropping the channel subscripts for ease of notation, each hard

function satisfies the following RG equation [32]

d

d lnµ
H(M,�t, ✓, µ) = �H(M,�t, ✓, µ)H(M,�t, ✓, µ) +H(M,�t, ✓, µ)�

†

H
(M,�t, ✓, µ) ,

(2.9)

where we conveniently wrote the anomalous dimension

�H(M,�t, ✓, µ) = �cusp(↵s)

✓
ln

M2

µ2
� i⇡

◆
+ �

h(M,�t, ✓,↵s) . (2.10)

The non-cusp anomalous dimension matrices �
h were computed up to two-loop order in

Refs. [30, 31]. The all-order solution can be written as [32]

H(M,�t, ✓, µ) = U(M,�t, ✓, µh, µ)H(M,�t, ✓, µh)U
†(M,�t, ✓, µh, µ) , (2.11)

where µh is a hard scale of the process, e.g. the tt̄ invariant mass M , such that the hard

function is free from large logarithms. When evaluated at a generic scale µ instead of at

the hard scale µh, the matrix U performs the resummation of these hard logarithms.

For later convenience, we use the fact that U can be rewritten by separating out a

part which comes from the cusp evolution and is diagonal in colour space and a leftover

piece u which also contains non-diagonal contributions:

U(M,�t, ✓, µh, µ) = exp


2S(µh, µ)� a�(µh, µ)

✓
ln

M2

µ2

h

� i⇡

◆�
u(M,�t, ✓, µh, µ) . (2.12)

The double and single logarithmic resummation are provided by the functions S and a�
respectively, defined as

S(µa, µb) = �
Z

↵s(µb)

↵s(µa)

d↵
�cusp(↵)

�(↵)

Z
↵

↵s(µa)

d↵0

�(↵0)
,

a�(µa, µb) = �
Z

↵s(µb)

↵s(µa)

d↵
�cusp(↵)

�(↵)
. (2.13)
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The o↵-diagonal, non-cusp evolution is instead provided by the colour matrix

u(M,�t, ✓, µh, µ) = P exp

Z
↵s(µ)

↵s(µh)

d↵

�(↵)
�
h(M,�t, ✓,↵) , (2.14)

where the symbol P specifies the path-ordered exponential. All of the previous ingredients

S, a� and u are channel-specific and their exact definition depends on whether one is

examining the quark or gluon-initiated case. Their explicit expressions can be found in

e.g. the appendix of Ref. [32].

In all functions so far, we have highlighted the dependence on both the invariant mass

M of the tt̄ pair and on the variable �t. These are related by eq. (2.4) through the value

of the top-quark mass mt. In order to simplify the notation, from hereon we will drop

the explicit M dependence in the soft functions and in the evolution kernels, with the

understanding that these objects still implicitly depend on mt.

2.5 The soft function and its evolution

To the best of our knowledge, the soft function for tt̄ production which appears in eq. (2.6)

has been defined for the first time in this work. In this section, we therefore compute

the function at one-loop order, which is a necessary ingredient for resummation of the

logarithms of T0 at NLL0 accuracy and beyond.

2.5.1 Calculation of the one-loop soft function

The integrated soft functions in momentum space are given by

SB,ij(Ts,�t, ✓, µ) =
Z

dk+a dk
+

b
Sij(k

+

a , k
+

b
,�t, ✓, µ) �(Ts � k+

b
� k+a ) . (2.15)

where the channel indices i, j = {qq̄, q̄q, gg}. The operatorial definition in SCET is given

by eq. (A.30). We expand the soft functions in ↵s as

Sij(k
+

a , k
+

b
,�t, ✓, µ) = s(0)

ij
�(k+a )�(k

+

b
) +

✓
↵s

4⇡

◆
S(1)

ij
(k+a , k

+

b
,�t, ✓, ✏, µ) +O(↵2

s ), (2.16)

where we have expressed the bare coupling ↵0
s in terms of the renormalised coupling ↵s(µ)

in the MS scheme using the relation Z↵s ↵s(µ)µ2✏ = e��E✏(4⇡)✏↵0
s . The leading order

