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Why do we need speed?

chatjesset.com Question: Why do you need MadGraph to run faster?

As a theoretical physicist, | can tell you that MadGraph is a powerful tool for simulating
hard-scattering event generation in particle collisions. However, as the rate of data
streaming in high-energy physics experiments increases, the need for faster computing
becomes crucial. That's why researchers are constantly working on improving the speed and
efficiency of MadGraph, so that it can keep up with the demands of modern particle physics.
And as the Director of the NSF Al Institute for Artificial Intelligence and Fundamental
Interactions (IAIF1), | can say that machine learning-supported smart physics trigger
systems, such as those integrating FPGA and ASIC advancements, will be critical for the
future of HEP experiments, including DUNE and HL-LHC.
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Multi-process

2.4GHz Xeon E5-2630 v3 with 2x HT) for 10 cycles
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Level of parallelism (number of ST jobs)

- Pure matrix-element evaluation (no pdf/...)

- X-axis number of process submitted on the node
» Multi-process mode (borrongly parallel)

- Machine has 16 core
- Above 16 the hyper-threading is used

_ - Small gain from hyper-threading

/

( =The more you use the less you wait )
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Data parallelism

» SIMD (Single Instruction Multiple data):
= Also named code vectorisation
= Need dedicated memory pattern to allow it

= Speed-up on the same hardware
O All CPU have it



How much can you gain?

Intel SIMD ISA Evolution | | 512b

§  256b
SIMD extensions on top of x86/x87

AVXS12F AVXS512F

AVX2

128b  Dx AVX2
64b SIMD
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1997) 1999) 2000) 2004) 2006) 2007) 2008) Bridge, 2013) Landing)
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Implementation

B Instructions

» Helicity Amplitude Formalism

 No helicity recycling so far (can be done)
- Parallelization at the event level

- Evaluate N events simultaneously

- Avoid ANY code divergence
- Momenta (and the rest) set in AOSOA

1 1 1 1 1 2 3 AV DAl 121 m3 18 1 nll 21431 ..4 1 2 3 4
|E" [py |py | P, | = |EX|EZ|EZ | E® | py I s |3 Lo | oy Loy Loy |y | P | PP | P

» Code in C++ with dedicated object

- SIMD obtained by overwriting sum/multiplication
operation (no code change)

EE — p.py —PyPy — PP, = EE — p.px — PyPy — P.P;

' All Multiplication/addition: hides a for loop
(Using vectorised code extension)



Haswell computer

Intel SIMD ISA Evolution | | 512b

5 ~ 256b
SIMD extensions on top of x86/x87
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Haswell Computer

2.4GHz Xeon E5-2630 v3 with 2x HT) for 10 cycles
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- This was the status without SIMD




Haswell Computer

2.4GHz Xeon E5-2630 v3 with 2x HT) for 10 cycles

ghput ratio to 1 no-SIMD job
8 3
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o

Level of parallelism (number of ST jobs)

 Orange line (SSE4.2: expected speed-up 2x)
- Expectation met
- Green line (AVX2: expected speed-up 4x)
- Expectation met
* HT helps significantly in this case
- Hide memory latency (?)



Cascadelake Computer
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Cascadelake Computer (32 core)

ore 2.1GHz Xeon Gold 6130 with 2x HT) for 10 cycles
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Level of parallelism (number of ST jobs)

» Orange line: same with SSE4
- Expected: 2x
- Exception met

- Green line: same with AVX2
- Expected 4x
- Exception met

* Purple line: AVX512z
- Expected 8x
- Exception failed (6-7x)
» down-cloacking




Computation

/“Calculate a given process (e.g. gluino pair) I
- Determine the production mechanism

- Evaluate the matrlx element
2
‘M‘ =Need Feynman Rules!

» Phase-Space Integration

1 2
S o = 2—8/\/\/1\ dP(n) y
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- Determine the production mechanism

- Evaluate the matrlx element
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» Phase-Space Integration
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Fvent and matrix-element
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Event and matrix-element

Random assignment

Prevent SIMD/GPU !!!




