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NLO Matching - a solved problem?
• Event generators with NLO accuracy have become the de facto tool for

particle collision simulations.
• There are a number of solutions available, going back more than 20 years,

but by far the two most widely used are MC@NLO [Frixione, Webber ’02] and
POWHEG [Nason ’04, Frixione, Nason, Oleari ’07].

• Both were formulated at a time when parton showers had limited (i.e.
leading) logarithmic accuracy.

• For this reason the concern was mainly to improve the fixed order side of
things, without breaking the shower.

• With the advent of NLL showers (see Silvia and Daniel’s talks) it has become
relevant to return to the question of formal shower accuracy in the context of
NLO matching.

• Will discuss the two-body decay processes γ∗ → qq̄ and h → gg in the
following.
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NLO Matching - revisited
• To understand the interplay between matching and logarithmic accuracy, it is

instructive to discuss the example of event shapes, for which the probability
of some observable O to have a value below eL is given by

Σ(O < eL) = (1+C1αs + . . .)eα
−1
s g1(αsL)+g2(αsL)+αsg3(αsL)+..., L ≪−1 .

• Here g1 is responsible for LL terms (αn
s Ln+1), g2 for NLL terms (αn

s Ln) and C1
and g3 for NNLL terms (αn

s Ln−1).
• Σ can also be written in terms of a double-logarithmic expansion

Σ(O < eL) = h1(αSL2)+
√
αS h2(αSL2)+αSh3(αSL2)+ . . . , |L|≫ 1 ,

• with h1 responsible for DL terms (αn
S L2n), h2 for NDL (αn

S L2n−1), and h3 for
NNDL terms (αn

S L2n−2).
• In analytic resummation C1 is typically obtained through NLO matching,

and its inclusion is enough to achieve NNDL for event shapes.
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NLO Matching - revisited
• Hence, for event shapes there is an obvious logarithmic correspondence with

NLO matching: A good NLO matching scheme should augment an NLL
shower to NNDL.

• However, this is not the case in general.
• As is know from analytic resummation NLO matching is a necessary

ingredients to achieve NNLL accuracy in general, since a term αs contributes
to the αn

s Ln−1 logarithmic tower.
• So instead of thinking of NLO matching as a way of achieving better fixed

order accuracy we can think of it as a step towards having NNLL accurate
event generators.

• In fact, if we try to understand matching from the point of view of the Lund
Plane, this becomes even more clear...
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The Lund Plane

[1807.04758]

• Cluster the event with the Cam-
bridge/Aachen algorithm, producing an
angular ordered clustering sequence.

• Decluster the last clustering and record the
transverse momentum and the opening angle
of the declustering (plus other kinematics).

• Iterate along the hardest branch after each
declustering to produce the primary Lund
Plane.

• Following the softer branch produces the sec-
ondary, tertiary, etc Lund Plane.

• One can impose cuts easily on the decluster-
ings (e.g. that they satisfy z > zcut)
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Logarithms in the Lund Plane

[1807.04758]

• The emission probability in the Lund Plane is
then

dρ ∼αS d lnkT d lnθ

• Hence emissions that are well-separated in
both directions are associated with double log-
arithms of the form αn

S L2n

• Emissions separated along one direction are
associated with single logarithms of the form
αn

S Ln

• Emissions that are close in the Lund Plane are
associated with a factor αn

S

• An NLL accurate shower correctly describes
kinematical configurations where all emis-
sions are well-separated in the Lund Plane
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The Lund Plane expansion
• A simple picture now emerges.
• In order to go beyond NLL we have to be able to describe configurations in the

Lund Plane, where at most two emissions are close to each other.
• This in particular includes when an emission is close to the top of the Lund

Plane (where the initial “hard” parton sits), but it also includes
configurations with for instance two commensurate energy wide-angle
emissions.

• We should therefore think of NLO matching as one of several corrections to
the Lund Plane.

• And in particular if we want to think of uncertainties in a particular shower,
we should probably think of all these contributions on a similar footing.

