Il UCLouvain

Institut de recherche en mathématique et physique
Centre de Cosmologie, Physique des Particules et Phénoménologie

MG5aMC: offloading to GPU

Olivier Mattelaer

Plan of the talk/co-author

4 Taylor Childers,
Data Parallelism Na)t,han Nichols, Argon ne °

Walter Hopkins

Stefan Roiser,
Andrea Valassi, C\E/RW
Stephan Hageboek, 7
Zenny Wetterson

/
Machine Learning Theo Heimel, N
Tilman Plehn Heidelberg

N—Z20>rZ

Ramon Winterhalder, .
Luca Beccatini

/

Why do we need speed?

chatjesset.com Question: Why do you need MadGraph to run faster?

As a theoretical physicist, | can tell you that MadGraph is a powerful tool for simulating
hard-scattering event generation in particle collisions. However, as the rate of data
streaming in high-energy physics experiments increases, the need for faster computing
becomes crucial. That's why researchers are constantly working on improving the speed and
efficiency of MadGraph, so that it can keep up with the demands of modern particle physics.
And as the Director of the NSF Al Institute for Artificial Intelligence and Fundamental
Interactions (IAIF1), | can say that machine learning-supported smart physics trigger
systems, such as those integrating FPGA and ASIC advancements, will be critical for the
future of HEP experiments, including DUNE and HL-LHC.

Why do we need speed?

chatjesset.com Question: Why do you need MadGraph to run faster?

g 50

)

o

wn

= 40

S

E 30

5

@)

> 20

©

5

g 10
0

As a theoretical physicist, | can tell you that MadGraph is a powerful tool for simulating
hard-scattering event generation in particle collisions. However, as the rate of data
streaming in high-energy physics experiments increases, the need for faster computing
becomes crucial. That's why researchers are constantly working on improving the speed and
efficiency of MadGraph, so that it can keep up with the demands of modern particle physics.
And as the Director of the NSF Al Institute for Artificial Intelligence and Fundamental
Interactions (IAIF1), | can say that machine learning-supported smart physics trigger
systems, such as those integrating FPGA and ASIC advancements, will be critical for the
future of HEP experiments, including DUNE and HL-LHC.

Run 3 (u=55) Run 4 (1=88-140) Run 5 (u=165-200
IIIIIlll.l.llllllllllllllllllllll
— ATLASPrehmmary

2022 Computing Model - CPU

Ay

e Conservative R&D
v Aggressive R&D

— Sustained budget model x5
(+10% +20% capacity/year) 3

IIIIIII

R

l]lI|IIII|

I 1 1 I | | I 1 1 I L1 1 I 11 1 I 11 1 I L1 1 I 11 1 I 1
2020 2022 2024 2026 2028 2030 2032 2034 2036

Year

Why do we need speed?

chatjesset.com Question: Why do you need MadGraph to run faster?

As a theoretical physicist, | can tell you that MadGraph is a powerful tool for simulating
hard-scattering event generation in particle collisions. However, as the rate of data
streaming in high-energy physics experiments increases, the need for faster computing
becomes crucial. That's why researchers are constantly working on improving the speed and

efficiency of MadGraph, so that it can keep up with the demands of modern particle physics.
3 "‘\ And as the Director of the NSF Al Institute for Artificial Intelligence and Fundamental
Interactions (IAIF1), | can say that machine learning-supported smart physics trigger
systems, such as those integrating FPGA and ASIC advancements, will be critical for the
future of HEP experiments, including DUNE and HL-LHC.

