

Milan, June 2023

Jet Veto Resummation in MCFM

R. Keith Ellis, IPPP, Durham

Jet-veto resummation at N³LL_p+NNLO in boson production processes, John M. Campbell, R. Keith Ellis, Tobias Neumann, Satyajit Seth, <u>2301.11768</u>

MCFM (<u>mcfm.fnal.gov</u>)

- MCFM 10.3 (January 30th, 2023) contains about 350 processes at hadron-colliders evaluated at NLO.
- * We have tried to improve the documentation by giving a web-page and a specimen input file for every process.
- * Since matrix elements are calculated using analytic formulae, one can expect better performance, in terms of stability and computer speed, than fully numerical codes.
- * In addition MCFM contains many processes evaluated at NNLO using both the jettiness and the q_T slicing schemes. Non-local slicing approaches for NNLO QCD in MCFM, Campbell, RKE and Seth 2202.07738
- * NNLO results for $pp \to X$, require process $pp \to X + 1$ parton at NLO, and two loop matrix elements for $pp \to X$, (all provided by other authors).
- * MCFM also includes transverse momentum resummation at N³LL+NNLO for W,Z,H,WW,ZZ,WH and ZH processes.

Fiducial qT resummation of color-singlet processes at N³LL+NNLO, CuTe-MCFM <u>2009.11437</u>, Becher and Neumann Transverse momentum resummation at N³LL+NNLO for diboson processes, Campbell, RKE, Neumann and Seth, <u>2210.10724</u>

Web-page for every process, with specimen input files.

15:41

$1 f(-p_1) + f(-p_2) \rightarrow W^+(\rightarrow v(p_3) + e^+(p_4))$

1.1 W-boson production, processes 1,6

These processes represent the production of a W boson which subsequently decays leptonically. This process can be calculated at LO, NLO, and NNLO. NLO calculations can be performed by dipole subtraction, zero-jettiness slicing and q_T -slicing. NNLO calculations can be performed by zero-jettiness slicing and q_T -slicing.

When removebr is true, the W boson does not decay.

Input files for these 6 possibilities, as used plots for 'Non-local slicing approaches for NNLO QCD in MCFM', ref. [1] are given in the link below.

1.2 Input files as used for NNLO studies, ref. [1]

- ./lo/input_W+.ini
- _/nlo/input_W+.ini
- ./nlo/input_W+_qt.ini
- _/nlo/input_W+_scet.ini
- ./nnlo/input_W+_qt.ini
- _/nnlo/input_W+_scet.ini

1.3 Input file for transverse momentum resummed cross-sections, ref. [2]

input_W+.ini

1.4 Input files for jet-vetoed cross-sections, ref. [3]

- vetowp30nlo.ini
- vetowp30nnlo.ini
- vetowp30nnll.ini
- vetowp30n3ll.ini
- vetowp30nlomc.ini
- vetowp30nnlomc.ini

1.5 Plotter

nplotter_W_only.f is the default plotting routine.

1.6 Example input and output file(s)

input1.ini process1.out

References

- J.M. Campbell, R.K. Ellis and S. Seth, Non-local slicing approaches for NNLO QCD in MCFM, 2202,07738.
- [2] T. Becher and T. Neumann, Fiducial q_T resummation of color-singlet processes at N³LL+NNLO, JHEP 03 (2021) 199 [2009.11437].
- [3] J.M. Campbell, R.K. Ellis, T. Neumann and S. Seth, Jet-veto resummation at N³LL_p+NNLO in boson production processes, 2301.11768.

Example of Analytic loop amplitudes in MCFM

Higgs boson plus four partons at one loop.