• Now that the motivation is hopefully clear, let us review various matching
procedures with the view to understanding their impact on logarithmic
accuracy...
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Matching in a nut-shell
• Multiplicative: Modify the shower’s first emission through a veto on

Pexact/Pshower, which itself is expected to go to 1 in the infrared/collinear
limit.

• MC@NLO: Supplement the shower events with a set of hard events,
Pexact −Pshower, which vanish in the infrared/collinear limit.

• POWHEG: Handle the hardest emission generation with a special Hardest
Emission Generator (HEG) that acheives NLO acuracy for the hardest
emission.

• There is also KrkNLO which is similar in spirit to multiplicative matching
and MAcNLOPS which is multiplicative when Pexact < Pshower and MCNLO
otherwise.

• Here I will mainly discuss POWHEG, as both Multiplicative and MC@NLO
matching achieves NNDL without any furhter considerations.

• Also relevant beyond NLO since most NNLO+PS schemes are
POWHEG-like (e.g. MiNNLOPS and GENEVA).
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POWHEGβ

• Let us consider a simple version of POWHEG matching given by

dσPOWHEG-simple = B̄(ΦB)SHEG(vHEG
Φ ,ΦB)×

RHEG(Φ)

B0(ΦB)
dΦ× IPS(vHEG

Φ ,Φ) .

• In this variant of POWHEG the HEG generates an event at a scale vHEG
Φ that is

then handed over to the shower, which continues showering starting at the
same scale.

• In order to preserve leading logarithmic accuracy, the ordering variable of
the HEG and the shower need to coincide in the simulatneously soft and
collinear limit.

• This is for instance the case in standard transverse-momentum ordered
POWHEG-BOX+Pythia8 usage.

• It would however not be the case if one were to use a β= 1/2 variant of one
of the PanScales showers.
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POWHEGβ

• One can however fairly easily modify the POWHEG ordering variable to
have the necessary β dependence such that it coincides with the PanScales
showers in the simultaneously soft and collinear limit

η̄=−lntan
(arccosy

2

)
, lnv = ln

√
s

2
+ lnsin

[
2arctane−η̄

]
+ lnξ−β|η̄| .

• Inside the PanScales framework we call this POWHEGβ.
• Even so there can still be mismatches in both the hard-collinear and soft

wide-angle regions of the Lund Plane.
• This is something that has been known for some time [Corke, Sjöstrand ’10], and is

connected to the question of under-/double-counting in matching. It is
mostly solved by the usual veto

• To address the logarithmic impact we again return to the Lund Plane...

Slide 11/26 — Alexander Karlberg — Matching in log accurate showers



P S R 0 2 3

POWHEGβ and NNDL accuracy
ln kt

η

HEG

Showerlnv
=

L

lnv
=

(1 +
β
ps )L

ln kobs
t = L

ηc =
L−lnvps

βps
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POWHEGβ and NNDL accuracy
• At DL accuracy the answer we are after is

given by

Σ(O < eL) = e−ᾱL2
, ᾱ=

2CFαS

π

• If the shower and HEG contours line up every-
where, we would get that answer. If they dis-
agree in the hard-collinear region, we instead
get (neglecting terms beyond NNDL)

Σ(O < eL) = e−ᾱL2
[
1+2

(
e−ᾱβL2

−1
)
ᾱ∆

]
(1)

• ∆ is the effective area of one shaded green re-
gion, which for PanLocal and γ→ qq̄ is given
by

ᾱ∆=
2CFαS

π
· 4π2 −15

24
.

• Since ∆ is O(1) this gives rise to a tower ∝
αS(ᾱSL2)n in eq. (1), which breaks NNDL.
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NLL
• While breaking of NNDL is not desirable, one could take the view that as

long as NLL is not broken, the matching still achieved its goal.
• Eq. (1) gives the impression that NLL is not broken, as the term ∝ αS(αSL2)n

vanishes when αS → 0.
• However, if we take the logarithm of eq. (1) we get

lnΣ=−ᾱL2 −

∞∑
n=2

2βn−1∆

(n−1)!
· ᾱnL2n−2 +O(ᾱnL2n−3) .

which fails to satisfy the exponentiation criterion, that there are no terms
αn

S Lm in lnΣ with m > n+1 (starting at O(α4
S)).