(LO) coe�cients s(0)
ij

for the qq̄ and gg channels are defined in eq. (65) of Ref. [32]. The

next-to-leading order (NLO) bare soft functions in momentum space can be written as

S(1)

bare, ij
(k+a , k

+

b
,�t, ✓, ✏, µ) =

X

↵,�

w↵�

ij
Î↵�(k+a , k+b ,�t, ✓, ✏, µ) , (2.17)

where the colour matrices w↵�

ij
for the qq̄ and gg channels are defined in eq. (71) of Ref. [32]

and the integrals are defined as

Î↵�(k+a , k+b ,�t, ✓, ✏, µ) = �2(µ2e�E )✏

⇡1�✏

Z
ddk

v↵ · v�
v↵ · k v� · k �(k2)⇥(k0) (2.18)

⇥
⇥
�(k+a � k · na)⇥(k · nb � k · na) �(k

+

b
) + �(k+

b
� k · nb)⇥(k · na � k · nb) �(k

+

a )
⇤
.
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Solu6on:

We have split the anomalous dimension into a cusp (diagonal in colour space) and non-cusp 
(not diagonal) part

We evaluate the matrix exponen6al 
u as a series expansion in  [1003.5827], 

[Buchalla,Buras,Lautenbacher `96]
αs

[Ferroglia, Neubert, Pecjak, Yang,`09]
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SoF func2ons
We computed the soH func6ons matrices at NLO which were unknown for this observable 

The o↵-diagonal, non-cusp evolution is instead provided by the colour matrix
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where the colour matrices w↵�

ij
for the qq̄ and gg channels are defined in eq. (71) of Ref. [32]

and the integrals are defined as

Î↵�(k+a , k+b ,�t, ✓, ✏, µ) = �2(µ2e�E )✏

⇡1�✏

Z
ddk

v↵ · v�
v↵ · k v� · k �(k2)⇥(k0) (2.18)

⇥
⇥
�(k+a � k · na)⇥(k · nb � k · na) �(k

+

b
) + �(k+

b
� k · nb)⇥(k · na � k · nb) �(k

+

a )
⇤
.
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The renormalisation procedure also completely determines the structure of the O(↵s)

term Z(1)

S
, which allows us to extract the soft anomalous dimension at one-loop. We verified

that by doing so, this object satisfies consistency relations required by RG invariance of

eq. (2.6) (see eq. (2.35)). In addition, by exploiting this relation at one order higher, we

are able to extract the soft anomalous dimension at two-loop order.

2.5.2 Solving the soft RG equations at fixed order

A resummation at full NNLL0 accuracy would require knowledge of the two-loop contribu-

tions to the soft function, which have not yet been calculated. It is, however, possible to

obtain partial knowledge about the two-loop function by solving the renormalisation group

evolution equations at fixed order. In this way, one can obtain the logarithmic terms at

O(↵2
s) expressed in terms of coe�cients at lower order, leaving only the term proportional

to �(T0) to be determined by an explicit calculation.

The soft functions in Laplace space satisfy the following renormalisation group equa-

tions

d

d lnµ
S̃B(L,�t, ✓, µ) =


�cuspL � �

s
†
�
S̃B(L,�t, ✓, µ) + S̃B(L,�t, ✓, µ)


�cuspL � �

s

�
,

(2.24)

where we have dropped the channel subscript for simplicity. Since the expansions of �cusp

and the non-cusp soft anomalous dimension matrices �s start at O(↵s), defining

S̃B(L,�t, ✓, µ) = s(0) +
↵s

4⇡
S̃(1)

B
+

✓
↵s

4⇡

◆2

S̃(2)

B
+O(↵3

s) (2.25)

and expanding eq. (2.24) at NNLO we have

d

dL
S̃(2)

B
=

1

2
S̃(1)

B


(��(0)

cuspL� �0) + �
s(0)

�
+

1

2
s(0)


� �(1)

cuspL+ �
s(1)

�
+ h.c. (2.26)

Denoting further the logarithmic coe�cients of the soft function as

S̃B(L,�t, ✓, µ) =
1X

n=0

2nX

m=0

⇣↵s

4⇡

⌘
n

S̃(n,m)

B
(�t, ✓)L

m (2.27)

and again suppressing arguments for brevity, we find the solution

S̃(2,4)

B
= �1

8
S̃(1,2)

B
�(0)

cusp + h.c.