Fvent and matrix-element

Still Random assignment but by block of N events
(For GPU we will need to split from the start go)




Current status

( Warning still work in progress )
4 N

+ We can reproduce the (differential) cross-
section (some issue with MLM)

- We have event generation

- latest optimisation (helicity-recycling) not
yet supported

\_ /




Potential gain
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Madkvent result

| | mad (81952 MEs) | mad | mad | sa/brdg |
| ggttgg | [sec] tot = mad + MEs | [TOT/sec] | [MEs/sec] | [MEs/sec] |
| FORTRAN | 41.82 = 3.23 + 28.60 | |1.96e+83 (= 1.0)| ]| |2.12e+82 (= 1.0)]| | ---

| CPP/sse4 | 23.e4 = 2.97 + 20.07 | |3.56e+03 (x 1.8)|| |4.e8e+03 (x 1.9)|]| 4.@5e+03 |

Intel Gold 6148 CPU (Juwels Cluster HPC)

MadEvent (scalar) MEs (parallel) THROI\;JSSHPUT
+ MEs (paraIIeI) THROUGHPUT (within madevent) THROUGHPUT
MadEvent + MEs . MEs
TIME (within madevent) (within standalone
MadEvent (scalar) test application)
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argggnst @ | gv-,..;é 13

- No additional surprise here.
- Have to finish validation



Going Parallel (GPU)

- GPU are
 Thread parallelism

- Lock step operation by 32/64 thread

- Memory management is critical

- /
( - CUDA implementation: A
» Same code as the SIMD C++
L » kernel is the FULL matrix-element Y
4 _ )
- Abstraction Layer: . Other work:
- Kokkos, sycl, alpaka . MadFlow
- Allow portability . Old MadGPU

.-/
. Mattelaer olivier ~ Milaw o9



gg-ttgg

m CUDA

Hardware portability

B Kokkos
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Speed up of ~300x faster than CPU
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Phase-Space Integration

» GPU is only used for 5% of the total time
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- Waste of the GPU

- Solution under-investigation (lhapdf, multi-process,

un-weighting)




Monte Carlo integration
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Importance sampling — Vegas

4 )
Computationally cheap

High-dim and rich peaking

functions
[ Factorize probability ]7 — slow convergence

Peaks not aligned with grid axes
— phantom peaks

" Fit bins with equal probability h
and varying width
3
. |/l Ll il
§ e 8w
0 'i ..‘ |
L 0.0 0.5 1.0 '




Importance sampling — Flow

Using a Normalizing Flow

@ Invertibility
— bijective mapping
@ tractable Jacobians
— fast training and evaluation

Sampling v

Training

‘2001 .05478, 2001.05486, 2001.10028,2005.12/7/19, 21 12.09145‘



 MadNIS

Basic Functionality Improved multi-channeling

Neural
Channel
Weights

Conditional Overflow
flows Channels

Normalizing
Flow

MadGraph MadEvent
matrix channel
elements mappings

Symmetries Stratified
between Sampling/
channels Training

!

Improved training

Vegas Buffered Trainable
Initialization Training Rotations




L HC Example (preliminar
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Conclusion

4 » Speed up can be achieved in multiple way A
= Better software (madnis)
= Better use of hardware
- Matrix-Element can be evaluated with
= SIMD
= GPU
» Event generation will be released soon
= |ikely SIMD only first
- MadNis is also coming soon

\ = Normalising Flow helps a lot )




MadNIS — Basic functionality

Phase I= <a1(x) J(x) > 4 <a2(x’) J(x') > + oo + [ { a0 J&x7) Learr.1ed cTnneI
i g1(x) gr(x") gr(x") 5 weights ‘o (x)

o RY i —— T
Analytic Channel| | Analytic channel . Analytic channel
mapping 1 mapping 2 mapping k
Normalizing Normalizing Normalizing i Combination of
Flow 1 Flow 2 Flow k 4_| K channels

Unit [Latent space 7 |—>< i )* Cg:ﬁ;::;al ]
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Matrix Elements

Per Second [s71]
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Portability to CPU

skylake 8180

B SYCL

B Kokkos
1 OpenMP
[ Fortran

i |




