Sudakov Shoulder Resummation in Thrust and Heavy Jet Mass

Matthew Schwartz

Harvard University

Parton Showers and Resummation Workshop Milan, Italy June 6, 2023

Based on

arXiv:2205.05702 (PRD106.074011)

with Arindam Bhattacharya (Harvard) and Xiaoyuan Zhang (Harvard)

arXiv:2306.xxxxx

with Arindam Bhattacharya (Harvard), Xiaoyuan Zhang (Harvard), Iain Stewart (MIT) and Johannes Michel (MIT)

Motivation: HJM is an outlier

Salam and Wicke 2001 (hep-ph/0102343)

Secondly fits for the heavy-jet mass (a very non-inclusive variable) lead to values for α_s which are about 10% smaller than for inclusive variables like the thrust or the mean jet mass. This needs to be understood. It could be due to a difference in the behaviour of the perturbation series at higher orders. But in appendix D there is evidence from Monte Carlo

Chien and Schwartz 2010 (arXiv:1005.1644) NNNLL resummation with NNLO matching

Motivation: fixed order pertubation theory

• data for thrust seems matches shape of NNLO theory better than HJM in the far tail

Fits used range 0.8 < ρ < 0.18 [Dissertori et al 0712.0327]
Only uses 25% of data bins!

What is different about thrust and HJM?

1. Different perturbative behavior: Sudakov Shoulders (this talk)

Could resummation of the Sudakov shoulder improve the theory prediction?

What is different about thrust and HJM?

2. Different power corrections (not this talk)

Thurst only involves 3 vectors

• Insensitive to mass scheme

$$E = |\vec{p}|$$
 or $E = \sqrt{\vec{p}^2 + m_\pi^2}$

$$ho=rac{1}{Q^2}\max(M_L^2,M_R^2)$$

Heavy jet mass involves 4-vectors

Sensitive to mass scheme

Nason & Zanderighi (2301.03607)

Sudakov Shoulders

- Catani and Webber (hep-ph/9710333)
 - C parameter has a right-shoulder
 - discontinuity at C=0.75

- Seymour (hep-ph/9707338)
 - Jet shape has a discontinuity at r=1

Sudakov Shoulders

Shoulders are a **generic feature** when range of observable changes order by order

LO: C < ³/₄, ρ,τ < ¹/₃

• Maximum value at unique trijet configuration

$$p_{2} = \frac{Q}{3}(1, 0, \frac{\sqrt{3}}{2}, -\frac{1}{2})$$

$$p_{1} = \frac{Q}{3}(1, 0, 0, 1)$$

$$p_{3} = \frac{Q}{3}(1, 0, -\frac{\sqrt{3}}{2}, -\frac{1}{2})$$

- Matrix element is finte at this endpoint
 - $|M| \sim \text{constnat}$ for $\rho \sim \frac{1}{3}$

- Phase space zero volume at endpoint
 - Phase space volume vanishes linearly as $\rho \rightarrow \frac{1}{3}$
- Cross section vanishes linearly as endpoint approached
 - Leads to kink (discontinuity in first derivative)

Where do logs come from?

•

NLO: 4 partons

 p_1 Seren (p_4 p_2

- 5 dimensional phse space •
 - Choose 5 energies, angles, invariants ٠

 $\cong |\mathcal{M}_0|^2 rac{lpha_s}{4\pi} C_F^2 r \ln^2 r ~~$

Compute cross section in small r region ٠

 $T \equiv \max_{\vec{n}} \frac{\sum_{j} |\vec{p}_{j} \cdot \vec{n}|}{\sum_{i} |\vec{p}_{j}|}$ Thrust axis only region that 7 possible options for thrust axis contributes for $r = \frac{1}{3} - \rho = 0.01$ 6 5 4 $\blacksquare T_1 \max$ T₂ max + 3 $\Box T_3 \max$ T_{A} max $\Box T_{12} \max$ 2 T₁₃ max $\blacksquare T_{14} \max$ 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 Phase space closes off as $r \rightarrow 0$ cross section $I \sim |\mathcal{M}_0|^2 \frac{\alpha_s}{4\pi} C_F^2 \int_0^r \frac{ds_{34}}{s_{34}} \int_{\frac{9}{4}s_{34}}^1 \frac{dz}{z} \int_{\frac{1}{2}-r}^{\frac{1}{3}+2r} ds_{234}$