RKE and Seth, <u>1808.09292</u> Budge et al, <u>2002.04018</u>

eccece p3

l+p2

$$A_{4}(1_{g}^{+}, 2_{g}^{+}, 3_{g}^{+}, 4_{g}^{+}; H) = m^{2} \left[\left\{ \frac{4m^{2} - M_{h}^{2}}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle} \left[-\operatorname{tr}_{+} \{1234\} m^{2} E_{0}(p_{1}, p_{2}, p_{3}, p_{4}; m) + \frac{1}{2}((s_{12} + s_{13})(s_{24} + s_{34}) - s_{14}s_{23})D_{0}(p_{1}, p_{23}, p_{4}; m) + \frac{1}{2}s_{12}s_{23}D_{0}(p_{1}, p_{2}, p_{3}; m) + (s_{12} + s_{13} + s_{14})C_{0}(p_{1}, p_{234}; m) \right] + 2 \frac{s_{12} + s_{13} + s_{14}}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle} \right\}$$
of the 2 \rightarrow 3
intensive,
alytic result ...
of a 100 in
gluonic one-
primit al

- Used for the full NLO calculation of Higgs production with a jet.
- ★ "Although the integration of the 2 → 3 amplitudes, ..., is not time intensive, we preferred to use the analytic result ... which saved about a factor of a 100 in the integration time of the gluonic oneloop 2 → 3 amplitudes." Bonciani et al, 2206.10490

NNLO results

- In a recent paper (2202.07738) we tried to document all the processes calculated at NNLO.
- About 50% are available in MCFM.
- We use both q_T slicing and jettiness slicing.
- However I should note that in some cases N³LO is now the start of the art (e.g. <u>1811.07906</u>,<u>2102.07607</u> <u>2203.01565</u>, <u>2209.06138</u>)

Process	MCFM	Process	MCFM
H + 0 jet [8–14]	✓ [15]	$W^{\pm} + 0$ jet [16–18]	√ [15]
$Z/\gamma^* + 0$ jet [11, 17–19]	√ [15]	ZH [20]	√ [21]
$W^{\pm}\gamma$ [18, 22, 23]	√ [24]	$Z\gamma$ [18, 25]	√ [25]
$\gamma\gamma$ [18, 26–28]	√ [29]	single top $[30]$	√ [31]
$W^{\pm}H$ [32, 33]	√ [21]	WZ [34, 35]	\checkmark
ZZ [1, 18, 36–40]	\checkmark	W^+W^- [18, 41–44]	\checkmark
$W^{\pm} + 1$ jet [45, 46]	[3]	Z + 1 jet [47, 48]	[4]
$\gamma + 1$ jet [49]	[5]	H + 1 jet [50–55]	[6]
$t\bar{t}$ [56–61]		Z + b [62]	
$W^{\pm}H$ +jet [63]		ZH+jet [64]	
Higgs WBF [65, 66]		$H ightarrow b ar{b} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
top decay $[31, 70, 71]$		dijets [72–74]	
$\gamma\gamma$ +jet [75]		$W^{\pm}c$ [76]	
$b\bar{b}$ [77]		$\gamma\gamma\gamma$ [78]	
HH [79]		HHH [80]	

NNLO results: dependence on slicing procedure

- * For most (but not all) processes the power corrections are smaller for Q_T slicing than for jettiness.
- Factor of two in the
 exponent difference
 between the leading
 form factors for q_T and
 jettiness
- * removed by defining $\epsilon_T = q_T^{\text{cut}}/Q$ and $\epsilon_\tau = (\tau^{\text{cut}}/Q)^{\frac{1}{\sqrt{2}}}$

Campbell et al, 2202.07738

Example of q_T resummation in four lepton events(ZZ)

* ATLAS $\sqrt{s} = 13$ TeV, 139fb⁻¹ data, <u>2103.01918</u>

lepton cuts	$q_T^{\ell_1} > 20 \text{GeV}, q_T^{\ell_2} > 10 \text{GeV},$
	$q_T^{\ell_{3,4}} > 5 \text{GeV}, q_T^e > 7 \text{GeV},$
	$ \eta^{\mu} < 2.7, \eta^{e} < 2.47$
lepton separation	$\Delta R(\ell,\ell') > 0.05$

- * m_{4l} > 182 GeV to avoid Higgs region.
- * Low q_T data, plotted as a function of m_{4l}

**

* Agreement with data improves as m_{4l} increases.

