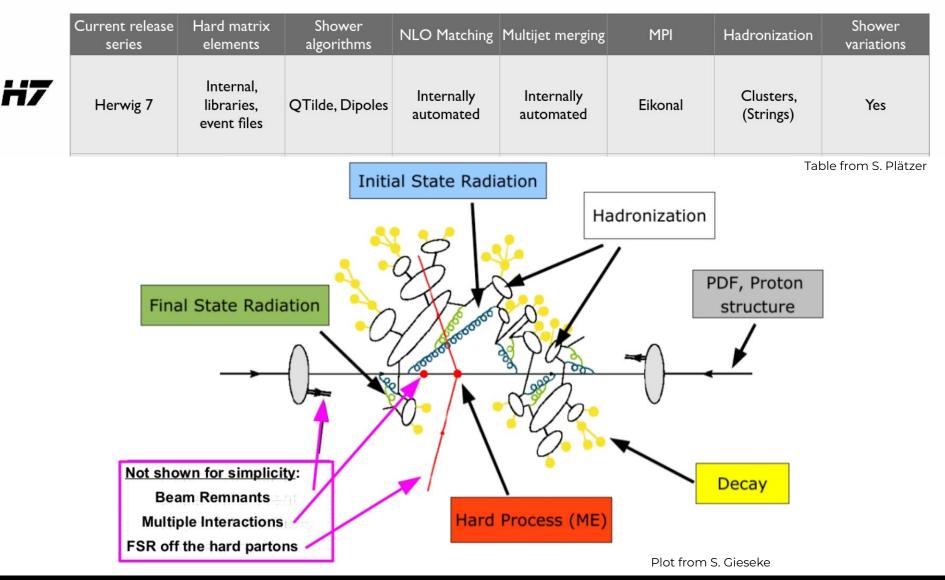
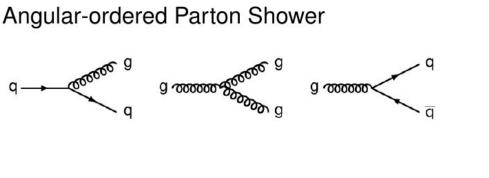
Progresses on Herwig and KrKNLO


Herwig Evolution

HERWIG	HERWIG (Hadron Emission Reactions With Interfering Gluons). Fortran code, last version 6.521 (1992-2002) [Marchesini, Webber, Abbiendi, Corcella, Knowles, Moretti, Odagiri, Richardson, Sey- mour, Stanco]
Herwig ++	$\begin{array}{l} \mbox{Herwig} ++ (C++, \mbox{improved physics, 2004}): \\ \mbox{[Bähr, Gieseke, Gigg, Grellscheid, Hamilton, Latunde-Dada, Plätzer, Richardson, Seymour, Sherstnev, Tully, Webber] \\ \mbox{Iast version 2.7.1 (2014)} \\ \mbox{[Bellm, Gieseke, Grellscheid, Papaefstathiou, Plätzer, Richardson, Rohr, Schuh, Seymour, AS, Wilcock, Zimmermann] \\ \mbox{intended to fully replace Fortran version} \\ \mbox{experimental and phenomenological evolution over time} \\ \mbox{\Rightarrow precision as key goal} \\ \hline \mbox{Herwig 7.0} (2016) & \mbox{Evolution of fHERWIG/Herwig++ subsumed as "7 > 6.5". \\ \mbox{"Better than fHERWIG in any aspect plus more".} \\ \mbox{[Bellm, Gieseke, Grellscheid, Plätzer, Rauch, Reuschle, Richardson, Schichtel, Seymour, AS, Wilcock, Fischer, Harrendorf, Nail, Papaefstathiou, D. Rauch] \\ \mbox{Herwig 7.3 coming soon} \\ \mbox{τ (HERWIG) \sim τ (Herwig++) $$>$ 15 years.} \end{array}$

PSR23, Milan, Italy, 6 - 8 July 2023


Herwig 7- on behalf of the Herwig team

Hadron Emission Reactions With Interfering Gluons

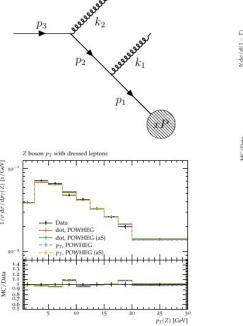
Andrzej Siódmok

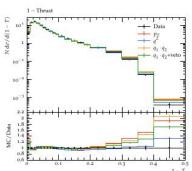
Parton-showers in Herwig 7: Status

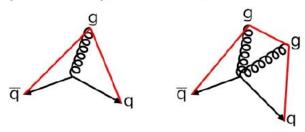
- Angular-ordered
- Colour coherence by construction
- No full coverage of phase-space (fixed by Hard Matrix corrections)