Large shoulder logs

Factorization

1. Soft and/or collinear emissions turn LO partons into jets

2. Derive constraint relating kinematics to ρ or τ

Consider the case of three massive partons (collinear radiation only)

• Phase space is 2d: described by s and t or $s_{12}=(p_1+p_2)^2$ and $r=\frac{1}{3}-\rho$

Suppose thrust axis points in 1 direction (other cases by permuation)

• Two inequalities ($T_1 > T_2$ and $T_1 > T_3$), combined together into $T \equiv \max_{\vec{x}}$

$$rac{1}{3} - r + 2m_1^2 - 2m_3^2 < s_{12} < rac{1}{3} + 2r - m_1^2 + 3m_2^2 + m_3^2$$

- For $m_1 = m_2 = m_3 = 0$ get $\frac{1}{3}-r < \frac{s_{12}}{3} < \frac{1}{3} + 2r$ so phase space cuts off as $r \rightarrow 0$
- With masses, phsae space is zero unless

$$m_1^2 < r + m_2^2 + m_3^2$$

3. Constraint turns double logs for jet mass into shoulder logs

Factorization

- 1. Soft and/or collinear emissions turn LO partons into jets
- 2. Derive constraint relating kinematics to ρ or τ
 - Leading power constraint for HJM is

 $m_1^2 < r + m_2^2 + m_3^2$

- Solutions for r > 0 and r < 0•
- Large logs in both left and right shoulder •
- 3. Constraint turns double logs for jet mass into shoulder logs

Leading power constraint for thrust is ٠

- $t = \tau \frac{1}{3}$ Only solutions for t > 0
 - t < 0 no phase space limits
 - not sensitive to emissions
 - Only right shoulder

Soft radiation

Including soft and collienar radiation constraint is

$$\mathsf{H}^{\mathsf{JN}} m_1^2 + 2p_1k_1 + 2v_{\bar{2}}k_{\bar{2}} + 2v_{\bar{3}}k_{\bar{3}} < r + m_2^2 + 2p_2k_2 + m_3^2 + 2p_3k_3 + 2v_{\bar{1}}k_{\bar{1}}$$

 $t < m_1^2 + m_2^2 + m_3^2 + 2p_1k_1 + 2p_2k_2 + 2p_3k_3 + 2v_1k_1 + 2v'_{\bar{2}}k_2 + 2v'_{\bar{3}}k_3 + 2v_1k_1 + 2v'_{\bar{3}}k_3 + 2v'_{\bar{3}}k_$

1-loop soft function

 n_1

٠

•

$$I_1 = \mathcal{N}\left[4\kappa - \frac{4}{3}\pi\ln 2 + \epsilon c_3\right], \quad I_2 = \mathcal{N}\left[-2\kappa + 2\pi\ln 2 + \epsilon c_4\right]$$
$$I_3 = \mathcal{N}\left[4\kappa + \frac{4}{3}\pi\ln 2 + \epsilon c_5\right], \quad I_4 = \mathcal{N}\left[-2\kappa + 2\pi\ln 2 + \epsilon c_6\right]$$

• Gieseking's constant (transcendality 2 number)

$$\kappa = \operatorname{Im} \operatorname{Li}_2\left(e^{\frac{i\pi}{3}}\right) = 1.014...$$

Like Catalan $C = \operatorname{Im} \operatorname{Li}_2\left(e^{\frac{i\pi}{2}}\right) = 0.915...$
Or $-\frac{\pi^2}{12} = \operatorname{Li}_2(e^{i\pi})$