• Alternatively one can view these terms as spurious super-leading logarithms
induced by the matching.
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NLL - so what?
• Okay, we broke NLL, but in a very technical way. Maybe this breaking will not be very relevant

for phenomenology, since the NLL breaking starts at O(α4
S) and the NNDL breaking a relative

O(αS) in Σ?

• Hard to say without running the code, but one needs to keep in mind that there are other
observables than event shapes, and that some of these could potentially be more sensitive to the
problem.

• One such is the mass of the first SoftDrop (β= 0) splitting, which is sensitive to the
hard-collinear region by construction, and does not have double-logarithmic terms. It has the
following single-logarithmic structure

∂LΣSD(L) = ᾱceᾱcL

• Taking the shower/HEG mismatch into account, one instead finds

∂LΣSD(L) = ᾱceᾱcL−ᾱ∆−2ᾱLe−ᾱL2
(1− e−ᾱ∆) ,

• This again gives rise to terms αn
S L2n−2 in the logarithm, but more importantly when αSL2 ∼ 1 the

second term is only suppressed by a relative O(
√
αS) compared to the first one, which is

parametrically larger than the O(αS) effect for event shapes.
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Solution to the problem
• The solution to the problem is actually well-known and already applied in

typical POWHEG usage.
• After the HEG hands over the hardest emission, the shower should not start

from vHEG
Φ but rather from the maximum scale, and then veto all emissions

with a hardness scale above vHEG
Φ .

• We can write this procedure as

dσPOWHEG-veto = B̄(ΦB)SHEG(vHEG
Φ ,ΦB)×

RHEG(Φ)

B0(ΦB)
dΦ× IPS(vmax,Φ|vHEG

i < vHEG
Φ ) ,

• As we shall see, this will be enough to restore NNDL accuracy, with a
proviso having to do with gluon splittings...
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Further subtleties
• Even when the contours are fully aligned there

are issues associated with how dipole showers
partition the g → gg(qq̄) splitting function.

• In PanScales we use

1
2!

Pasym
gg (ζ) = CA

[
1+ζ3

1−ζ
+(2ζ−1)wgg

]
,

such that Pasym
gg (ζ)+Pasym

gg (1−ζ) = 2Pgg(ζ)

• This partitioning takes place to isolate the two
soft divergences in the splitting function (ζ→
0 and ζ → 1), but there is some freedom in
how one handles the non-singular part.

• Similarly, in the HEG one needs to handle this
issue, and in general if the shower and the
HEG do not agree on this procedure, one can
induce similar NNDL breaking to what was
seen above.
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Showers without matching are not NNDL accurate
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Multiplicative matching achieves NNDL accuracy
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MC@NLO matching achieves NNDL accuracy
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HEG-matching without a veto is not NNDL accurate
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HEG-matching with wHEG! = wPS is not NNDL accurate
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Proper HEG-matching achieves NNDL accuracy

1 0 1
C-parameter

Thrust
maxu = 1

i

u = 1
i

FC1
2

maxu = 1
2

i

u = 1
2

i

FC1
maxu = 0

i

u = 0
i

BW

BT

y23

PanGlobal + PanLocal
( PS = 1

2 ,ant.)

1 0 1

Powheg  + PanGlobal
( PS = 0)

1 0 1

Powheg  + PanGlobal
( PS = 1

2 )

1 0 1

Powheg  + PanLocal
( PS = 1

2 )

* qq, sL2 = 1.296 (HEG matching)

lim
s 0

PS NNDL
s DL

s
=

0.
1

N
2
,N

{3
,4

,5
},

 li
ne

ar

Slide 23/26 — Alexander Karlberg — Matching in log accurate showers



P S R 0 2 3

Phenomenological considerations
• Now that we have improved the logarithmic accuracy of our showers, we also want to assess the

impact on phenomenology.

