Collinear fragmentation of gluon jets at NNLL
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o (Semi)-analytic resummation has achieved an impressive accuracy (NNLL and N°LL) over previous decades.
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o Parton showers (PS) have not kept up with such progress.

o PS are essential due to their versatility: It 1s much more efficient to sitmulate QCD dynamics than to resum a specific
observable.



Motivation: Recent progress in NLL accurate PS

o The PanScales family of PS has been able to achieve NLL accuracy for any recursive IRC safe observable:
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o The crux of this development is to design recoil maps that preserve the correct physical limits required for NLL.

O More 1n Silvia’s, Alexander’s & Alba’s talks.
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o The goal 1s to define and compute a differential anomalous dimension which encodes collinear dynamics at NNLL.
O Qutline:
1. Review the results for quark jets as these form the conceptual basis of the physics.
2. Compute the relevant anomalous dimension for gluon jets.
O Tool kit: triple-collinear splitting functions (double-real) and 1L correction to 1—2 splitting (real-virtual).

3. Derive new resummed results for groomed jet observables.



Over 30 years ago Catani, Marchesini & Webber introduced the notion of a soft physical coupling:
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The CMW coupling represents the intensity of soft gluon radiation.
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For showers that intertwine real and virtual corrections through unitarity, specifying the scheme and scale of the
coupling 1s the sole NLO ingredient to achieve NLL accuracy.



How to include NLO virtual corrections in a shower algorithm?

The CMW lesson: at NNLL can we properly define an inclusive emission probability, 1.e.

APy = =~z Pgy(3) g (z,6°)

The 1nclusive limit of the double-soft function defines the CMW coupling <> furnish a commensurate understanding
of the triple-collinear splitting functions.

The coefticient B, — define a suitable differential version thereot?



o So what exactly is qu/ 59

O Let us take an example from the transverse momentum distribution in hadronic collisions:

o The interesting piece 1s the function Wf , which includes the quark/gluon form factor:
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Introduction into 5,

O Each function has a perturbative expansion. The A function has a soft origin, while the B function has a hard-collinear
origin.
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o Let us focus on the B series. Going back to direct space, one finds a hard-collinear logarithm:
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O This talk is about a suitably defined differential %,(z), which controls the effective coupling.

o To give an example, at leading order we have:
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Introduction into 5,

o What do we know about the structure of qu/ 59

o For final-state observables, we have: Banfi, BKE & Monni 1807.11487,
Banfi et. al. 1412.2126
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o We have two pieces. An observable dependent constant, X, that comes multiplied by b,. The other pieces, ;/(2) 1S
universal and represents the endpoint contribution, 1.e. 6(1 — x), to the NLO DGLAP kernel obtained from sum rules.
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O Let us recap the results of arXiv:2109.07496 1 — 2
§
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o Here we see the following features:
o The emergence of the scale of the coupling kr2 = (1 = 2)%6?
© The CMW piece.
o0 The LO collinear anomalous dimension.

© The NLO collinear anomalous dimension.
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95’;1(2) 1s decomposed by colour factors:

n C 1
955;1(2) — C% gg;z,(ab.)(z) + CFCA ggg,(nab.)(z) 4 CFTRnf gg‘zla 1(2) + CF (CF 2A) ggg,( d.)(Z)

The individual expressions are given 1n arXiv:2109.07496

This function is, by construction, free from any soft physics and 1s integrable in z € [0, 1]
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The take-home message is that we can determine X for any observable using dg’l‘{]NLL and the one-gluon form of the
observable.
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Gluon jets (to appear soon arXiv:2306.xxxx)

o %’g(z) 1s decomposed by colour factors:
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O We observe immediately the Casimir replacement, Cr. — C,, for all soft-enhanced structures.

o The LO collinear anomalous dimension sits 1n the right place.

o The computation carries through i1dentically to the quark case, let us dive right in.
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Triple-collinear splitting functions: Catani & Grazzini hep-ph/9810389, Campbell & Glover hep-ph/9710255

O This channel has the feature that there 1s a single collinear singularity as 6, — 0

o The kinematics variables fixed are both Qg and 7

o The computation 1s conveniently done using the “web variables”:
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o We obtain the following analytic result:
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o To extract the anomalous dimension we need two more inputs

o Virtual corrections (Sborlini, de Florian & Rodrigo arXiv:1310.6841)

O Subtract the 1teration of the NLL result, 1.e.
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After adding virtual corrections and subtracting NLL structures, we get:
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The Tl,%nf2 colour channel has no double-real correction, it comes purely from virtual corrections:

2,2 ] 4
By (7) = pqg(z)< 7 3 InGd - z))>

+—T.n
9 3 K7

Integrating both functions: 67 2r2 73
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The observable dependent constant can be computed for any observable using the inclusive emission probability
integrated against the observable 1n the limit of a single splitting.
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This channel has two collinear singularities 6,, - 0 and €, — 0

The situation 1f 1dentical to the abelian C 1% contribution for quark jets.

We divide the phase space into two regions, where at most a single collinear singularity appears 1n each:
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o This channel has a collinear singularity as any Qgigj — 0
o Unlike the situation for quark jets, correlated and independent emission terms are mixed together.

o ‘Divide and conquer’ by partitioning the phase space into 3 identical regions, e.g. min{6;;} = 0, , and fix z = z,.

o One can instead leverage the universality of the double-soft limit and locally subtract off the double-soft function.

A 1 - - -
.. sub. —
Divide and conquer —) (P 219,83/ = 51223 <P g g2g3> — <P glgz;g3> - <P g1g3;g2> - <P g2g3;g1>

© When the DS functions are added back, they are to be treated 1dentically to the quark case. Here the separation between
correlated and independent 1s dynamical.
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o One complication when dealing with (132‘1152'&) manifests as z — 0. As the gluon becomes soft, it 1s allowed to fly off at

wide angle and the angle is rendered 1ll-defined.

o Putting everything in, subtracting the NLL pieces, we find:
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As a practical application of these results, we can obtain new resummed results for a host of groomed jet observables.

Following the ARES formalism, Ref. arXiv:2211:03820 showed that knowing the anomalous dimension B, of the
ungroomed variant of observables allows for a straightforward NNLL resummation of mMDT groomed observables.

Ref. arXiv:2211:03820 initiated such a formalism for quark jets, and focused on WTA angularities in e*e~:

1
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The resummed cross section takes a very simple form

JU
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The collinear logarithm in the Sudakov has B as its coefficient.
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It requires no work to generalise the resummed formula to capture gluon jets as well:
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The whole problem reduces to the determination of X, for any observable, which we can obtain quite easily using our
inclusive emission probability.
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We can do much more with very simple computation!
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Understanding collinear dynamics at NNLL 1s one core ingredient of next generation parton showers.

We have been able to define and compute a NLO differential anomalous dimension, which will control the no-emission
probability in a self-similar branching process.

This anomalous dimension ties 1n very well with what we know from analytic resummations.
Phenomenological study of multiple jet observables 1s one future avenue.

H The inclusion of the differential anomalous dimension in a shower Monte Carlo.
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Thanks PSR23!



