A Logarithmically Accurate Resummation In C++ Parton Showers and Resummation 2023, 7 June 2023

[arXiv:2208.06057]

Daniel Reichelt, work in collaboration with Florian Herren, Stefan Höche, Frank Krauss and Marek Schönherr

A Logarithmically Accurate Resummation In C++

- Event simulation factorised into
 - Hard Process

• Parton Shower

- Underlying event
- Hadron See also talks by Basem El-Menoufi, Christian Preuss
- Hadro See also talks by Silvia Ferrario Ravasio, Alexander Karlberg

- This Talk:
- Why?
- parton showers resum large logs \sim NLL, but open questions on actual accuracy
- starting work towards NNLL/NLO evolution \rightarrow probably better resolve this first
 - recent formal discussion \rightarrow current dipole showers need reworking
 - [Dasgupta, Dreyer, Hamilton, Monni, Salam '18]

parton showers - Cliff notes version

- no-emission probability (sudakov factor)
- splitting kernels P(z) captures soft and collinear limits of matrix elements
- fill phase space ordered in evolution variable $(k_t, \theta, q^2, ...) \Rightarrow$ here k_t ordered shower
- generate new final state after emission according to recoil scheme

splitting of Eikonal

e.g. Angular ordered shower, downside: problems with NGLs

Option 2: follow [Catani, Seymour '97] $W_{ik,j} = \bar{W}_{ik,j}^i + \bar{W}_{ki,j}^k , \qquad \text{where}$

 full phase space coverage, splitting functions remain positive definite Note related ideas in [Forshaw, Holguin, Plätzer '20]

$$\frac{1}{P_k} = \frac{1}{E_j^2} \frac{1 - \cos \theta_{ik}}{(1 - \cos \theta_{ij})(1 - \cos \theta_{jk})} \equiv \frac{W_i}{E_j}$$

naive implementation leads to soft double counting need to [Marchesini, Webber '88]

$$\frac{1}{2}\left(\frac{1-\cos\theta_{ik}}{(1-\cos\theta_{ij})(1-\cos\theta_{jk})}+\frac{1}{1-\cos\theta_{ij}}-\frac{1}{1-\cos\theta_{ij}}\right)$$

$$\bar{W}_{ik,j}^{i} = \frac{1 - \cos \theta_{ik}}{(1 - \cos \theta_{ij})(2 - \cos \theta_{ij} - \cos \theta_{jk})}$$

kinematics - global recoil scheme

• Before splitting:

• After splitting:

effect of recoil on accuracy - multiple emissions

- QCD coherence \rightarrow factorised emissions
- observables dependece correlated \rightarrow how to extract NLL without additional information?
- method from [Banfi, Salam, Zanderighi '05]: need explicit soft-collinear limit*:

$$k_{t}^{\rho} = k_{t}\rho \qquad \xi = \frac{\eta}{\eta_{\text{max}}}$$
$$\eta^{\rho} = \eta - \xi \ln \rho \qquad \rightarrow \text{numerically}$$
$$\text{and assume} \qquad \rightarrow \text{numerically}$$
$$V(k_{i}^{\rho}) = \rho V(k_{i}) \qquad \text{in this limit}$$

* again assume $V(k_t, \eta) \sim k_t/Q$ for brevity

effect of recoil on accuracy

- question: do recoil effects indeed vanish in soft limit (i.e. $\rho \rightarrow 0$)?* [Dasgupta, Dreyer, Hamilton, Monni, Salam '18]
- consider situation where we first emit \tilde{p}_{ij} from p_a , p_b , then emit p_j , $\tilde{p}_{ij} \rightarrow p_i, p_j$
- transverse momentum of p_i will be $\sim k_t^{ij} + k_t^j$

 \tilde{p}_{ij}

$p_i = z\tilde{p}_{ij} + (1-z)y\tilde{p}_k + k_\perp$ $p_i = (1 - z)\tilde{p}_{ij} + zy\tilde{p}_k - k_\perp$ $p_k = (1 - y)\tilde{p}_k .$

* note: + further problems for colour assignment in multiple emissions

numerical validation I

• Limit $\alpha_s \to 0$ with $\lambda = \alpha_s L = \text{const. of}$

$$\frac{\sum \text{Shower}}{\sum \text{NLL}} \sim \exp\left(f_{\text{Shower}}^{LL} - Lg_1(\alpha)\right)$$
$$\times \exp\left(f_{\text{Shower}}^{NLL} - g_2(\alpha)\right)$$
$$\times \exp\left(\mathcal{O}(\alpha_s^{n+1}L^n)\right)$$

$\rightarrow 1$ if shower reproduces LL, NLL logs

• Observable: jet resolution y_{23} in Cambridge jet measure, $\mathcal{F} = 1 \rightarrow \text{only largest}$ emission matters, check that additional shower emissions vanish

 $\alpha_s^n L^n$) $\alpha_s^n L^n$

PS

numerical validation III

11

pheno, details and b fragmentation

- first caveat: no quark masses implemented yet
- problem for cluster hadronisation \rightarrow use Lund model via Pythia
- + need flavour threshold for $g \rightarrow bb/g \rightarrow c\bar{c}$ splittings
- Dire parton shower as implemented in Sherpa as reference, Lund model tuned for Alaric $\sigma = 0.3$ GeV, a = 0.4, b = 0.36 GeV⁻² and for Dire $\sigma = 0.3$ GeV, a = 0.4, b = 0.46 GeV⁻²

pheno, LEP observables

pheno, LEP observables

- Durham resolution scales $y_{n,n+1} \sim k_t^2 / Q^2$
- higher Born multiplicities → sensitivity to multiple emissions increased
- again, note no matching/merging involved

14

Alaric initial state shower (outlook)

- Formalism presented in [Herren, Höche, Krauss, DR, Schönherr '22] general and applicable to initial state evolution
- practical considerations:
 - precise definition of evolution variable
 - PDFs, clear in principle, but more choices to make
 - distribution of recoil (i.e. definition of \tilde{K})
 - e.g. Drell-Yan process, could be EW boson, or full final state (or ...?)

transverse momentum of Z bosons at the LHC at 13 TeV

A Logarithmically Accurate Resummation In C++

- NLL resummation in CAESAR formalism as definition and validation of parton shower accuracy
- New parton shower Alaric
 - partial fractioning of eikonal \rightarrow positive definite splitting function with full phase space coverage
 - global kinematics scheme enables analytic proof of NLL accuracy + numerical validation
 - included in Sherpa framework and first pheno results