Run 3 (u=55) Run 4 (1=88-140) Run 5 (u=165-200)
T T

? Tt rrrrrrprrrrp e T T T T] .
g 505 fog'éoisﬁ!g?ﬁ'giﬁy CPU ‘E /TrUth IS ... \
wn |]
é 40__ e Conservative R&D - .
g prlmments o e G =We have no choice,
§ 30__ (+10% +20% capacity/year) ""'] GPU Wi || be the norm
5 - e]
o . ot ¥
x 20 / =
S : =HPC center are GPU
S 10~ | .
<] dominated
03050 5022 2024 3026 3028 2030 2032 5034 2036

Year k /
- Mattelaer olivier ~ Milan 3

Why do we need speed?

chatjesset.com Question: Why do you need MadGraph to run faster?

As a theoretical physicist, | can tell you that MadGraph is a powerful tool for simulating
hard-scattering event generation in particle collisions. However, as the rate of data
streaming in high-energy physics experiments increases, the need for faster computing
becomes crucial. That's why researchers are constantly working on improving the speed and

efficiency of MadGraph, so that it can keep up with the demands of modern particle physics.
3 "‘\ And as the Director of the NSF Al Institute for Artificial Intelligence and Fundamental
Interactions (IAIF1), | can say that machine learning-supported smart physics trigger
systems, such as those integrating FPGA and ASIC advancements, will be critical for the
future of HEP experiments, including DUNE and HL-LHC.

Run 3 (u=55) Run 4 (1=88-140) Run 5 (u=165-200)
T T

? Tt rrrrrrprrrrp e T T T T] .
g 505 fog'éoisﬁ!g?ﬁ'giﬁy CPU ‘E /TrUth IS ... \
wn |]
é 40__ e Conservative R&D - .
g prlmments o e G =We have no choice,
§ 30__ (+10% +20% capacity/year) ""'] GPU Wi || be the norm
5 - e]
o . ot ¥
x 20 / =
S : =HPC center are GPU
S 10~ | .
<] dominated
03050 5022 2024 3026 3028 2030 2032 5034 2036

e ___=This is an IT project
- Mattelaer olivier ~ Milan 3

Multi-process

2.4GHz Xeon E5-2630 v3 with 2x HT) for 10 cycles

Q

o : I

S 60 - : |

7 = !

¢ ! !

- . |

o 40 :

2 : |

frar} . 1

' ’

3 20 A : I ‘

3 : -@— gogttgg-sa-cpp-d-inl0-none
3 Y —®~ ggttgg-sa-cpp-d-inl0-ssed
3 : . ~@- gogttgg-sa-cpp-d-inl0-avx2
£ - i I

= ' ' ' (

0 10 20 30 40 50
Level of parallelism (number of ST jobs)

- Pure matrix-element evaluation (no pdf/...)

- X-axis number of process submitted on the node
» Multi-process mode (borrongly parallel)

- Machine has 16 core
- Above 16 the hyper-threading is used

_ - Small gain from hyper-threading

/

(=The more you use the less you wait)
. Mattelaer olivier ~ Milan e

Data parallelism

» SIMD (Single Instruction Multiple data):
= Also named code vectorisation
= Need dedicated memory pattern to allow it

= Speed-up on the same hardware
O All CPU have it

How much can you gain?

Intel SIMD ISA Evolution | | 512b

§ 256b
SIMD extensions on top of x86/x87

AVXS12F AVXS512F

AVX2

128b Dx AVX2
64b SIMD

sMp 0 g |

Pl Plll P4 P4 Core Core Core Core Core Xeon Phi®= Core
(Klamath, (Katmai, (wWillamette, (Prescott, (Merom, (Penryn, (Nehalem, (Sandy (Haswell, (Knights (Sky Lake)
1997) 1999) 2000) 2004) 2006) 2007) 2008) Bridge, 2013) Landing)

2011)

Implementation

B Instructions

» Helicity Amplitude Formalism

 No helicity recycling so far (can be done)
- Parallelization at the event level

- Evaluate N events simultaneously

- Avoid ANY code divergence
- Momenta (and the rest) set in AOSOA

1 1 1 1 1 2 3 AV DAl 121 m3 18 1 nll 21431 ..4 1 2 3 4
|E" [py |py | P, | = |EX|EZ|EZ | E® | py I s |3 Lo | oy Loy Loy |y | P | PP | P