For NNLL resummation we need the constants. Some of these we were only above to get numerically

$$\kappa = \Im \left[\operatorname{Li}_2\left(e^{\frac{i\pi}{3}}\right) \right], \quad c_1 = \Im \left[\operatorname{Li}_3\left(\frac{i}{\sqrt{3}}\right) \right], \quad c_2 = \Im \left[\operatorname{Li}_3\left(1 + i\sqrt{3}\right) \right], \quad c_3 = -1.89958$$
$$c_4 = -3.83452, \quad c_5 = -12.3488, \quad c_6 = 5.56704, \quad c_7 = 15.9482, \quad c_8 = 3.52263$$

 I_4

1-loop soft function

Combine integrals together to produces trijet hemisphere soft function

Resummed distribution

$$\begin{split} \text{HJM, } \rho \leq \frac{1}{3} & \frac{1}{\sigma_1} \frac{d\sigma_g}{dr} = \prod_g (\partial_{\eta_\ell}, \partial_{\eta_h}) r \left(\frac{rQ}{\mu_s}\right)^{\eta_\ell} \left(\frac{rQ}{\mu_s}\right)^{\eta_\ell} \frac{e^{-\gamma_E(\eta_\ell + \eta_h)}}{\Gamma(2 + \eta_\ell + \eta_h)} \frac{\sin(\pi\eta_\ell)}{\sin(\pi(\eta_\ell + \eta_h))} & \frac{1}{\sigma_1(\pi_\ell)} \frac{d\sigma_g}{ds} = \prod_g (\partial_{\eta_\ell}, \partial_{\eta_h}) s \left(\frac{sQ}{\mu_s}\right)^{\eta_\ell} \left(\frac{sQ}{\mu_s}\right)^{\eta_\ell} \frac{e^{-\gamma_E(\eta_\ell + \eta_h)}}{\Gamma(2 + \eta_\ell + \eta_h)} \frac{\sin(\pi\eta_h)}{\sin(\pi(\eta_\ell + \eta_h))} & \frac{1}{\sigma_1(\pi_\ell)} \frac{d\sigma_g}{dt} = \prod_g (\partial_{\eta_\ell}, \partial_{\eta_h}) s \left(\frac{tQ}{\mu_s}\right)^{\eta_\ell} \left(\frac{tQ}{\mu_s}\right)^{\eta_\ell} \frac{e^{-\gamma_E(\eta_\ell + \eta_h)}}{\Gamma(2 + \eta_\ell + \eta_h)} \frac{\sin(\pi\eta_\ell)}{\sin(\pi(\eta_\ell + \eta_h))} & \sim -4C_F\left(\frac{\alpha_s}{4\pi}\right) \ln r \\ \\ \text{Thrust, } \tau > \frac{1}{\gamma_s} \frac{1}{\sigma_1} \frac{d\sigma_g}{dt} = \prod_g (\partial_{\eta_\ell}, \partial_{\eta_h}) t \left(\frac{tQ}{\mu_s}\right)^{\eta_\ell} \left(\frac{tQ}{\mu_s}\right)^{\eta_h} \frac{e^{-\gamma_E(\eta_\ell + \eta_h)}}{\Gamma(2 + \eta_\ell + \eta_h)} \\ \\ \frac{1}{\gamma_s} \frac{d\sigma_g}{dt} = \frac{1}{\sigma_s} \frac{1}{\sigma_s} \frac{d\sigma_g}{dt} = \frac{1}{\sigma_s} \frac{1}{\sigma_s} \frac{d\sigma_g}{\sigma_s} \frac{1}{\sigma_s} \frac{1}{\sigma_s} \frac{d\sigma_g}{\sigma_s} \frac{1}{\sigma_s} \frac{d\sigma_g}{\sigma_s} \frac{1}{\sigma_s} \frac{1}{\sigma_s} \frac{d\sigma_g}{\sigma_s} \frac{1}{\sigma_s} \frac{1}{\sigma_s} \frac{d\sigma_g}{\sigma_s} \frac{1}{\sigma_s} \frac{1}{\sigma_s} \frac{d\sigma_g}{\sigma_s} \frac{1}{\sigma_s} \frac{1}{\sigma_s}$$