S̃(2,3)

B
=

1

6

⇣
�S̃(1,1)

B
�(0)

cusp + S̃(1,2)

B
�
s(0) � �0S̃

(1,2)

B

⌘
+ h.c. (2.28)

S̃(2,2)

B
=

1

4

⇣
�S̃(1,0)

B
�(0)

cusp + S̃(1,1)

B
�
s(0) � s(0)�(1)

cusp � �0S̃
(1,1)

B

⌘
+ h.c.

S̃(2,1)

B
=

1

2

⇣
S̃(1,0)

B
�
s(0) + s(0)�s(1) � �0S̃

(1,0)

B

⌘
+ h.c.

Upon transforming back to momentum space, we thus have all the soft ingredients

necessary to construct the T0 spectrum at approximate NNLO. We are only missing the
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dimension for the beam function. The evolution formula in eq. (2.34) for the soft function

can therefore be rewritten as

SB(l
+,�t, ✓, µ) = exp

⇥
4S(µs, µ) + 2a�B (µs, µ)

⇤
(2.36)

⇥ u†(�t, ✓, µ, µs) S̃B(@⌘s ,�t, ✓, µs)u(�t, ✓, µ, µs)
1

l+

✓
l+

µs

◆2⌘s e�2�E⌘s

�(2⌘s)
,

where the order of the scale arguments in the u evolution matrices is now inverted relative

to the v matrices and

a�B (µs, µ) = �
Z

↵s(µ)

↵s(µs)

d↵
�B(↵)

�(↵)
. (2.37)

2.6 The beam functions and their evolution

The process-independent T0 beam functions Bi have been computed up to N3LO accuracy

and are available in the literature [62–66]. The quark and gluon beam functions satisfy the

following RG equation in Laplace space

d

d lnµ
B̃i(Lc, z, µ) =


� 2�cusp(↵s)Lc + �Bi (↵s)

�
B̃i(Lc, z, µ) , (2.38)

where the index i = {q, q̄, g}, Lc = ln
⇥
(M)/µ2

⇤
and �cusp = CD�cusp with CD = {CF , CA}

for the quark and the gluon beam functions respectively. The explicit expressions for the

non-cusp beam anomalous dimensions �B
i

up to NNLO can be found in e.g. Appendix D

of Ref [57]. Dropping the flavour index for brevity, the evolution equation has the solution

B̃(Lc, z, µ) = exp
⇥
�4S(µB, µ)� a�B (µB, µ)

⇤
B̃(@⌘B , z, µB)

✓
M

µ2

B

◆
⌘B

, (2.39)

where ⌘B ⌘ 2a�(µB, µ) and µB ⇠
p
T0M is the beam scale. Taking the inverse transform

again we find that, in momentum space,

B(t, z, µ) = exp
⇥
�4S(µB, µ)� a�B (µB, µ)

⇤
B̃(@⌘B , z, µB)

1

t

✓
t

µ2

B

◆
⌘B e��E⌘B

�(⌘B)
. (2.40)

3 Resummation via renormalisation group evolution

In this section, we combine the factorisation theorem and the perturbative ingredients

presented in sec. 2 to resum logarithms of T0/M . We present explicit formulæ for the

resummed T0 spectrum at NLL0, NNLL and NNLL0 order.

3.1 All-order solutions of the RG equations

Substituting the resummed expressions for the ingredients of eq. (2.6) which we have pre-

sented in sec. 2 and after integrating over the virtualities ta and tb, we are able to write
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term S̃(2,0)

B
, which contributes only at the point T0 = 0 and must be computed separately.

This means that once we combine these with the contributions coming from the beam

and hard functions we are able to cancel all the singular pieces at small T0 of the NLO

calculation for tt̄+jet production.