» Code in C++ with dedicated object

- SIMD obtained by overwriting sum/multiplication
operation (no code change)

EE — p.py —PyPy — PP, = EE — p.px — PyPy — P.P;

' All Multiplication/addition: hides a for loop
(Using vectorised code extension)

Haswell computer

Intel SIMD ISA Evolution | | 512b

5 ~ 256b
SIMD extensions on top of x86/x87

AVXS512F AVX512F

AVX2

_—
- AVX2

128b

64b SIMD

SIMD

SSE4N SSE4 SSE4AN SSE4.1

SSE3 SSE3 SSE3 SSE3

- ~ = -
DU | A

Pl Pl P4 P4 Core Core Core Core Xeon Phi® Core
(Klamath, (Katmai, (Willamette, (Prescott, (Merom, (Penryn, (Nehalem, (Sandy m (Knights (Sky Lake)
1997) 1999) 2000) 2004) 2006) 2007) 2008) Bridge, Landing)

201)

Haswell Computer

2.4GHz Xeon E5-2630 v3 with 2x HT) for 10 cycles

Qa

=) | . .

= No HT : 2x HT ‘ |

= 60 Z '

0 : '

2 } !

- : I

S 40+ 4 .

g I

bt .

©

<] r

-t . .

=] : N
g. 20 H | —&— ggttgg-sa-cpp-d-inl0-none
g1 Y -~ ggttgg-sa-cpp-d-inl0-ssed4
o . : —@- ggttgg-sa-cpp-d-inl0-avx2
= i : I I I

|— 0 1 1 I I

0 10 20 40 50
Level of parallelism (number of ST jobs)

&

- This was the status without SIMD

Haswell Computer

2.4GHz Xeon E5-2630 v3 with 2x HT) for 10 cycles

ghput ratio to 1 no-SIMD job
8 3
\x

i

| —&— gottgg-sa-cpp- d-inl0-none
Y -&~- gogttgg d-inl0
-@- gott -inl 2
0 10 20 30 40 50

Throu ut ratio to 1 no-
o

Level of parallelism (number of ST jobs)

 Orange line (SSE4.2: expected speed-up 2x)
- Expectation met
- Green line (AVX2: expected speed-up 4x)
- Expectation met
* HT helps significantly in this case
- Hide memory latency (?)

Cascadelake Computer

Intel SIMD ISA Evolution | | 512b

'SIMD extensions on top of x86/x87 | j— 8X

| Avxs12F AvxsizF

. 128b Az Az A2 4X
64b SIMD
SIMD

SSE4N SSE4N SSE4.1 SSE4.1 SSE4N SSE4.1

SSE3 SSE3 SSE3

= = e e
! ! r b
SSE SSE SSE SSE SSE SSE S

Pl Plll P4

P4 Core Core Core Core Core Xeon Phi
(Klamath, (Katmali, (Willamette, (Prescott, (Merom, (Penryn, (Nehalem, (Sandy (Haswell, (Knights
1997) 1999) 2000) 2004) 2006) 2007) 2008) Bridge, 2013) Landing)

2011)

Cascadelake Computer (32 core)

ore 2.1GHz Xeon Gold 6130 with 2x HT) for 10 cycles

Kol
o . . .
a No HT : 2x HT | Werc&nmlt
= : " —®
% 150 I ¢
2 / !
I .
. 4_‘ o]
]
£ 100 | —$ —o-
© : | -~ ggttgg-sa-cpp-d-inl0-none
s . -~ ggttgg-sa-c pp-d-inl0-sse4
- 50 - 7 + — —8- ggttgg-sa-cpp-d-inl0-avx2 ~
g\ . ‘ ° —&— ggttgg-sa-cpp-d-inl0-512y
o — . | -@- ggttgg-sa-cpp-d-inl0-512z
'}E 0 * T T T T T T
0 20 40 60 80 100 120 140 160

Level of parallelism (number of ST jobs)

» Orange line: same with SSE4
- Expected: 2x
- Exception met

- Green line: same with AVX2
- Expected 4x
- Exception met

* Purple line: AVX512z
- Expected 8x
- Exception failed (6-7x)
» down-cloacking

Computation

/“Calculate a given process (e.g. gluino pair) I
- Determine the production mechanism

- Evaluate the matrlx element
2
‘M‘ =Need Feynman Rules!

