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A Logarithmically Accurate Resummation In C++
• Event simulation factorised into


• Hard Process


• Parton Shower


• Underlying event


• Hadronisation


• QED radiation


• Hadron Decays

  This Talk:        


   Why?
• parton showers resum large logs  NLL, but 

open questions on actual accuracy


• starting work towards NNLL/NLO evolution  
probably better resolve this first


• recent formal discussion  current dipole 
showers need reworking 
[Dasgupta,Dreyer,Hamilton,Monni,Salam ’18]


∼

→

→

See also talks by 

Basem El-Menoufi, 
Christian Preuss 

See also talks by 

Silvia Ferrario Ravasio,

Alexander Karlberg
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parton showers - Cliff notes version
• no-emission probability (sudakov factor)


• splitting kernels  captures soft and 
collinear limits of matrix elements


• fill phase space ordered in evolution variable 
( , , , )  here  ordered shower


• generate new final state after emission 
according to recoil scheme

P(z)

kt θ q2 … ⇒ kt

η

ln
kt

Q
longitudinal momentum 

     conservation:    η < ln kt /Q

softer

particles

more collinear

particles

∼ exp [−∫
t1

t0

dkt

kt
dz

αS

2π
P(z)]

Lund plane, see also 

talk by Alba Soto Ontoso
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splitting of Eikonal
Starting point: eikonal pipk

(pipj)(pjpk)
=

1
E2

j

1 − cos θik

(1 − cos θij)(1 − cos θjk)
≡

Wik,j

E2
j

naive implementation leads to soft double counting need to 
split into  and  collinear terms             [Marchesini, Webber ‘88]ij kj
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The price for such a generic scheme is a dependence of the parton shower splitting functions on the azimuthal angle
between the decay plane and the plane defined by the emitting parton and its color spectator. Our new formulation
presents a major extension of existing parton shower formalisms in this regard, and it introduces the most generic form
of a spin-averaged splitting function in four dimensions, with a dependence on all three phase-space variables of the
radiated parton. Based on previous analyses [73, 74], it seems plausible that this scheme will considerably simplify the
inclusion of higher-order corrections to the splitting kernels. We provide a first implementation of the new algorithm
in the numerical code Alaric1, which will be made available as part of the event generator Sherpa [75–77].

This manuscript is organized as follows: In Sec. II we revisit the soft singularity structure of QCD amplitudes
and introduce our new decomposition of the soft eikonal. In Sec. III we discuss the novel phase-space mapping and
the corresponding phase-space factorization. In Sec. IV we detail how soft and collinear emissions are generated in a
probabilistic picture. Section V is dedicated to the analytic proof of logarithmic accuracy, and the numerical validation
in the ↵s ! 0 limit. Section VI presents first numerical results for the process e+e� ! hadrons, and Sec. VII contains
an outlook.

II. THE MATCHING OF SOFT TO COLLINEAR RADIATORS

We start the discussion by recalling the singularity structure of n-parton QCD amplitudes in the infrared limits.
If two partons, i and j, become collinear, the squared amplitude factorizes as

nh1, . . . , n|1, . . . , nin =
X

�,�0=±

n�1

D
1, . . . , i\(ij), . . . , j\, . . . , n

���
8⇡↵s

2pipj
P��

0

(ij)i(z)
���1, . . . , i\(ij), . . . , j\, . . . , n

E

n�1
, (1)

where the notation i\ indicates that parton i is removed from the original amplitude, and where (ij) is the progenitor
of partons i and j. The functions P��

0

ab
(z) are the spin-dependent DGLAP splitting functions. They depend on

the momentum fraction z of parton i with respect to the mother parton, (ij), and on the helicities � [3–6]. In the
collinear limit, the momentum fraction is equal to an energy or light-cone momentum fraction. In this manuscript
we will consider only spin-averaged splitting functions; algorithms for spin-dependent evolution are discussed in [23–
26, 78].