2.5.3 Evolution

In Laplace space, the all-order solutions of the soft RG evolution in eq. (2.24) can be

written as

S̃B(L,�t, ✓, µ) = V†(,�t, ✓, µs, µ) S̃B(L,�t, ✓, µs)V(,�t, ✓, µs, µ) , (2.29)

where the unitary matrix V satisfies the di↵erential equation

d

d lnµ
V(,�t, ✓, µs, µ) =

✓
�cusp ln

2

µ2
� �s

◆
V(,�t, ✓, µs, µ) , (2.30)

and the soft scale µs ⇠ T0 minimises the logarithms in the soft functions. Proceeding

analogously to the hard function case and resumming the soft logarithms while evolving

from the soft scale to a generic scale µ, we find the solution

V(,�t, ✓, µs, µ) = exp [2S(µs, µ)]

✓
2

µ2
s

◆�a�(µs,µ)

v(�t, ✓, µs, µ), (2.31)

with the non-cusp soft evolution matrices given by

v(�t, ✓, µs, µ) = P exp

(
�
Z

↵s(µ)

↵s(µs)

d↵

�(↵)
�
s(�t, ✓,↵)

)
. (2.32)

Substituting these ingredients into eq. (2.29) we obtain

S̃B(L,�t, ✓, µ) = exp [4S(µs, µ)]v
†(�t, ✓, µs, µ) S̃B(@⌘s ,�t, ✓, µs)v(�t, ✓, µs, µ)

✓
2

µ2
s

◆⌘s

(2.33)

where ⌘s ⌘ �2a�(µs, µ). In the last equation we have rewritten the logarithms appearing as

an argument of the soft function in terms of partial derivatives acting on the last factor [71,

72]. Transforming back to momentum space yields

SB(l
+,�t, ✓, µ) = exp [4S(µs, µ)]v

†(�t, ✓, µs, µ) S̃B(@⌘s ,�t, ✓, µs)v(�t, ✓, µs, µ)

⇥ 1

l+

✓
l+

µs

◆2⌘s e�2�E⌘s

�(2⌘s)
. (2.34)

Due to the RG invariance of the full cross section we have the following relation between

the non-cusp anomalous dimensions of the hard, soft, and beam functions

�
s = �

h + �B 1 , (2.35)

where the non-diagonal part of the soft anomalous dimension arises entirely from the

non-cusp anomalous dimension of the hard function and �B is the non-cusp anomalous
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One can average over the two hemisphere momenta, the soH func6on 
sa6sfies the RG equa6on in Laplace space

Solu6on in momentum space, where we used the consistency rela6on 
among anomalous dimensions

term S̃(2,0)

B
, which contributes only at the point T0 = 0 and must be computed separately.

This means that once we combine these with the contributions coming from the beam

and hard functions we are able to cancel all the singular pieces at small T0 of the NLO

calculation for tt̄+jet production.

2.5.3 Evolution

In Laplace space, the all-order solutions of the soft RG evolution in eq. (2.24) can be

written as

S̃B(L,�t, ✓, µ) = V†(,�t, ✓, µs, µ) S̃B(L,�t, ✓, µs)V(,�t, ✓, µs, µ) , (2.29)

where the unitary matrix V satisfies the di↵erential equation

d

d lnµ
V(,�t, ✓, µs, µ) =

✓
�cusp ln

2

µ2
� �s

◆
V(,�t, ✓, µs, µ) , (2.30)

and the soft scale µs ⇠ T0 minimises the logarithms in the soft functions. Proceeding

analogously to the hard function case and resumming the soft logarithms while evolving

from the soft scale to a generic scale µ, we find the solution

V(,�t, ✓, µs, µ) = exp [2S(µs, µ)]

✓
2

µ2
s

◆�a�(µs,µ)

v(�t, ✓, µs, µ), (2.31)

with the non-cusp soft evolution matrices given by

v(�t, ✓, µs, µ) = P exp

(
�
Z

↵s(µ)

↵s(µs)

d↵

�(↵)
�
s(�t, ✓,↵)

)
. (2.32)