» Phase-Space Integration

1 2
S o = 2—8/\/\/1\ dP(n) y

Computation

/“Calculate a given process (e.g. gluino pair) I
- Determine the production mechanism

- Evaluate the matrlx element
2
|M| =Need Feynman Rules!

» Phase-Space Integration

1 2
: - 2—8/\/\4\ 4B (n) .

Fvent and matrix-element

cC — ...

Sd_—>

dd

uim — ...

Event and matrix-element

Random assignment

Prevent SIMD/GPU !!!

Fvent and matrix-element

Still Random assignment but by block of N events
(For GPU we will need to split from the start go)

Current status

(Warning still work in progress)
4 N

+ We can reproduce the (differential) cross-
section (some issue with MLM)

- We have event generation

- latest optimisation (helicity-recycling) not
yet supported

_ /

Potential gain

gg — tt g9 — ttgg gg — ttggg
madevent 13G 470G 11T
matrixi 3.1G (23%) | 450G (96%) | 11T (>99%)
Amdahl's Law
20 [——T————— - Te =TS =eee —
15 | e T
/ . \ 4 Parallel portion
- Not full code is - e — so
using SIMD B

- Gain limited by NN AENEENENEEEN
Amdahl’s law T

9 Around 5x y 2 80 L A T

o © N <
N 9 o o
N n =

-

S

Number of processor

2048
4096
8192
16384
32768
65536

Madkvent result

| | mad (81952 MEs) | mad | mad | sa/brdg |
| ggttgg | [sec] tot = mad + MEs | [TOT/sec] | [MEs/sec] | [MEs/sec] |
| FORTRAN | 41.82 = 3.23 + 28.60 | |1.96e+83 (= 1.0)|]| |2.12e+82 (= 1.0)]| | ---

| CPP/sse4 | 23.e4 = 2.97 + 20.07 | |3.56e+03 (x 1.8)|| |4.e8e+03 (x 1.9)|]| 4.@5e+03 |

Intel Gold 6148 CPU (Juwels Cluster HPC)

MadEvent (scalar) MEs (parallel) THROI\;JSSHPUT
+ MEs (paraIIeI) THROUGHPUT (within madevent) THROUGHPUT
MadEvent + MEs . MEs
TIME (within madevent) (within standalone
MadEvent (scalar) test application)
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argggnst @ | gv-,..;é 13

- No additional surprise here.
- Have to finish validation

Going Parallel (GPU)

- GPU are
 Thread parallelism

- Lock step operation by 32/64 thread

- Memory management is critical

- /
(- CUDA implementation: A
» Same code as the SIMD C++
L » kernel is the FULL matrix-element Y
4 _)
- Abstraction Layer: . Other work:
- Kokkos, sycl, alpaka . MadFlow
- Allow portability . Old MadGPU

.-/
. Mattelaer olivier ~ Milaw o9

gg-ttgg

m CUDA

Hardware portability

B Kokkos

C9'11-epno

Z'9'T1-epnd O
2'9'TT-epnd Q\v\
Z'9'1T-epnd
Z'9'TT-epnd
Z'9'TT-epnd nN\\T
Z'G p-wdol &/QQ
= e
Z'G {-Wdol QQ\, -7
Z'G -wdol \\§
Z'S p-woos '
S/
%
Q%\/
%QO
o
3 +
X
2
AQ%
%
o,
\\\%
%

106 === syCL

LALBL AL I | L) L -ilddd
4

-

10°-

[{-S] PU0d3S Jad
SjusawWa|3 XIIIepn

Speed up of ~300x faster than CPU

Potential gain

gg — tt gg — ttgg gg — ttggg
madevent 13G 470G 11T
matrixl 3.1G (23%) | 450G (96%) 11T (>99%)
Amdahl's Law

(. N

Not full code is 1
using GPU .
-Gain limited by | € »
Amdahl’s law T

_ - Around ZOX/ .