In the limit that gluon j becomes soft, the squared amplitude factorizes as [79]

nh1, . . . , n|1, . . . , nin = �8⇡↵s

X

i,k 6=j

n�1

⌦
1, . . . , j\, . . . , n

��TiTk wik,j

��1, . . . , j\, . . . , n
↵
n�1

, (2)

where Ti and Tk are the color insertion operators defined in [72]. In the remainder of this section we will discuss the
case of massless radiators only and focus on the eikonal factor, wik,j , and how it can be rewritten in a suitable form
to match the spin-averaged splitting functions Pab(z) in the soft-collinear limit. Since our analysis concerns only the
denominator of wik,j , it will apply to spin-correlated evolution as well. The eikonal factor is given by

wik,j =
pipk

(pipj)(pjpk)
, (3)

and it can be written in terms of (frame-dependent) energies and angles as

wik,j =
Wik,j

E2
j

, where Wik,j =
1� cos ✓ik

(1� cos ✓ij)(1� cos ✓jk)
, (4)

We note that Eq. (4) is symmetric in i and k, and that it encapsulates the complete soft singularity structure of the
hard matrix element [79]. If we were to implement Eq. (4) for each of the radiators i and k in the collinear limit, we
would therefore double-count the most singular component of the emission probability [80]. This is known as the soft
double-counting problem, which can be solved by following the technique of [21]. In this approach, Wik,j is written
as a sum of two terms, which are enhanced only in either the ij- or kj-collinear limit:

Wik,j = W̃ i

ik,j
+ W̃ k

ki,j
, where W̃ i

ik,j
=

1

2

✓
1� cos ✓ik

(1� cos ✓ij)(1� cos ✓jk)
+

1

1� cos ✓ij
�

1

1� cos ✓jk

◆
. (5)

1 Alaric is an acronym for A Logarithmically Accurate Resummation In C++

Option 1:

• e.g. Angular ordered shower, downside: problems with NGLs

Option 2: follow [Catani, Seymour ’97]
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(a) (b) (c)

FIG. 1: Azimuthally integrated radiator functions. Figures a and b show the positive and negative contributions to
Ĩi
ik,j

arising from the additive matching in Eq. (5), Fig. c displays Īi
ik,j

from the multiplicative matching in Eq. (9).

It is customary to define the z-axis to be aligned with the momentum pi, such that we can write cos ✓jk in terms of
polar angles, ✓ i

j
, ✓ i

k
with respect to the axis defined by pi, and the azimuthal angle � i

jk
in the same frame. Note in

particular that ✓ i

l
= ✓li, for any l.

cos ✓jk = cos ✓ i

j
cos ✓ i

k
+ sin ✓ i

j
sin ✓ i

k
cos� i

jk
. (6)

When performing the azimuthal averaging, we find the simple result [21]

1

2⇡

Z 2⇡

0
d�i

jk
W̃ i

ik,j
=

Ĩi
ik,j

1� cos ✓ i

j

, where Ĩi
ik,j

=

(
1 if ✓ i

j
< ✓ i

k

0 else
. (7)

The behavior of Ĩi
ik,j

as a function of the polar angles is known as angular ordering, which means that the total

probability for soft radiation averages to zero outside of a cone defined by the cusp angle ✓ i

k
of the radiating color

dipole. This is the origin of the coherent branching formalism and the basis for angular ordered parton showers. It is
instructive to investigate this radiation pattern in more detail. Figures 1a and 1b display the positive and negative
contribution to the azimuthal integral, normalized to 2⇡, as a function of the polar angles. The partial radiator
function W̃ i

ik,j
has a root at

cos� i(0)
jk

= �

s
1 + cos ✓ i

j

1� cos ✓ i

j

1� cos ✓ i

k

1 + cos ✓ i

k

(8)

which falls inside the integration domain if ✓ i

j
> ✓ i

k
. In this case, the negative contribution to the azimuthal integral

is equal in magnitude to the positive contribution, such that the average radiation probability vanishes identically.
However, there is a strong modulation of this probability as a function of the azimuthal angle. If this modulation
is not included in a parton-shower simulation, wide-angle soft radiation e↵ects will only be captured correctly for
observables that are su�ciently insensitive to the precise distribution of radiation in phase space.