Catani-Seymour Dipole Shower

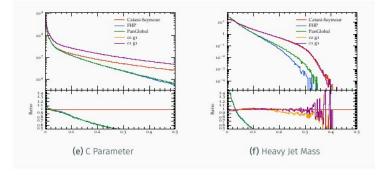
- p_T -ordered
- Colour coherence
- Full phase space
- Catani-Seymour dipoles

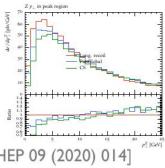

Recent developments triggered by understanding the accuracy of parton shower


[PanScales: Dasgupta, Dreyer, Hamilton, Monni, Salam et al. — JHEP 09 (2018) 033, …] [Hoang, Plätzer, Samitz — JHEP 1810 (2018) 200] [Bewick, Ferrario, Richardson, Seymour — JHEP 04 (2020) 019]


Not only present in dipole showers, can even screw up angular ordered ones:

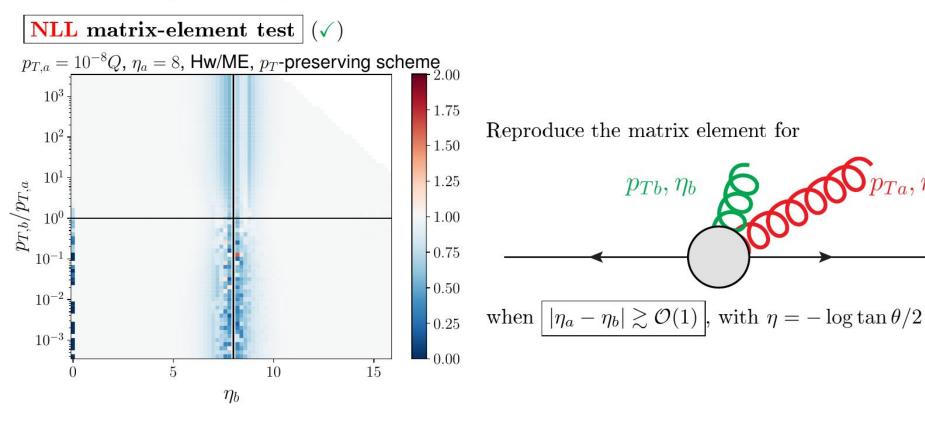
[Bewick, Ferrario, Richardson, Seymour — JHEP 04 (2020) 019 & 01 (2022) 026]




Catani-Seymour Dipole Shower

Herwig dipole shower is on track:

Investigating a large class of accurate kinematic mappings and issues in the initial state.


[Forshaw, Holguin, Plätzer – JHEP 09 (2020) 014] [Duncan, Holguin, Plätzer — ongoing]

PSR23, Milan, Italy, 6 - 8 July 2023

Herwig designed to be NLL [G. Marchesini and B. R. Webber, Nucl. Phys. B 310 (1988), 461-526]

$$\tilde{q}_{\tilde{i}\tilde{j}\to i,j}^2 = \boxed{\frac{p_T^2}{z^2(1-z)^2}} \approx E_{\tilde{i}\tilde{j}}^2\theta_{i,j}^2$$

[Gieseke, Stephens, Webber, JHEP 12 (2003), 045]