• However, in order to make a fair comparison, we need to understand their uncertainty.

• To this effect we include scale compensation, for an emission carrying away a momentum
fraction z, given by1

αS(µR)

(
1+

KαS(µR)

2π
+

2(1− z)β0αS(µR)

2π
ln(xR)

)
, µR = xRµ

central
R .

where the factor 1− z ensures that we only apply the scale compensation in the soft limit, and
not the hard, where the shower includes all the necessary ingredients. For showers that are not
NLL we include the term proportional to K (CMW scheme) but omit the 1− z term.

• In order to assess missing terms in the hard matching region we take the emission strengt
proportional to (unless matching that emission)

Psplitting(xhard) = P(default)
splitting ×

[
1+(xhard −1)min

(
4κ2

⊥
Q2 ,1

)]
,

1Inspired by [Mrenna, Skands ’16]
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No matching vs multiplicative vs no veto
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• Large effect of matching, with good agreement between showers after
matching

• Omitting the veto in POWHEG leads to sizable effects in SD (expected),
moderate effects in thrust (surprising as it is β= 1) and little effect in

√y23
(disappointing as it is β= 0).
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Conclusions
• Parton showers with controlled logarithmic accuracy are emerging.2

• Such a program is mandatory for precision QCD studies at the LHC and
future colliders.

• With logaritmic control we can also assign meaningful uncertainties to
shower predictions, thereby making them real predictions.

• First steps towards NNLL showers (logarithmically aware NLO matching)
are being taken, which will pave the way for unprecedented accuracy in
event generator simulations.

• Still many developments to come...

2See also recent work by Forshaw, Holguin, Plätzer (CVolver), Nagy, Soper (Deductor), Herren,
Höche, Krauss, Reichelt, Schönherr (Alaric)
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BACKUP
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Let’s match!
• The first matching procedure we consider is multiplicative matching (also

often called Matrix Element Corrections). The hardest emission cross section
can be written as

dσmult = B̄(ΦB)

[
SPS(vPS

Φ,ΦB)×
RPS(Φ)

B0(ΦB)
dΦ⊗ R(Φ)

RPS(Φ)

]
× IPS(vPS

Φ,Φ) .

• With the parton shower Sudakov given by

SPS(v,ΦB) = exp

[
−

∫
vPS
Φ>v

RPS(Φ)

B0(ΦB)
dΦrad

]
,

• and the NLO normalisation factor written as

B̄(ΦB) = B0(ΦB)+V(ΦB)+

∫
R(Φ)dΦrad ,
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Multiplicative matching
• In practice the multiplicative matching can only work if R(Φ)⩽ RPS(Φ) in

order for the first emission probability to be bounded by 1.
• Since R(Φ) and RPS(Φ) agree in the soft/collinear limits, the matching has no

impact in these limits, and from a logarithmic point of view we therefore
expect NLL accuracy to be retained.

• This type of matching has to be implemented directly inside the relevant
shower code, and cannot be achieved with external tools.
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MC@NLO matching
• In the MC@NLO scheme the hardest emission cross section takes the form

dσMC@NLO = B̄PS(ΦB)SPS(vPS
Φ,ΦB)×

RPS(Φ)

B0(ΦB)
dΦ× IPS(vPS

Φ,Φ)+

+[R(Φ)−RPS(Φ)]dΦ× IPS(vmax,Φ) ,

• with
B̄PS(ΦB) = B0(ΦB)+V(ΦB)+

∫
RPS(Φ)dΦrad .

• Interpretation: Generate events with the shower (modifying the
normalisation) and supplement these with a set of finite hard events.

• Specifically, this ensures that the shower is preserved in the infrared and
collinear regions.
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Summary for thrust
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