Fiducial *q*_T resummation of color singlet processes at N³LL+NNLO, Becher and Neumann, <u>2009.11437</u> Transverse momentum resummation at N³LL+NNLO for diboson processes, Campbell, RKE, Neumann and Seth, <u>2210.10724</u>

Jet veto cross sections

For initial studies see, for example, Becher et al, <u>1307.0025</u>, Stewart et al, <u>1307.1808</u>

New ingredients for jet-veto resummation

- Important step in making SCET results for almost complete
 N³LL available. For details of the missing piece, see later.
- Jets vetoed over all rapidity, (which is not the case experimentally).

PREPARED FOR SUBMISSION TO JHEP

CERN-TH-2022-118, ZU-TH 30/22

Quark and gluon two-loop beam functions for leading-jet p_T and slicing at NNLO

Beam functions Abreu et al, <u>2207.07037</u>

Samuel Abreu,^{a,b} Jonathan R. Gaunt,^c Pier Francesco Monni,^a Luca Rottoli,^d Robert Szafron^e

^aCERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland

- ^bHiggs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 SFD, Scotland, United Kingdom
- ^cDepartment of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

^dDepartment of Physics, University of Zürich, CH-8057 Zürich, Switzerland

- ^cDepartment of Physics, Brookhaven National Laboratory, Upton, N.Y., 11973, U.S.A. E-mail: samuel.abreu@cern.ch, jonathan.gaunt@manchester.ac.uk,
- pier.monni@cern.ch, luca.rottoli@physik.uzh.ch, rszafron@bnl.gov

Jet veto cross section

- Jets defined using sequential recombination jet algorithms, (n=1(antik_T), n=0(Cambridge-Aachen) n=-1(k_T);
- * Jet vetos also generate large logarithms, as codified in factorization formula; however logarithms tend to be smaller than in transverse momentum resummation, since $p_T^{\text{veto}} \sim 25 \text{ GeV}$;
- Beam and Soft functions for leading jet *p_T* recently calculated at twoloop order using an exponential regulator by Abreu et al.
- * Jet veto cross sections are simpler than the *p_T* resummed calculation (No b space).

$$d_{ij} = \min(p_{Ti}^n, p_{Tj}^n) \frac{\sqrt{\Delta y_{ij}^2 + \Delta \phi_{ij}^2}}{R}, \qquad d_{iB} = p_T^n$$

Refactorization

* In terms of reduced beam function jet vetoed cross section is now given by,

$$* \frac{d^2 \sigma(p_T^{veto})}{dQ^2 dy} = \frac{d\sigma_0}{dQ^2} \bar{H}(Q,\mu,p_T^{veto}) \bar{B}_q(\xi_1,p_T^{veto},R,\mu) \bar{B}_{\bar{q}}(\xi_2,p_T^{veto},R,\mu) + \mathcal{O}(p_T^{veto}/Q) \,,$$

* The two pieces are separately RG invariant: $\frac{d}{d\mu}\bar{H}(Q,\mu,p_T^{veto}) = \mathcal{O}(\alpha_s^3)$ and $\frac{d}{d\mu}\bar{B}_q(\xi_1,p_T^{veto},R,\mu)\bar{B}_{\bar{q}}(\xi_2,p_T^{veto},R,\mu) = \mathcal{O}(\alpha_s^3)$

Collinear Anomaly

- * In SCET the beam functions and the soft function have light-cone divergences which are not regulated by dimensional regularization;
- * These are not soft divergences; they are due to gluons at large rapidity;
- * This requires an additional regulator, which can be removed at the end of the calculation;
- * However a vestige of this regulator remains. The product of the two beam functions depends on the large scale of the problem, *Q* ;
- * This has been called the "collinear factorization anomaly" of SCET. Quantum effects modify a classical symmetry, $p \rightarrow \lambda p$, $\bar{p} = \bar{\lambda}\bar{p}$ with only $\lambda\bar{\lambda} = 1$ unbroken.