Substituting these ingredients into eq. (2.29) we obtain

S̃B(L,�t, ✓, µ) = exp [4S(µs, µ)]v
†(�t, ✓, µs, µ) S̃B(@⌘s ,�t, ✓, µs)v(�t, ✓, µs, µ)

✓
2

µ2
s

◆⌘s

(2.33)

where ⌘s ⌘ �2a�(µs, µ). In the last equation we have rewritten the logarithms appearing as

an argument of the soft function in terms of partial derivatives acting on the last factor [71,

72]. Transforming back to momentum space yields

SB(l
+,�t, ✓, µ) = exp [4S(µs, µ)]v

†(�t, ✓, µs, µ) S̃B(@⌘s ,�t, ✓, µs)v(�t, ✓, µs, µ)

⇥ 1

l+

✓
l+

µs

◆2⌘s e�2�E⌘s

�(2⌘s)
. (2.34)

Due to the RG invariance of the full cross section we have the following relation between

the non-cusp anomalous dimensions of the hard, soft, and beam functions

�
s = �

h + �B 1 , (2.35)

where the non-diagonal part of the soft anomalous dimension arises entirely from the

non-cusp anomalous dimension of the hard function and �B is the non-cusp anomalous

– 11 –
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Resummed result for the cross sec2on

We can combine the solu6ons for the hard, soH and beam func6ons to obtain
the resummed cross section in a compact form as

d�

d�0d⌧B
= U(µh, µB, µs, Lh, Ls)

⇥ Tr

⇢
u(�t, ✓, µh, µs)H(M,�t, ✓, µh)u

†(�t, ✓, µh, µs) S̃B(@⌘s + Ls,�t, ✓, µs)

�

⇥ B̃a(@⌘B + LB, za, µB)B̃b(@⌘0B + LB, zb, µB)
1

⌧1�⌘tot
B

e��E⌘tot

�(⌘tot)
. (3.1)

The derivative terms inside the arguments of the soft and beam functions act on the factor

in the last line of the previous equation, which we refer to as the generating function. In

the previous formula we have defined

U(µh,µB, µs, Lh, Ls) = (3.2)

exp


4S(µh, µB) + 4S(µs, µB) + 2a�B (µs, µB)� 2a�(µh, µB)Lh � 2a�(µs, µB)Ls

�
.

We have also introduced the quantities ⌘s ⌘ 2a�(µ, µs), ⌘B ⌘ 2a�(µB, µ), ⌘tot = 2⌘s +

⌘B + ⌘0
B
, and we explicitly write the beam, soft and hard logarithms as LB = log(M2/µ2

B
),

Ls = log(M2/µ2
s) and Lh = log(M2/µ2

h
). For the derivation of the formula above we have

used the relations

u(�t, ✓, µc, µa)u(�t, ✓, µb, µc) = u(�t, ✓, µb, µa) ,

a�(µa, µc) = a�(µa, µb) + a�(µb, µc) ,

a�i(µa, µc) = a�i(µa, µb) + a�i(µb, µc) ,

S(µa, µb)� S(µc, µb) = S(µa, µc)� a�(µc, µb) log
µa

µc

. (3.3)

to simplify the final expressions.

The expression in eq. (3.1) is our master formula and the primary outcome of this

work. It is formally valid at all logarithmic orders. It is possible to evaluate it at NLL0,

NNLL and NNLL0 depending on the order in ↵s at which the anomalous dimensions and

the boundary terms are available.

In order to evaluate u we first find the matrix ⇤ which diagonalises the LO non-cusp

hard anomalous dimension

�
h(0)

D
= ⇤�1

�
h(0)⇤ (3.4)

and define the vector ~�h(0) consisting of the eigenvalues of the diagonal matrix �
h(0)

D
. The

solution of the non-cusp evolution matrix in eq. (2.14) up to NNLL can then be obtained

perturbatively as an expansion in ↵s following App. A of Ref. [32] and the references

therein [73, 74]. We find

uNNLL(�t, ✓, µh, µ) =

2

4⇤
✓
1 +

↵s(µ)