] o~ o © o~
- ™ g: Y 9 o ﬁ
N n =
-
S

2048
4096
8192
16384
32768
65536

Number of processor

Phase-Space Integration

» GPU is only used for 5% of the total time

T - -Il —-
—
T a— '

I :
= =
)
-
'
- .rw
“w;)
o
BN
=
4
=
I
Y
i |

- Waste of the GPU

- Solution under-investigation (lhapdf, multi-process,

un-weighting)

Monte Carlo integration

f()d
I= (). = f() e 2 <>&

g() . g()

xr~gi(x)

Importance sampling — Vegas

4)
Computationally cheap

High-dim and rich peaking

functions
[Factorize probability]7 — slow convergence

Peaks not aligned with grid axes
— phantom peaks

" Fit bins with equal probability h
and varying width
3
. |/l Ll il
§ e 8w
0 'i ..‘ |
L 0.0 0.5 1.0 '

Importance sampling — Flow

Using a Normalizing Flow

@ Invertibility
— bijective mapping
@ tractable Jacobians
— fast training and evaluation

Sampling v

Training

‘2001 .05478, 2001.05486, 2001.10028,2005.12/7/19, 21 12.09145‘

 MadNIS

Basic Functionality Improved multi-channeling

Neural
Channel
Weights

Conditional Overflow
flows Channels

Normalizing
Flow

MadGraph MadEvent
matrix channel
elements mappings

Symmetries Stratified
between Sampling/
channels Training

!

Improved training

Vegas Buffered Trainable
Initialization Training Rotations

L HC Example (preliminar

uc — WTW™ds

N
o
1

relative std dev o /1
}—l
Ot

e

o

[
1

VEGAS Flow Flow Flow VFlow VFlow VFlow VFlow
fixed o fixed @ trained @ fixed @ trained @ trained o trained «
Ra=29 Re=50

=
S

—_
[\)
1

o
00
1

relative std dev o /1

S
>
1

0.41

Flé)W FIL)W VFllow VFllow VFIIOW VFI10W

VEGAS ﬁii)(ziwa fixed a trained o fixed o trained @ trained o trained «
Ra=29 Re=250

Mattelaer Olivier Milan 28

Conclusion

4 » Speed up can be achieved in multiple way A
= Better software (madnis)
= Better use of hardware
- Matrix-Element can be evaluated with
= SIMD
= GPU
» Event generation will be released soon
= |ikely SIMD only first
- MadNis is also coming soon

\ = Normalising Flow helps a lot)

MadNIS — Basic functionality

Phase I= <a1(x) J(x) > 4 <a2(x’) J(x') > + oo + [{ a0 J&x7) Learr.1ed cTnneI
i g1(x) gr(x") gr(x") 5 weights ‘o (x)

o RY i —— T
Analytic Channel| | Analytic channel . Analytic channel
mapping 1 mapping 2 mapping k
Normalizing Normalizing Normalizing i Combination of
Flow 1 Flow 2 Flow k 4_| K channels

Unit [Latent space 7 |—>< i)* Cg:ﬁ;::;al]
U)

= [0,17"

............

Matrix Elements

Per Second [s71]

S e T S S S S =
O O O O o O O
W HAN Ul (@) ~J 00 O

Portability to CPU

skylake 8180

B SYCL

B Kokkos
1 OpenMP
[Fortran

i |