Becher, Neubert, <u>1007.4005</u>

Needed information at each logarithmic accuracy.

- Defining Hard function for qqbar ** initiated process. Accuracy $\sim \alpha_s^n L_{\perp}^k$ Approximation Nominal order $\Gamma_{\rm cusp}$ H $\gamma_{\rm coll.}$ $lpha_s^0$ $lpha_s^1$ $lpha_s^2$ α_s^{-1} LL $2n \ge k \ge n+1$ Γ_0 tree tree $\bar{H}(Q,\mu,p_T^{veto}) = \left| C^V(-Q^2,\mu) \right|^2 e^{2h^F(p_T^{veto},\mu)} \left(\frac{Q}{p_T^{veto}} \right)^{-2F_{qq}(p_T^{veto},R,\mu)} \frac{\text{NLL}+\text{LO}}{\text{N}^2\text{LL}+\text{NLO}} \\ \frac{N^2\text{LL}+\text{NLO}}{\text{N}^3\text{LL}+\text{NNLO}}$ $2n \ge k \ge n$ Γ_1 , tree γ_0 $2n \ge k \ge \max(n-1,0)$ Γ_2 1-loop γ_1 $2n \ge k \ge \max(n-2,0)$ Γ_3 2-loop γ_2
- we have RGE equations,

*
$$\frac{d}{d \ln \mu} C^V(-Q^2,\mu) = \left[\Gamma^F_{\text{cusp}}(\mu) \ln \frac{-Q^2}{\mu^2} + 2\gamma^q(\mu)\right] C^V(-Q^2,\mu)$$

*
$$\frac{d}{d \ln \mu} F_{qq}(p_T^{veto}, R, \mu) = 2\Gamma_{\text{cusp}}^F(\mu)$$

$$\star \quad \frac{d}{d\ln\mu} h^F(p_T^{veto},\mu) = 2\Gamma_{\rm cusp}^F(\mu) \,\ln\frac{\mu}{p_T^{veto}} - 2\gamma^q(\mu)$$

 $* \quad \frac{d}{d\mu} \bar{B}_q(\xi_1, p_T^{veto}, R, \mu) \,\bar{B}_{\bar{q}}(\xi_2, p_T^{veto}, R, \mu) = \mathcal{O}(\alpha_s^3)$

The second column indicates the nominal order when counting $L_{\perp} \sim 1/\alpha_s$. The third column states which logarithms are included. The last three columns show the necessary additional anomalous dimensions and hard function corrections in each successive order.

$$L_{\perp} = 2\ln(\mu/p_T^{veto})$$

Jet veto cross sections in a limited rapidity range

- * Formula so far are valid for jet cross sections which are vetoed for all values of rapidity η_{cut}
- * Experimental analyses perform jet cuts for $\eta < \eta_{cut}$
- In <u>1810.12911</u>, three theoretical regions are identified
 - * $\eta_{\text{cut}} \gg \ln(Q/p_T^{\text{veto}})$ (jet veto resummation as we are using it.)
 - * $\eta_{\text{cut}} \sim \ln(Q/p_T^{\text{veto}}) (\eta_{\text{cut}}\text{-dependent})$ beam functions)
 - * $\eta_{\text{cut}} \ll \ln(Q/p_T^{\text{veto}})$ (collinear nonglobal logs)

Figure taken from <u>1810.12911</u>

Strategy: determination where resummation is potentially important, before considering limited rapidity range resummation

Effects of rapidity cuts at fixed order

- The usual jet veto resummation imposes no cut on the jet rapidity, unlike the experimental analysis.
- * To apply the theory we need $\eta_{\rm cut} \gg \ln(Q/p_T^{\rm veto})$ \vec{z}
- * We can address the potential impact by looking at fixed order.
- وہ More important for Higgs ^{off} (and WW and ZZ) than for Z.