A naive attempt to solving this problem would be to include the full azimuthal dependence of the radiator function
in the Monte-Carlo simulation. Such an approach is bound to fail, because in the region ✓ i

j
> ✓ i

k
one would need to

sample the same amount of negative and positive weighted Monte-Carlo events, leading to an e�ciency of exactly
zero. We therefore adopt a di↵erent strategy, pioneered in [72], where the radiator function is partial fractioned such
that it maintains strict positivity

Wik,j = W̄ i

ik,j
+ W̄ k

ki,j
, where W̄ i

ik,j
=

1� cos ✓ik
(1� cos ✓ij)(2� cos ✓ij � cos ✓jk)

. (9)

• full phase space coverage, splitting functions remain positive definite

Note related ideas in [Forshaw, Holguin, Plätzer ’20] 
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kinematics - global recoil scheme

5

K̃ p̃i

p̃k

�

n pi

pk~kT pj

K�~kT

FIG. 2: Sketch of the momentum mapping for final-state evolution. See the main text for details. Note that pk does
not participate in the shift, Eq. (17), and only acts as a reference for the azimuthal angle �.

leading logarithmic accuracy. A key requirement for the construction of any momentum mapping therefore is collinear
safety, and all known parton-shower algorithms satisfy this constraint. An example for a problem which may only
be seen in dedicated measurements was identified in [53]. It originates in a modification of existing soft momenta in
subsequent emissions, that introduces an error in the simulated QCD radiation pattern at next-to-leading logarithmic
accuracy. In the following, we will construct a generic, collinear and NLL safe momentum mapping for both final-state
and initial-state radiation, which is inspired by the identified–particle dipole subtraction algorithm in [72]. We will
provide the analytic proof of NLL safety in Sec. VA and sketch the additional steps that are required to match the
parton shower to NLO calculations in Appendix C.

We begin by describing the logic underpinning our new kinematics mapping, {p̃l} ! {pl}. We identify the splitter
momentum, p̃i, and define a recoil momentum, K̃, as the negative sum of all momenta in the radiating QCD multipole,
including the momentum of the splitter (see also Appendix A).3 Together, the momenta K̃ and p̃i define the reference
frame of the splitting, as shown schematically in Fig. 2 (left). The momentum of the color spectator, p̃k, defines an
additional direction, which provides the reference for the azimuthal angle, �. In the first step of the mapping, the
emitter momentum is scaled by a factor z, and the emitted momentum, pj , is constructed with transverse momentum

component ~kT and suitable light-cone momenta. The color spectator remains unchanged, pk = p̃k. The recoil is
absorbed by the overall multipole, such that after the emission we have K 6= K̃, while K2 = K̃2. In particular,
the multipole after the emission acquires a transverse momentum with respect to K̃. This is shown schematically in
Fig. 2 (right). To compensate for both the transverse and the longitudinal recoil, the overall multipole is boosted to
its original frame of reference. This changes all momenta and e↵ectively distributes the recoil among them, generating
changes of the order of kT /

p
K2, which vanish in the infrared limits. We will make use of this fact in Sec. VA.

A collinear safe momentum mapping requires that for any two massless collinear partons, i and j, the momenta
behave as

pi
i||j

�! z p̃i , pj
i||j

�! (1� z) p̃i . (15)

In the exact limit, cos ✓ij = 0, the splitting variable z is uniquely defined and given by

z =
pin

(pi + pj)n
. (16)

where n is an arbitrary auxiliary vector that satisfies p̃in 6= 0. Note that n can be either light-like, time-like or
space-like, as long as p̃in 6= 0. In order to construct a collinear-safe momentum mapping for arbitrary values of the
two-particle virtuality pipj , we can simply use the first part of Eq. (15) away from this limit. This implies in particular
that pi retains its direction, and that all angular radiator functions involving pi remain unchanged.