Check fixed order expansion

$$\begin{aligned} &\frac{1}{\sigma_1} \frac{d\sigma^{\text{sub}}}{dr} = \frac{\alpha_s}{4\pi} \left\{ -\frac{1}{2} (2C_F + C_A) \Gamma_0 r \ln^2 r + \left[(C_A + 2C_F) \Gamma_0 + \gamma_{jg} + 2\gamma_{jq} + 2\gamma_{sg} + 4\gamma_{sq} \right] r \ln r \right\} \\ &= \frac{\alpha_s}{4\pi} \left\{ -2(2C_F + C_A) r \ln^2 r + \left[2C_F \left(1 + 4\ln\frac{4}{3} \right) + C_A \left(\frac{1}{3} + 4\ln\frac{4}{3} \right) + \frac{4}{3} n_f T_F \right] r \ln r \right\} + C_0 (\alpha_s) + c_1 (\alpha_s) r d\alpha_s \right\} \end{aligned}$$

Check fixed order expansion

Expanding to order α_s for the HJM left shoulder

$$\frac{1}{\sigma_1} \frac{d\sigma^{\text{sub}}}{dr} = \frac{\alpha_s}{4\pi} \left\{ -\frac{1}{2} (2C_F + C_A) \Gamma_0 r \ln^2 r + \left[(C_A + 2C_F) \Gamma_0 + \gamma_{jg} + 2\gamma_{jq} + 2\gamma_{sg} + 4\gamma_{sq} \right] r \ln r \right\}$$
$$= \frac{\alpha_s}{4\pi} \left\{ -2(2C_F + C_A) r \ln^2 r + \left[2C_F \left(1 + 4\ln\frac{4}{3} \right) + C_A \left(\frac{1}{3} + 4\ln\frac{4}{3} \right) + \frac{4}{3} n_f T_F \right] r \ln r \right\} + c_0 (\alpha_s) + c_1 (\alpha_s) r$$

And similarly (with differnet constants) for the HJM right shoulder and thrust

Excellent agreement with event 2 (NLO fixed order)

constant and linear term not predicted (more on this soon)

 used cutoff = 10⁻¹², 12 trillion events for event2

Resummed distribution

UV divergences

Factorization formula is of the form

$$\frac{1}{\sigma_{\rm LO}}\frac{d\sigma_g}{d\rho} = \Pi_g \int_0^\infty dm_\ell^2 \int_0^\infty dm_h^2 \,\,\tilde{sj}_g \cdot \left(\frac{Qm_l^2}{\mu_{s\ell}}\right)^a \left(\frac{Qm_h^2}{\mu_{sh}}\right)^b \frac{1}{m_l^2 m_h^2} \frac{e^{-\gamma_E(a+b)}}{\Gamma(a)\Gamma(b)} \bigg|_{\substack{a=\eta_\ell\\b=\eta_h}} \times \left(r + m_h^2 - m_\ell^2\right) \theta(r + m_h^2 - m_\ell^2)$$

- can have $r \ll 1$, $m_h^2 \gg 1$, $m_\ell^2 \gg 1$
- integral is linearly UV divergent in this region for 0 < a,b <1

Simplest to take two more derivatives and consider

$$\begin{split} f(r) &\equiv \frac{1}{\Gamma(a)} \frac{1}{\Gamma(b)} \int_0^\infty dx \int_0^\infty dy \ x^{a-1} y^{b-1} \delta(r+y-x) \\ &= \frac{1}{\Gamma(a+b)} \left[r^{a+b-1} \frac{\sin(\pi a)}{\sin(\pi(a+b))} \theta(r) + (-r)^{a+b-1} \frac{\sin(\pi b)}{\sin(\pi(a+b))} \theta(-r) \right] \end{split}$$