Process	Ref.	$y_{ m cut}$
Higgs	—	no study
Z (CMS)	[38]	2.4
W (ATLAS)	[43]	4.4
WW (CMS)	[39]	4.5
WZ (ATLAS)	[44]	4.5
WZ (CMS)	[45]	2.5
ZZ (CMS)	—	no study

Coefficient of Collinear Anomaly for $q\bar{q}$ case

$$\begin{split} F_{qq}(p_{T}^{\text{veto}},\mu) &= a_{S}F_{qq}^{(0)} + a_{S}^{2}F_{qq}^{(1)} + a_{S}^{3}F_{qq}^{(2)} + \dots, \quad a_{S} = \frac{\alpha_{S}}{4\pi} \\ F_{qq}^{(0)} &= \Gamma_{0}^{F}L_{\perp} + d_{1}^{\text{veto}}(R,F) \\ F_{qq}^{(1)} &= \frac{1}{2}\Gamma_{0}^{F}\beta_{0}L_{\perp}^{2} + \Gamma_{1}^{F}L_{\perp} + d_{2}^{\text{veto}}(R,F) \\ F_{qq}^{(2)} &= \frac{1}{3}\Gamma_{0}^{F}\beta_{0}^{2}L_{\perp}^{3} + \frac{1}{2}(\Gamma_{0}^{F}\beta_{1} + 2\Gamma_{1}^{F}\beta_{0})L_{\perp}^{2} + (\Gamma_{2}^{F} + 2\beta_{0}d_{2}^{\text{veto}}(R,F))L_{\perp} + d_{3}^{\text{veto}}(R,F) \\ d_{1}^{\text{veto}}(R,F) &= 0 \\ f(R,B) &= C_{B}\left(-\frac{\pi^{2}R^{2}}{12} + \frac{R^{4}}{16}\right) \\ d_{2}^{\text{veto}}(R,B) &= d_{2}^{B} - 32C_{B}f(R,B) \\ d_{3}^{\text{veto}} \sim -8.3 \times 64C_{B}\ln^{2}(R/R_{0}) + O(\ln(R)) \end{split}$$

Approximations to d_2^{veto}

Ratio

- * Range of validity is $\frac{p_T^{\text{veto}}}{Q} \ll R \ll \ln\left(\frac{Q}{p_T^{\text{veto}}}\right)$
- At too small *R* terms of order lnⁿ *R* which are not covered by this factorization formula.
- At too large *R*, factorization formula breaks down.
- Results are presented as power series in *R*
- * At $R \sim 0.4$ logarithmic approximation is about 20% too low.
- * Results should be valid in a range around the experimentally preferred $R \sim 0.4 - 0.5$

Rescaled d_2^{veto} showing that limited number of terms in expansion is quite adequate for R < 1.

Estimated dependence on approximate d_3^{veto}

* Effect of R_0 dependence in approximate form for d_3^{veto}

*
$$d_3^{\text{veto}} \sim -8.3 \times 64 C_B \ln^2(R/R_0)$$

$$\left(\frac{m_H}{p_T^{\text{veto}}}\right)^{-2\frac{\alpha_s(\mu)}{4\pi}d_3^{\text{veto}}}$$

- * In this approximation, d_3^{veto} gives an **increase** in the cross section.
- * Estimate ~ $\leq 2.5 \%$ at $p_T^{\text{veto}}=25$ GeV and R = 0.4

Leading behavior derived from Banfi et al, <u>1511.02886</u>

Reduced beam function kernels

$$\bullet \quad \bar{I}_{ik}(z, p_T^{veto}, R, \mu) = \delta_{ik} \,\delta(1-z) + \frac{\alpha_s}{4\pi} \bar{I}_{ik}^{(1)}(z, p_T^{veto}, \mu) + \left(\frac{\alpha_s}{4\pi}\right)^2 \bar{I}_{ik}^{(2)}(z, p_T^{veto}, R, \mu) + O(\alpha_s^3)$$