 T_a, η_a

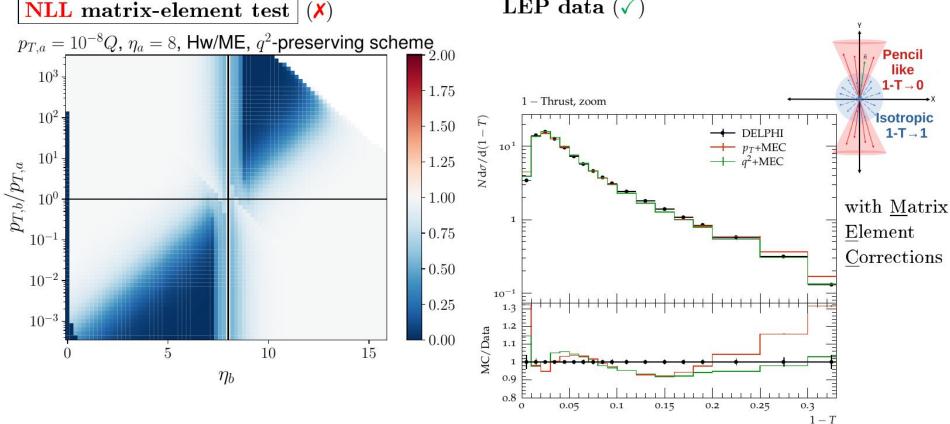
Herwig designed to be NLL [G. Marchesini and B. R. Webber, Nucl. Phys. B 310 (1988), 461-526]

$$\tilde{q}_{i\tilde{j}\rightarrow i,j}^2 = \boxed{\frac{p_T^2}{z^2(1-z)^2}} \approx E_{i\tilde{j}}^2 \theta_{i,j}^2$$

[Gieseke, Stephens, Webber, JHEP 12 (2003), 045]

LEP data (X) **NLL** matrix-element test $|\langle \checkmark \rangle$ $p_{T,a} = 10^{-8}Q$, $\eta_a = 8$, Hw/ME, p_T -preserving scheme 2.00 Pencil like 10^{3} $1-T \rightarrow 0$ -1.751 - Thrust, zoom 10^{2} Isotropic $N d\sigma/d(1-T)$ -1.50 $1-T \rightarrow 1$ DELPHI $- p_T + MEC$ 10 10^{1} -1.25 $p_{T,b}/p_{T,a}$ 10^{0} 1.00with Matrix Element 0.75 10^{-1} Corrections -0.50 10^{-2} 10 -0.251.3 10^{-3} 1.2 MC/Data 0.00 1.1 15 100 5 1 η_b 0.9 0.8 0.3 0 0.05 0.1 0.15 0.2 0.25

PSR23, Milan, Italy, 6 - 8 July 2023


1 - T

Herwig designed to be NLL [G. Marchesini and B. R. Webber, Nucl. Phys. B 310 (1988), 461-526]

$$\tilde{q}_{\widetilde{i}\widetilde{j}\to i,j}^2 = \frac{p_T^2}{z^2(1-z)^2} \approx E_{\widetilde{i}\widetilde{j}}^2 \theta_{i,j}^2 \to \left| \frac{q^2}{z(1-z)} \right|$$

[Reichelt, Richardson, AS, Eur. Phys. J. C 77 (2017) no.12, 876]

LEP data (\checkmark)

Parton-showers in Herwig 7: Accuracy of Parton Showers Herwig designed to be NLL [G. Marchesini and B. R. Webber, Nucl. Phys. B 310 (1988), 461-526] $\tilde{q}_{\widetilde{i}\widetilde{j}\to i,j}^2 = \frac{p_T^2}{z^2(1-z)^2} \approx E_{\widetilde{i}\widetilde{j}}^2 \theta_{i,j}^2 \to \frac{q^2}{z(1-z)} \to \left| \frac{2q_1 \cdot q_2}{z(1-z)} \right| \qquad \begin{array}{c} \text{[Bewick, Ravasio, Richardson, Seymour, JHEP 04 (2020), 019]} \\ \end{array}$ LEP data (\checkmark) **NLL** matrix-element test $p_{T,a} = 10^{-8}Q$, $\eta_a = 8$, Hw/ME, dot-preserving scheme, 2.00Pencil like 10^3 $1-T \rightarrow 0$ -1.751 - Thrust, zoom 10^{2} Isotropic -1.50 $N d\sigma/d(1-T)$ **1-T** → **1** DELPHI p_T +MEC 10¹ 10^{1} -1.25 $p_{T,b}/p_{T,a}$ q^2 +MEC $q_1 \cdot q_2 + MEC$ 10^0 $q_1 \cdot q_2$ +veto+MEC -1.00with Matrix Element -0.75 10^{-1} Corrections 0.50and exact 10^{-2} phase space -0.251.3 10^{-3} factorization 1.2 MC/Data -0.001.1 10 15 5 0 η_b 0.9