A second important constraint for the mapping is overall four-momentum conservation. We satisfy this by defining
a vector K̃ to be a combination of the momenta {p̃1, . . . , p̃

µ

j�1, p̃
µ

j+1, . . . , p̃n}, and by using the shift

pi = z p̃i , n = K̃ + (1� z) p̃i , (17)

which implies pi + n = p̃i + K̃. The remaining task is to construct two new vectors, K and pj , such that K2 = K̃2,
and such that pj satisfies the collinear safety constraint, Eq. (15). The momenta in K̃ are mapped to new momenta
by a Lorentz transformation that is defined in terms of K̃ and K. The simplest way to obtain the new momenta is
by means of a light-cone parametrization [81]. With the help of the light-like vector

n̄ = n�
n2

2p̃in
p̃i = K̃ �  p̃i , where  =

K̃2

2p̃iK̃
. (18)

3
This construction di↵ers from the traditional choice in parton and dipole showers, where the splitter and recoil partner are disjoint.

colour spectator

splitter
other momenta ∑ ki

kμ
i → Λμ

νkν
i

pk = p̃k

pi = zp̃i
K2 = K̃2

K̃ + p̃i = K + pi + pj

Λμ
ν = gμ

ν −
(K + K̃)μ(K + K̃)ν

K ⋅ K̃ + K̃2
+ 2

KμK̃ν

K̃2
→ Λμ

νK̃ν = Kμ

• Before splitting: • After splitting:

[Catani, Seymour ’97]
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effect of  recoil on accuracy - multiple emissions
• QCD coherence  factorised emissions


• observables dependece correlated  how 
to extract NLL without additional 
information?


• method from [Banfi, Salam, Zanderighi ’05]: need 
explicit soft-collinear limit*:

→

→

kρ
t = ktρ

ηρ = η − ξ ln ρ
and assume

V(kρ
i ) = ρV(ki)

 numerically 

evaluate integrals 

in this limit

→

ξ =
η

ηmax

( + , − ,kt) ∼ (kteη, kte−η, kt)

∼ (ρ, ρ, ρ)
∼ (1, ρ2, ρ)

* again assume  for brevityV(kt, η) ∼ kt /Q

∼ (ρ1−ξ, ρ1+ξ, ρ)
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effect of  recoil on accuracy
• question: do recoil effects indeed 

vanish in soft limit (i.e. )?* 
[Dasgupta,Dreyer,Hamilton,Monni,Salam ’18]


• consider situation where we first 
emit  from , then emit ,




• transverse momentum of  will be 
 

ρ → 0

p̃ij pa, pb pj

p̃ij → pi, pj

pi

∼ kij
t + kj

t

3.1 Parton showers

Hence this violates the probability conserving interpretation of a unitary parton shower.

It is well known how to deal with this situation in principle [109, 110, 111], and the
method to do so will be reviewed for this particular situation in Section 4.1. From
the point of view of numerical efficiency, it is however often favourable to avoid the
corresponding negative weights. Most traditional parton showers do not have this
option implemented. For this reason, the default DGLAP based shower used here will
apply the restriction for the soft and collinear term, as shown in Equation (3.10). From
a formal point of view this corresponds to a correction that is suppressed by a power
of v and therefore is not relevant for logarithmic resummation.

3.1.2 Full shower
Conventional parton showers, as used in full fledged Monte Carlo simulations, include
more effects than discussed in the previous section even for the simple born process
of e+e� ! qq̄ considered here [13]. Further, modern parton showers often rely on a
different treatment of the soft double counting problem described above, which is to
factor the soft eikonal. Both will be described here briefly for completeness and as they
are used in the analysis in Section 5.2.

Full DGLAP Showers

Away from the strict soft limit, emissions will cause a recoil on the hard legs present
at born level. Monte Carlo simulations take this into account by generating the four
momenta after an emission according to a particular prescription, in the following
called recoil scheme. The prescription used later is the one given in [112]. This is, for
a parton ij with momentum p̃ij splitting into partons i and j with respective momenta
pi and pj , with a spectator absorbing the recoil k and changing its momentum from p̃k
to pk, the new momenta are assigned as follows:

pi = zp̃ij + (1� z)yp̃k + k? , (3.11)
pj = (1� z)p̃ij + zyp̃k � k? , (3.12)
pk = (1� y)p̃k . (3.13)

Here k? is a four momentum with k2
? = k2

T, the transverse momentum that that is
given in the parton shower in terms of the evolution variable and z.