 $\ \ \, \bar{I}^{(2)}_{ik}(z,p^{veto}_{T},R,\mu) = \Big[2P^{(1)}_{ij}(x)\otimes P^{(1)}_{jk}(y) - \beta_0 P^{(1)}_{ik}(z)\Big]L_{\perp}^2 + \Big[-4P^{(2)}_{ik}(z) + \beta_0 R^{(1)}_{ik}(z) - 2R^{(1)}_{ij}(x)\otimes P^{(1)}_{jk}(y)\Big]L_{\perp} + R^{(2)}_{ik}(z,R) \Big]L_{\perp}^2 + \Big[-4P^{(2)}_{ik}(z) + \beta_0 R^{(1)}_{ik}(z) - 2R^{(1)}_{ij}(x)\otimes P^{(1)}_{jk}(y)\Big]L_{\perp} + R^{(2)}_{ik}(z,R) \Big]L_{\perp}^2 + \Big[-4P^{(2)}_{ik}(z) + \beta_0 R^{(1)}_{ik}(z) - 2R^{(1)}_{ij}(x)\otimes P^{(1)}_{jk}(y)\Big]L_{\perp} + R^{(2)}_{ik}(z,R) \Big]L_{\perp}^2 + \Big[-4P^{(2)}_{ik}(z) + \beta_0 R^{(1)}_{ik}(z) - 2R^{(1)}_{ij}(x)\otimes P^{(1)}_{jk}(y)\Big]L_{\perp} + R^{(2)}_{ik}(z,R) \Big]L_{\perp}^2 + \Big[-4P^{(2)}_{ik}(z) + \beta_0 R^{(1)}_{ik}(z) - 2R^{(1)}_{ij}(x)\otimes P^{(1)}_{jk}(y)\Big]L_{\perp}^2 + R^{(2)}_{ik}(z,R) \Big]L_{\perp}^2 + \Big[-4P^{(2)}_{ik}(z) + \beta_0 R^{(1)}_{ik}(z) - 2R^{(1)}_{ij}(x)\otimes P^{(1)}_{jk}(y)\Big]L_{\perp}^2 + R^{(2)}_{ik}(z,R) \Big]L_{\perp}^2 + \Big[-4P^{(2)}_{ik}(z) + \beta_0 R^{(1)}_{ik}(z) - 2R^{(1)}_{ij}(x)\otimes P^{(1)}_{ik}(y)\Big]L_{\perp}^2 + R^{(2)}_{ik}(z,R) \Big]L_{\perp}^2 + \Big[-4P^{(2)}_{ik}(z) + \beta_0 R^{(1)}_{ik}(z) - 2R^{(1)}_{ij}(x)\otimes P^{(1)}_{ik}(y)\Big]L_{\perp}^2 + R^{(2)}_{ik}(z,R) \Big]L_{\perp}^2 + \Big[-4P^{(2)}_{ik}(z) + \beta_0 R^{(1)}_{ik}(z) - 2R^{(1)}_{ij}(x)\otimes P^{(1)}_{ik}(y)\Big]L_{\perp}^2 + R^{(2)}_{ik}(z,R) \Big]L_{\perp}^2 + \Big[-4P^{(2)}_{ik}(z) + 2R^{(1)}_{ij}(x)\otimes P^{(1)}_{ik}(y)\Big]L_{\perp}^2 + \Big[-4P^{(2)}_{ik}(z) + 2R^{(1)}_{ij}(x) + 2R^{(1)}_{ij}(x)$

Phenomenological results in N³LL_p

N³LL_p \equiv N³LL with limited information on d_3^{veto}

Comparison with JetVHeto

- Public codes implementing resummation at NNLL are JetVHeto and RadISH.
- We have compared unmatched resummation with JetVHeto.
- MCFM agrees with JetVHeto, within errors
- N³LL_p leads to considerable reduction in errors.