- Now UV finite
 - Will need to integrate twice and set integration constants c₀ + c₁ r
- Formula is valid for $\rho < \frac{1}{3}$ (r>0) as well as $\rho > \frac{1}{3}$ (r<0)
- Still has Sudakov Landau pole at *a+b=1,2,3,...*

Position vs momentum space

In momentum space, distribution is complicated and non-analytic

$$\begin{split} f(r) &\equiv \frac{1}{\Gamma(a)} \frac{1}{\Gamma(b)} \int_0^\infty dx \int_0^\infty dy \ x^{a-1} y^{b-1} \delta(r+y-x) \\ &= \frac{1}{\Gamma(a+b)} \left[r^{a+b-1} \frac{\sin(\pi a)}{\sin(\pi(a+b))} \theta(r) + (-r)^{a+b-1} \frac{\sin(\pi b)}{\sin(\pi(a+b))} \theta(-r) \right] \end{split}$$

In **position space**, distribution is remarkably simple

$$\tilde{f}(z) = \int_{-\infty}^{\infty} dr f(r) e^{izr} = (-iz)^a (iz)^b$$

difficult to compute most carefully track analytic continuation

No longer has Sudakov landau poles at a+b = 1,2,3...

- In Laplace space distribution is not simple
 - For 1-sided Laplace transform, need to flip sign in exponent to make integral convergent

$$\mathcal{L}[f](\nu) = \int_0^\infty dr \ e^{-\nu r} f(r) + \int_{-\infty}^0 dr \ e^{\nu r} f(r) = \nu^{-a-b} \frac{\sin(\pi a) + \sin(\pi b)}{\sin(\pi(a+b))}$$

• Still has Sudakov Landau pole

Γ_0 approximation

To undestand better what is happening, consider the " Γ_0 approximation"

- set all $\gamma_j=0$ and $\beta=0$
- keep only leading cusp anomalous dimension Γ_0

Momentum space

• Sudakov Landau poles are there

- Not of the double-logarithmic form exp[L g₁(α L)]
 - Includes problematic subleading terms

Position space

- Sudakov Landau poles are gone
- Exactly of the double-logarithmic form exp[L $g_1(\alpha L)$]
 - Problematic subleading terms are absent

Γ_0 approximation

 $exp(-\partial^2)$ supresses the divergence

Matching to the dijet region

We need to match bewteen the shoulder region and the dijet region

- want pure shoulder for $\rho > 0.25$
- fade to dijet by $\rho < 0.15$

Matching to the dijet region

Turn off resummation in shoulder and dijet region by using p dependent profile functions for soft and jet scales:

Scale variations

Final result

- Matched result is
 - 20% higher than NLO
 - More important than NNLO correction
- Pure dijet + NLO is 5% to 20% larger for 0.15 < ρ < 0.3

things go nuts because denominator is zero

Conclusions

- Sudakov shoulders are large logarithms associated with perturbative phase space boundaries
 - Heavy jet mass has a left Sudakov shoulder ($\rho < \frac{1}{3}$) and a right sudakov shoulder ($\rho > \frac{1}{3}$)
 - large logs extend down to $\rho = 0.15$ where α_s fits are done
 - Thrust only has a right shoulder ($\tau > \frac{1}{3}$)
 - shoulder resummation is not critical for α_s fits for thrust

• Factorization theorem for the Sudakov shoulder allows for systematic resummation

•

- Scales must be set in **position space** before Fourier transforming to avoid spurious Sudakov Landau poles
- We resummed the HJM shoulder to NNLL, matching to NNLL dijet resummation and NLO fixed order

Effect is signifcant

• 5% to 100% larger than dijet+NLO for 0.15 < ρ < 0.3

Next steps

- Extend matching to NNLO and N³LL dijet
- Study power corrections
 - Factorization formula valid in the trijet region gives operator definition
 - How to interpolate power corrections from dijet to shoulder region?
 - How many non-perturbative parameters are needed?
 - Extract α_s from e⁺e⁻ data