The requirement that all momenta are on-shell, p2
i
= 0 = p2

j
, leads to a relation

between z, y and k2
T:

k2
T = z(1� z)yQ2 (3.14)

with Q2 the invariant mass of the emitting qq̄ dipole formed from emitter and spectator,
Q2 = 2p̃ij · p̃k.

33

p̃ij pj

⇒
Δkij

t

kij
t

→
ρkj

t

ρkij
t

= 𝒪(1)

* note: + further problems for   
colour assignment in 

multiple emissions
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analytic proof of accuracy

11

The vector Xµ will tend to zero in both the soft and the collinear limit, because it has no component along the
direction of the emitter momentum, p̃i. This implies in particular that for emissions o↵ the original hard partons, Xµ

will tend to zero, even in the hard collinear region, such that the Lorentz transformation vanishes. In terms of K̃µ

and Xµ, Eq. (25) takes the form

⇤µ

⌫
(K, K̃) = gµ

⌫
+ K̃µA⌫ +XµB⌫ , (55)

where

A⌫ = 2


(K̃ �X)⌫

(K̃ �X)2
�

(K̃ �X/2)⌫

(K̃ �X/2)2

�
, and B⌫ =

(K̃ �X/2)⌫

(K̃ �X/2)2
. (56)

Following Sec. 2.2.3 of [84], we now analyze the behavior of this change under the generalized rescaling of all emissions,
pl, according to Eq. (53). Note that the transverse momentum kt in this analysis is not the same as k? in Eq. (21).
It is instead given in terms of Lund plane coordinates, see Sec. 2 of [84] for details of these definitions. We can choose
to use the initial momenta of the hard quark and anti-quark (which are not subject to the rescaling) as reference
directions to define the Lund plane transverse momentum and rapidity, and work in their rest frame with the quark
(antiquark) momentum pointing along the positive (negative) z direction. In this frame, the longitudinal components
of the momenta pl scale as p̃0,3

l
⇠ ⇢(1�⇠l)/a, while the transverse components behave as p̃1,2

l
⇠ ⇢(1�⇠l)/a+⇠l/(a+b).

From Eq. (54) we deduce that all components of Xµ scale as the soft momenta p̃l in Eq. (53), because the component
of pj along the emitter momentum p̃i has been subtracted. This is a very important feature of our kinematics mapping.
We will now show that this mapping maintains the scaling properties, Eq. (53), of an arbitrary set of pre-existing
emissions in the ⇢ ! 0 limit.

First we take the ⇢ ! 0 limit of the coe�cients in Eq. (55). The leading contributions are given by

A⌫ ⇢!0
�! 2

K̃X

K̃2

K̃⌫

K̃2
�

X⌫

K̃2
, and B⌫ ⇢!0

�!
K̃⌫

K̃2
. (57)

The momentum shift of particle l under the Lorentz transformation is then given by

�pµ
l
= 2

K̃X

K̃2

p̃lK̃

K̃2
K̃µ

�
p̃lX

K̃2
K̃µ +

p̃lK̃

K̃2
Xµ . (58)

For color singlet decay or production processes we can work in the multipole center-of-mass frame. K̃ then only has
an energy component, which is not rescaled as ⇢ ! 0. Let us first assume that the emitter momentum, p̃i, is one of
the soft momenta.

The scaling of the scalar products in Eq. (58) is then given by 8

p̃lK̃ ⇠ ⇢(1�⇠l)/a ,

p̃lX ⇠ ⇢(2�⇠l�max(⇠i,⇠j))/a .
(59)

The denominators in A⌫ and B⌫ do not scale with ⇢. With that we can derive the scaling of the change in each
component of pl and compare it to the scaling of the original components in p̃l.

p̃0
l
⇠ ⇢(1�⇠l)/a �p0

l
⇠ ⇢(1�⇠l)/aX0 + ⇢(2�⇠l�max(⇠i,⇠j))/aK̃0 + ⇢(1�⇠l)/aX0

⇠ ⇢(2�⇠l�max(⇠i,⇠j))/a ,

p̃3
l
⇠ ⇢(1�⇠l)/a �p3

l
⇠ ⇢(1�⇠l)/aX3

⇠ ⇢(2�⇠l�max(⇠i,⇠j))/a ,

p̃1,2
l

⇠ ⇢(1�b/(a+b)⇠l)/a �p1,2
l

⇠ ⇢(1�⇠l)/aX1,2
⇠ ⇢(2�⇠l�b/(a+b)max(⇠i,⇠j))/a .