Error estimates

- * Much discussion in the literature on the best method of error estimate, e.g. estimate error in jet-veto efficiency. The procedure we follow is:-
 - For the resummation (fixed-order) parts we vary both the resummation (factorization) and hard (renormalization) scales by a factor of two about their central values, adding the excursions in quadrature to obtain the total scale uncertainty.
 - * For the resummation we re-introduce the rapidity scale, by writing the collinear anomaly factor as follows.

$$\left(\frac{Q}{p_T^{veto}}\right)^{-2F_{ii}(p_T^{veto},R,\mu)} = \left(\frac{Q}{\nu}\right)^{-2F_{ii}(p_T^{veto},R,\mu)} \left(\frac{\nu}{p_T^{veto}}\right)^{-2F_{ii}(p_T^{veto},R,\mu)}$$

- * For $\nu \sim p_T^{veto}$ the second factor can be expanded since it does not contain a large logarithm. We vary the rapidity scale ν in the range $[p_t^{veto}/2, 2p_t^{veto}]$ for gluon-initiated processes and in the range $[p_T^{veto}/6, 6p_T^{veto}]$ for quark-initiated processes.
- * The parameter R_0 in d_3^{veto} is varied between 0.5 and 2.

Jet veto in Higgs production

One-step vs Two-step matching for Higgs production

- * One step matching, power m_{t}/m_{h} retained but logarithms not resummed. Standard model μ_{h} SCET μ_{h} One step procedure notes that $\rho = (m_{h}/m_{t})^{2} \approx 1/2$ is not large in a logarithmic sense, $\alpha_{s} \ln(1/\rho) = 0.07$.
- * Two step matching, logarithms m_t/m_h resummed. Standard model μ_t Standard model nf=5 $C_t(m_t^2, \mu_t^2)$ $C_s(M_h^2, \mu_h^2)$
- Two step matching can restore most of the important mass effects by re-scaling the two-step result by the exact leading order result;
- * With care, the two-step procedure gives a result that is only smaller than the onestep result by about 1%. $1 + (a + b)\alpha_s \neq (1 + a\alpha_s)(1 + b\alpha_s)$
- * Bigger differences can be found if higher order effects are not controlled.

Detailed assumptions for Higgs production

 One-step scheme results in cross section which is only 1.6% larger at N³LL_p

We use one-step scheme

* At NNLL, the resummation of the π^2 terms enhances the cross-section by 17%. However, at N³LL_p accuracy, this resummation only leads to a small increase of 2% in the cross-section.

We use spacelike μ_h

Comparison of NNLO, N³LL_p and N³LL_p+NNLO predictions for Higgs production.

After matching agreement
 between NNLO and N³LL_p but
 with smaller errors for N³LL_p

- Our estimate of uncertainty on partially known d₃^{veto} contributes in a small way to the overall error budget.
- 26

Jet-veto in Higgs production

- * Uncertainties estimated by varying renormalization and factorization and rapidity scales by $2, \frac{1}{2}$ and adding in quadrature;
- In the main the perturbative series is well-behaved at moderate R and successive orders lie with in the band of the preceding order with modestly decreasing uncertainty.

Jet veto in Z-production

- * Time-like hard scale choice $\mu_h^2 = -q^2$ can resum certain π^2 contributions using a complex strong coupling.
- After resummation the results do not depend strongly on the choice of hard scale;
- * The difference is 4% and NNLL and 1% at N³LL_p.
- * So we always will work with space-like scale choices in the following.

Jet veto in Z production

- * At $p_T^{\text{veto}} \sim 25 30$ all calculations agree within errors.
- However error estimates differ between NNLO and N³LL +NNLO.
- * For $p_T^{\text{veto}} = 30 \text{ GeV}$, $(\ln(Q/p_T^{\text{veto}} = 1.1) \ll (\eta_{\text{cut}} = 2.4)$
- * As expected at (unphysically) small p_T^{veto} resummed calculations show deviations from fixed order.
- * Jet veto resummation probably not so necessary at $p_T^{veto} \sim 30 \text{ GeV}$, for W or Z production.