4⇡
K

◆0

@

↵s(µh)

↵s(µ)

�~�h(0)

2�0

1

A

D

✓
1� ↵s(µh)

4⇡
K

◆
⇤�1

3

5

O(↵s)

(3.5)
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the resummed cross section in a compact form as

d�

d�0d⌧B
= U(µh, µB, µs, Lh, Ls)

⇥ Tr

⇢
u(�t, ✓, µh, µs)H(M,�t, ✓, µh)u

†(�t, ✓, µh, µs) S̃B(@⌘s + Ls,�t, ✓, µs)

�

⇥ B̃a(@⌘B + LB, za, µB)B̃b(@⌘0B + LB, zb, µB)
1

⌧1�⌘tot
B

e��E⌘tot

�(⌘tot)
. (3.1)

The derivative terms inside the arguments of the soft and beam functions act on the factor

in the last line of the previous equation, which we refer to as the generating function. In

the previous formula we have defined

U(µh,µB, µs, Lh, Ls) = (3.2)

exp


4S(µh, µB) + 4S(µs, µB) + 2a�B (µs, µB)� 2a�(µh, µB)Lh � 2a�(µs, µB)Ls

�
.

We have also introduced the quantities ⌘s ⌘ 2a�(µ, µs), ⌘B ⌘ 2a�(µB, µ), ⌘tot = 2⌘s +

⌘B + ⌘0
B
, and we explicitly write the beam, soft and hard logarithms as LB = log(M2/µ2

B
),

Ls = log(M2/µ2
s) and Lh = log(M2/µ2

h
). For the derivation of the formula above we have

used the relations

u(�t, ✓, µc, µa)u(�t, ✓, µb, µc) = u(�t, ✓, µb, µa) ,

a�(µa, µc) = a�(µa, µb) + a�(µb, µc) ,

a�i(µa, µc) = a�i(µa, µb) + a�i(µb, µc) ,

S(µa, µb)� S(µc, µb) = S(µa, µc)� a�(µc, µb) log
µa

µc

. (3.3)

to simplify the final expressions.

The expression in eq. (3.1) is our master formula and the primary outcome of this

work. It is formally valid at all logarithmic orders. It is possible to evaluate it at NLL0,

NNLL and NNLL0 depending on the order in ↵s at which the anomalous dimensions and

the boundary terms are available.

In order to evaluate u we first find the matrix ⇤ which diagonalises the LO non-cusp

hard anomalous dimension

�
h(0)

D
= ⇤�1

�
h(0)⇤ (3.4)

and define the vector ~�h(0) consisting of the eigenvalues of the diagonal matrix �
h(0)

D
. The

solution of the non-cusp evolution matrix in eq. (2.14) up to NNLL can then be obtained

perturbatively as an expansion in ↵s following App. A of Ref. [32] and the references

therein [73, 74]. We find

uNNLL(�t, ✓, µh, µ) =

2

4⇤
✓
1 +

↵s(µ)

4⇡
K

◆0

@

↵s(µh)

↵s(µ)

�~�h(0)

2�0

1

A

D

✓
1� ↵s(µh)

4⇡
K

◆
⇤�1

3

5

O(↵s)

(3.5)
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and , ,  and Ls = ln(M2/μ2
s ) Lh = ln(M2/μ2

h) LB = ln(M2/μ2
B) ηtot = 2ηS + ηB + ηB′ 

where
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Figure 2: Comparison of the absolute values for the singular and nonsingular contributions

to the T0 distribution with fixed order results at LO (left) and NLO (right) accuracy.

also a sizeable reduction of the theoretical uncertainties. This highlights the need for full

NNLL0 accuracy in this process, which we hope to report on in future work.