(60)

The relative momentum shifts are

�p0,3
l

p0,3
l

⇠ ⇢(1�max(⇠i,⇠j))/a ,

�p1,2
l

p1,2
l

⇠ ⇢(1�⇠l�b/(a+b)(max(⇠i,⇠j)�⇠l))/a < ⇢(1�b/(a+b))(1�⇠l)/a .

(61)
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Note that p̃lX has two contributions, one proportional to ⇢(2�(⇠l+max(⇠i,⇠j)))/a, and one proportional to ⇢(2�b/(a+b)(⇠l+max(⇠i,⇠j)))/a.

The first one dominates in all cases, because b/(a+ b) < 1. While b can be negative, infrared and collinear safety requires b > �a, a > 0.
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The vector Xµ will tend to zero in both the soft and the collinear limit, because it has no component along the
direction of the emitter momentum, p̃i. This implies in particular that for emissions o↵ the original hard partons, Xµ

will tend to zero, even in the hard collinear region, such that the Lorentz transformation vanishes. In terms of K̃µ

and Xµ, Eq. (25) takes the form

⇤µ

⌫
(K, K̃) = gµ
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+ K̃µA⌫ +XµB⌫ , (55)
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�
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Following Sec. 2.2.3 of [84], we now analyze the behavior of this change under the generalized rescaling of all emissions,
pl, according to Eq. (53). Note that the transverse momentum kt in this analysis is not the same as k? in Eq. (21).
It is instead given in terms of Lund plane coordinates, see Sec. 2 of [84] for details of these definitions. We can choose
to use the initial momenta of the hard quark and anti-quark (which are not subject to the rescaling) as reference
directions to define the Lund plane transverse momentum and rapidity, and work in their rest frame with the quark
(antiquark) momentum pointing along the positive (negative) z direction. In this frame, the longitudinal components
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⇠ ⇢(1�⇠l)/a, while the transverse components behave as p̃1,2
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⇠ ⇢(1�⇠l)/a+⇠l/(a+b).

From Eq. (54) we deduce that all components of Xµ scale as the soft momenta p̃l in Eq. (53), because the component
of pj along the emitter momentum p̃i has been subtracted. This is a very important feature of our kinematics mapping.
We will now show that this mapping maintains the scaling properties, Eq. (53), of an arbitrary set of pre-existing
emissions in the ⇢ ! 0 limit.

First we take the ⇢ ! 0 limit of the coe�cients in Eq. (55). The leading contributions are given by
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K̃2
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K̃2
�
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K̃2
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. (57)

The momentum shift of particle l under the Lorentz transformation is then given by
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K̃2

p̃lK̃
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K̃µ

�
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For color singlet decay or production processes we can work in the multipole center-of-mass frame. K̃ then only has
an energy component, which is not rescaled as ⇢ ! 0. Let us first assume that the emitter momentum, p̃i, is one of
the soft momenta.

The scaling of the scalar products in Eq. (58) is then given by 8

p̃lK̃ ⇠ ⇢(1�⇠l)/a ,

p̃lX ⇠ ⇢(2�⇠l�max(⇠i,⇠j))/a .
(59)

The denominators in A⌫ and B⌫ do not scale with ⇢. With that we can derive the scaling of the change in each
component of pl and compare it to the scaling of the original components in p̃l.

p̃0
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⇠ ⇢(1�⇠l)/a �p0
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⇠ ⇢(1�⇠l)/aX0 + ⇢(2�⇠l�max(⇠i,⇠j))/aK̃0 + ⇢(1�⇠l)/aX0
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⇠ ⇢(1�b/(a+b)⇠l)/a �p1,2
l

⇠ ⇢(1�⇠l)/aX1,2
⇠ ⇢(2�⇠l�b/(a+b)max(⇠i,⇠j))/a .