Jet veto in W^+W^- production

- Often performed to eliminate top background.
- * Evidence that neither NNLO nor $N^{3}LL$ is sufficient, especially around $p_{T}^{veto} = 25 30 \text{GeV}$
- R dependence is modest (zero at NLO!)
- * $|\eta_{\text{cut}}| < 4.5$, so we can argue that $(\ln(Q/p_T^{\text{veto}}) = 1.3 2.2) \ll 4.5$

'+W-production

The effect of matching is substantial; fixed order only appropriate at the highest values of p_T^{veto} .

 R_0 variation, which estimates the contribution of d_3^{veto} , contributes in a small way to total error budget.

Jet veto in W^+W^- production vs data

- Errors improve going from N²LL +NNLO to N³LL+NNLO;
- Theoretical errors at N³LL+NNLO smaller than experimental;
- CMS data taken from <u>2009.00119</u>

<u>2210.10724</u>

WZ production in ATLAS and CMS

- ATLAS: 36 fb⁻¹, p_T>25GeV,
 y | <4.5, R=0.4.
- CMS: 137 fb⁻¹, Neither NNLO nor N³LL+NNLO in good agreement.
- * $\ln(Q/p_T^{veto})=2.3$ and $y_{cut}=2.5$, jetveto resummation with veto over all rapidities may not be appropriate.
- The limited rapidity range requires a more sophisticated theoretical treatment.

ZZ production

 No experimental measurements with jet-vetos.

34

Conclusion

- * We have presented resummed cross sections at N^3LL_p +NNLO for all color singlet final state processes with a jet veto, p_T^{veto} , over all rapidities;
- * We have compared our predictions with the available data;
- Resummation is essential for the description of jet-vetoed cross sections in Higgs production and for vector boson pair production;
- Matching reduces the theoretical error (Higgs) and contributes significantly to full N³LL_p +NNLO results(W⁺W⁻);
- * The fine-grained experimental study of vector boson pair processes where the resummation effects will be crucial is, in the main, still to come;
- * Our work and the MCFM code can serve as a tool for testing and validating general purpose shower Monte Carlo programs.

Solution to RGE equations

$$\frac{d}{d\ln\mu}C(Q\mu) = \left[\Gamma_{\rm cusp}(\mu)\,\ln\frac{Q^2}{\mu^2}\right]C(Q\mu)$$

- * Traditional solution to the LL equation $C(Q,\mu) = \exp\left[2S(Q,\mu)\right]C(Q,Q) \quad \frac{d}{d\ln\mu}S(Q,\mu) = -\Gamma_{cusp}(\alpha_{S}(\mu))\ln\frac{\mu}{Q}$ $S(Q,\mu) = -\int_{Q}^{\mu}\frac{d\mu'}{\mu'}\Gamma_{cusp}(\alpha_{S}(\mu')) \ln\frac{\mu}{Q}$
- We can write solution in terms of running coupling

$$S(Q,\mu) = -\int_{\alpha_{S}(Q)}^{\alpha_{S}(\mu)} d\alpha \frac{\Gamma_{\text{cusp}}(\alpha)}{\beta(\alpha)} \int_{\alpha_{S}(Q)}^{\alpha} \frac{d\alpha'}{\beta(\alpha')}, \qquad \frac{d\alpha_{S}}{d\ln\mu} = \beta(\alpha_{S})$$

$$S(Q,\mu) \to \frac{\Gamma_0}{4\pi k_0^2} \frac{1}{\alpha_S(Q)} \left(\frac{r - r \ln r - 1}{r}\right) \text{ where } r = \alpha_S(\mu) / \alpha_S(Q)$$

* We recover the double log, setting $\beta(\alpha_S) = -k_0 \alpha_S^2$ and $\frac{1}{r} = 1 - k_0 \alpha_S(Q) \ln(Q_{3/2})$

**