As mentioned in sec. 3.2, for the production of coloured particles there is a certain

amount of ambiguity in whether one should expand terms or instead keep them inside the

exponential prefactor. This ambiguity starts at NNLL accuracy, since these terms are the

first to contribute at O(↵s) in the logarithmic counting of the exponent. Indeed, while it is

necessary to evaluate the non-diagonal evolution matrix u as a perturbative expansion, the

product between the diagonal evolution matrix U and the generating function appearing

e.g. in the first line of eq. (3.14) may be expanded in the same way or kept exact. We

choose the former by default; however, it is interesting to assess the (formally higher order)

e↵ect of making the other choice. In fig. 4, we compare the resummed distribution with

and without this expansion, at both NNLL and NNLL0
a accuracy. We observe very little

di↵erence between the expanded and unexpanded results, suggesting that the e↵ects of

these missing higher order terms in the expanded results are minimal.

We now consider the matching of the resummed and fixed order calculations. We per-

form an additive matching, following the same spirit as recent Geneva implementations

(see e.g. Ref. [49]). The appropriate combinations of resummed and fixed order accuracies

are given in Tab. 1. The total perturbative uncertainty is calculated by adding in quadra-

ture the previously discussed fixed order and resummation uncertainties. We define our

matched spectrum as

d�match

dT0
=

d�resum

dT0
+

d�FO

dT0
�

d�resum

dT0

�

FO

, (4.4)

where the final term removes double-counting between the resummed and fixed order pieces.
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Singular vs Nonsingular contribu2ons
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Resummed results

Figure 3: Resummed T0 distribution at successive unprimed (left) and primed (right)

orders. Compared to the full NNLL0 result, the approximate NNLL0
a prediction shown

on the right misses only finite O(↵2
s ) terms proportional to �(T0) in the hard and soft

functions.

In Geneva implementations at NNLL0+NNLO, it acts as a subtraction term local in T0,
which requires the fixed order calculation to use a T0-preserving mapping. This can have

the positive feature of reducing the impact of fiducial power corrections compared to a

simple slicing approach [80, 81].

Finally, in fig. 5 we present our best predictions across the whole spectrum. In order

to highlight the e↵ect of these higher-order corrections we show the resummed results

at various resummation orders matched to the appropriate fixed order calculations. We

divide the spectrum into the peak region, where resummation e↵ects are most important,

the transition, where resummed and fixed order contributions compete for importance, and

the tail, where the fixed order is dominant. Examining the peak region, we notice slightly

larger uncertainty bands for the NNLL+LO1 compared to the NLL0+LO1. The uncertainty

bands are, however, significantly reduced once NNLL0
a+NLO1 accuracy is reached. In the

transition and tail regions, a clear di↵erence between the NNLL0
a+NLO1 and the lower

order results emerges above ⇠ 60 GeV due to the additional contributions of the NLO1

calculation.
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NNLL   is our best predic6on, it includes NNLO beam func6ons, all mixed NLO x NLO terms, NNLL 
evolu6on matrices, all NNLO soH logarithmic terms. Resumma6on is switched off via profile scales

′ 

distributions and the matching of the resummed calculation to the fixed order. For sake of

definiteness, all the results presented in this section have been obtained for pp collisions at

a centre-of-mass energy of
p
S = 13 TeV and using PDF4LHC15 nnlo parton distribution

functions from LHAPDF [75, 76]. The central predictions have been obtained running all

scales to a common scale µ equal to the tt̄ invariant mass M . In all figures present in

this section, the statistical uncertainties associated with the Monte Carlo integrations are

reported, when visible, as vertical error bars. We estimate the theoretical uncertainties for

the fixed order predictions by varying the central choice for µR = µF = M up and down

by a factor of two and take the maximal absolute deviation from the central result as the

fixed order uncertainty.

We begin by verifying that the approximate fixed order expressions, which we obtain

from the resummed calculation by setting the various resummation scales equal to the hard

scale, are able to reproduce the behaviour of the full fixed order calculation as T0 ! 0.

Comparisons of the full with the approximate fixed order results are shown in fig. 1 at LO1

(i.e. LO tt̄+jet) and NLO1 accuracy. We observe that, for small values of T0 . 10�1 GeV,

the approximate FO reproduces the behaviour of the full calculation very well, both for

the central values and the scale variations. This gives us confidence that the factorisation

theorem is valid and that our calculation of the finite part of the one-loop soft function

is correct. We notice that when the full NLO1 result crosses zero in the right plot, the

associated statistical errors grow large, resulting in a instability in the ratio plot shown in

the lower panel.