(60)

The relative momentum shifts are

�p0,3
l

p0,3
l

⇠ ⇢(1�max(⇠i,⇠j))/a ,

�p1,2
l

p1,2
l

⇠ ⇢(1�⇠l�b/(a+b)(max(⇠i,⇠j)�⇠l))/a < ⇢(1�b/(a+b))(1�⇠l)/a .

(61)

8
Note that p̃lX has two contributions, one proportional to ⇢(2�(⇠l+max(⇠i,⇠j)))/a, and one proportional to ⇢(2�b/(a+b)(⇠l+max(⇠i,⇠j)))/a.

The first one dominates in all cases, because b/(a+ b) < 1. While b can be negative, infrared and collinear safety requires b > �a, a > 0.

vanishes in soft limit

compare to   from local dipole scheme
Δkt

kt
∼ 𝒪(1)

work out  limit:ρ → 0

Δp0,3
l

p0,3
l

∼ ρ1−max(ξi,ξj)

Δp1,2
l

p1,2
l

∼ ρ(1−ξl)(max(ξi,ξj)−ξl)
apply to soft momentum :pl
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FIG. 4: NLL test for various event shape observables. See the main text for details.

ΣShower

ΣNLL ∼ exp (fLL
Shower − Lg1(αn

s Ln))
× exp (fNLL

Shower − g2(αn
s Ln))

× exp (𝒪(αn+1
s Ln))

    if shower reproduces 

                LL, NLL logs
→ 1

• Observable: jet resolution  in Cambridge 
jet measure, only largest 
emission matters, check that additional 
shower emissions vanish  

y23
ℱ = 1 →
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FIG. 4: NLL test for various event shape observables. See the main text for details.
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FIG. 4: NLL test for various event shape observables. See the main text for details.

• total broadening 



• scaling  like, 
similar to 


• but non-trivial 
 function

BT = BL + BR

kt
y23

ℱ

• thrust 


• scaling like 
virtuality 


• standard function 




• no evidence for 
NLL violation 
even for standard 
showers 

τ = 1 − t

kte−η

ℱ =
exp(−γER)
Γ(1 + R′ )
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FIG. 3: NLL test for � 12.

If ⇠l < 1 and max(⇠i, ⇠j) < 1, these changes vanish in the ⇢ ! 0 limit. The case of ⇠l = 1 and/or max(⇠i, ⇠j) = 1
corresponds to a phase-space region of measure zero and does therefore not need to be considered.

In the case where p̃i is one of the hard momenta, the leading terms in Eq. (54) cancel exactly, and the remaining
components of Xµ are transverse or anti-collinear, leading to a scaling with ⇢1/a and ⇢2/a, respectively, in Eq. (60).
This leads to the same conclusions as the case ⇠i = ⇠j = 0.

B. Numerical tests of kinematics mapping

In this section we present numerical tests of our new algorithm9. We follow the procedure outlined in [54] and
perform a scaling of the strong coupling, while keeping the variable � = ↵s ln v fixed, where v is an observable whose
single-emission contribution to a measurement can be parametrized in the form v(k) = (kt/Q)ae�b|⌘k|, see Eq. (47).
In particular we analyze the event shape observables thrust, T [87], jet broadening, BT [88], heavy jet mass, MH , and
the fractional energy correlators FC1�� [84] for � = 0 and 1/2. We also analyze the leading Lund plane declustering
scale in the Cambridge algorithm, y23, and the azimuthal angle between the two leading Lund plane declusterings,
� 12 [54].

Since the running of the strong coupling will not a↵ect the kinematics reconstruction, we keep ↵s constant in this
numerical test. In addition, we do not use the CMW scheme, and we work in the strict leading color approximation,
2CF = CA = 3. We find that this is su�cient to reproduce the dominant features of the Dire dipole shower algorithm
that were observed to break NLL precision in [53, 54]. Figure 3 shows the azimuthal angle separation � 12. The
predictions from Dire exhibit the same features as already shown in [54], and it can be seen that the deviation from
a flat � 12 distribution does not vanish as ↵s ! 0. In contrast, for the Alaric algorithm we observe increasingly
smaller deviations from a flat � 12 dependence, in agreement with NLL resummation.

Figure 4 displays the event shape observables and the leading Lund declustering scale for varying ↵s. In order to
test for a variety of possible e↵ects of NLL violation, we have chosen observables with di↵erent NLL contributions.
In addition, we test observables with b = 0 (

p
y23, BT and FC1), observables with b = 1/2 (FC1/2) and observables

with b = 1 (1 � T , MH). In each case we find that the deviation of the Alaric prediction from the NLL target
result (modified to account for constant ↵s, no CMW rescaling and leading color) decreases in size proportional to the
scaling in ↵s, as ↵s ! 0. At the same time, we observe large deviations of the Dire predictions from the target NLL
result. It is notable that the predictions from Alaric are flat with respect to the NLL result starting at fairly small
values of �� for most observables. For each prediction we have performed a fit to a linear function of ↵s in order to
extract the limit for ↵s ! 0. There are two noteworthy artefacts of this extrapolation: Firstly, there are bumps in
the extrapolated result at large values of �, which would not be present in the true ratio at any ↵s < 0.0025. Second,
the extrapolated result is smoother than the individual inputs, since the predictions at smaller ↵s are less contraining
due to their larger uncertainties. This concludes our tests of the kinematics mapping.

9
The PyPy code for these tests can be found at https://gitlab.com/shoeche/pyalaric.

See also talks by 

Gregory Soyez
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pheno, details and b fragmentation
• first caveat: no quark masses 

implemented yet


• problem for cluster hadronisation  
use Lund model via Pythia


• + need flavour threshold for 
 splittings 


• Dire parton shower as implemented 
in Sherpa as reference, Lund model 
tuned for Alaric


    and  for  Dire 

→

g → bb̄/g → cc̄

Let’s look at Data

Details:
- CMW scheme
- Massless b- and c-quarks
- Flavour thresholds
- Hadronization through Lund 

string fragmentation

Comments:
- Low values of x dominated by 

g → bb
- Large values of x dominated 

by b → bg and hadronization

xB ∼
EB−Hadron

Etot./2
σ = 0.3 GeV, a = 0.4, b = 0.36 GeV−2

σ = 0.3 GeV, a = 0.4, b = 0.46 GeV−2
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FIG. 5: Alaric and Dire predictions in comparison to LEP data from [89].
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FIG. 6: Alaric and Dire predictions in comparison to LEP data from [90].
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FIG. 5: Alaric and Dire predictions in comparison to LEP data from [89].
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FIG. 6: Alaric and Dire predictions in comparison to LEP data from [90].

Thrust:

• Note this is T, not 1-T:

    soft physics is to the right

• Note there is no matching, 

    relevant for small T

Total Broadening:

• soft physics is left hand side

• some deviations from data,

    but similar to Dire
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FIG. 5: Alaric and Dire predictions in comparison to LEP data from [89].
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FIG. 6: Alaric and Dire predictions in comparison to LEP data from [90].

• Durham resolution scales 



• higher Born multiplicities  
sensitivity to multiple emissions 
increased


• again, note no matching/merging 
involved

yn,n+1 ∼ k2
t /Q2

→
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Alaric initial state shower (outlook)
• Formalism presented in [Herren, Höche, 

Krauss, DR, Schönherr ‘22] general and 
applicable to initial state evolution


• practical considerations: 


• precise definition of evolution 
variable


• PDFs, clear in principle, but more 
choices to make


• distribution of recoil (i.e. definition 
of )


• e.g. Drell-Yan process, could be 
EW boson, or full final state    
(or …?)
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Alaric K̃ = FS
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transverse momentum of Z bosons at the LHC at 13 TeV

https://inspirehep.net/literature/2135530
https://inspirehep.net/literature/2135530
https://inspirehep.net/literature/2135530
https://inspirehep.net/literature/2135530
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A Logarithmically Accurate Resummation In C++
• NLL resummation in CAESAR formalism as definition and validation 

of parton shower accuracy


• New parton shower Alaric


• partial fractioning of eikonal  positive definite splitting function 
with full phase space coverage


• global kinematics scheme enables analytic proof of NLL accuracy 
+ numerical validation


• included in Sherpa framework and first pheno results

→