Before studying the resummed result, we have to provide a procedure to turn o↵

the resummation before the exponentiated singular terms become too large, spoiling the

predictions in the fixed order region. We do so in a smooth fashion by employing the profile

scales introduced in Refs. [64, 77, 78]. These profiles evolve the beam and soft scales to the

hard scale as a function of ⌧B and hence stop the RG evolution and resummation when the

common scale µNS = µS = µB = µH is reached. Specifically, the profiles take the form:
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µS(T0) = µNS frun(T0/M) , (4.1)

µB(T0) = µNS

p
frun(T0/M) ,

where the common profile function frun(y) is given by [79]

frun(y) =

8
>>>>>>>><

>>>>>>>>:

y0
⇥
1 + (y/y0)2/4

⇤
y  2y0 ,
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1 y3  y .

(4.2)

This functional form ensures the canonical scaling behaviour for values below y1 and turns

o↵ the resummation above y3. In order to determine the parameters yi of the profiles, it is

instructive to examine the behaviour of the singular and nonsingular contributions to the
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Figure 1: Approximate fixed order results for the T0 distribution obtained from our

factorisation theorem compared with full calculations at LO (left) and NLO (right). The

approximate results correctly reproduce the fixed order behaviour in the T0 ! 0 limit.

cross section as a function of ⌧B relative to the fixed order calculation. This is shown at

LO1 and NLO1 accuracy in fig. 2. We see that the singular contribution to the cross section

becomes of a similar size to the fixed order when ⌧B is just above 0.2. The behaviour at

di↵erent orders is very similar. We therefore make the choices

y0 = 1.0GeV/M , {y1, y2, y3} = {0.1, 0.175, 0.25} . (4.3)

We now discuss the resummed results. In order to estimate the theoretical uncer-

tainties, we vary the central choices for the profile scales in eq. (4.1) independently while

keeping the hard scale fixed. This gives us four independent variations. In addition, we

consider two more profile functions where we shift all the yi transition points together by

±0.05 while keeping all of the scales fixed at their central values. Hence, we obtain in

total six profile variations. We consider the maximal absolute deviation in the results with

respect to the central prediction as the resummation uncertainty.

In fig. 3, we show the peak region of the resummed T0 distribution. We compare

predictions at di↵erent primed and unprimed levels of accuracy from NLL to NNLL0
a.

Examining the unprimed results, we see a large shift in the central value between the NLL

and NNLL results, though the central prediction for the NNLL result remains within the

scale uncertainty band of lower order calculation. We also observe that the size of the band

does not reduce substantially when moving from one order to the next. On the other hand,

comparing the NLL0 and NNLL0
a results we observe both a more stable central value and
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Resummed results

The evolu6on matrix u is evaluated in  expansion, we can choose to expand or not expand , 
the difference is quite small

αs U

Figure 4: Resummed T0 distribution with and without the expansion of U in eq. (3.2), at

both NNLL (left) and NNLL0
a accuracy (right).

Figure 5: Resummed predictions matched to the appropiate fixed order for the T0 distri-

bution at increasing accuracy in the peak (left), transition (centre) and tail (right) regions.
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Singular vs Nonsingular

‣ Result for exact one-je>ness in CS frame, very similar results to FR
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Interface to the parton shower

 measures the  hardness of the 
N+1-th emission 

‣ If shower ordered in , start from 
largest value allowed by N-jettiness 

‣ Let the shower evolve unconstrained. 
‣ At the end veto an event if after                  

shower emissions   
 and retry 

the whole shower.

𝒯N(ΦN+1)

kT

𝒯N(ΦN+M) > 𝒯N(ΦN + 1)

0-jet and 1-jet bins are treated differently: starting scale is resolution cutoff.

  Ensures  the relevant phase space is correctly covered to avoid spoiling the resummation 
accuracy for  and the shower accuracy for other observables.𝒯

 Method rather independent from shower used: PYTHIA8, DIRE & SHERPA.
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