0.8

0.05

0.1

0.15

PSR23, Milan, Italy, 6 - 8 July 2023

Andrzej Siódmok

0.3

1 - T

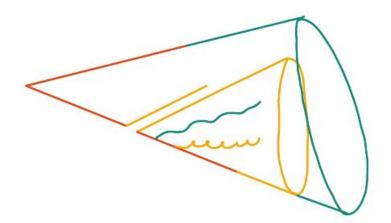
0.25

0.2

Parton-showers in Herwig 7: EW Angular-Ordered Shower

[A. Masouminia, P. Richardson JHEP 04 (2022) 112]

Derive quasi-collinear EW splittings of the SM in their spin-unaveraged forms:

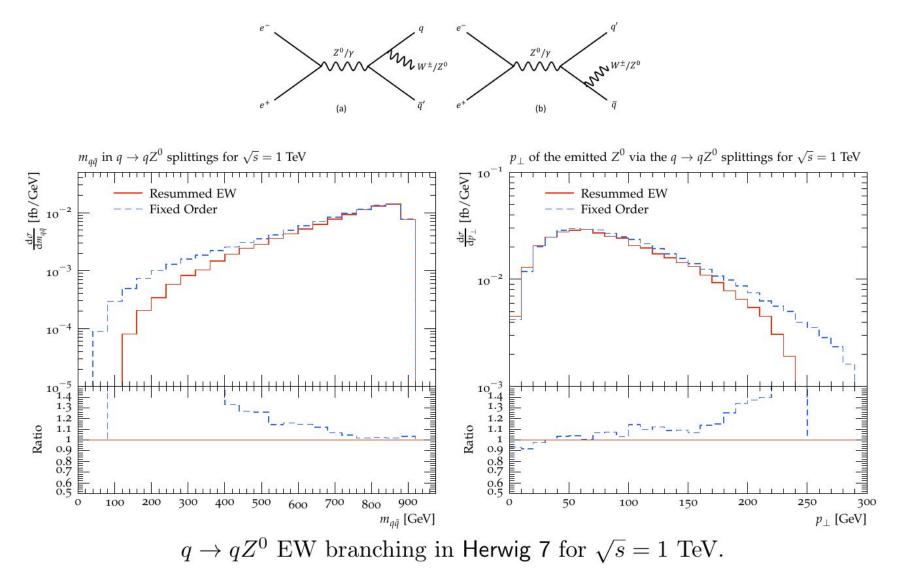

$$q \to q' W^{\pm}, \quad q \to q Z^0, \quad q \to q H$$

Gauge boson splittings

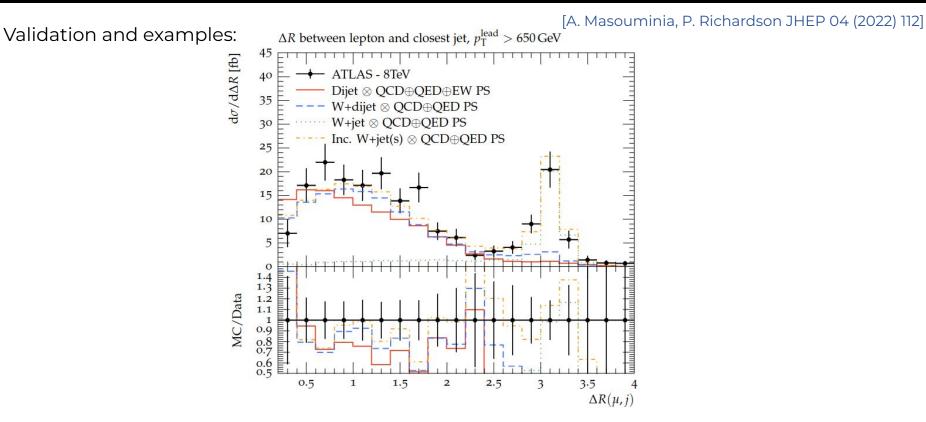
$$W^{\pm} \to W^{\pm} Z^{0}, \qquad W^{\pm} \to W^{\pm} \gamma, \qquad Z^{0} \to W^{+} W^{-}, \qquad \gamma \to W^{+} W^{-},$$

 $W^{\pm} \to W^{\pm} H, \qquad Z^{0} \to Z^{0} H.$

EW and QCD showers are interleaved.


However, different charges require different angular ordering cones: one evolution variable per interaction.

Parton-showers in Herwig 7: EW Angular-Ordered Shower

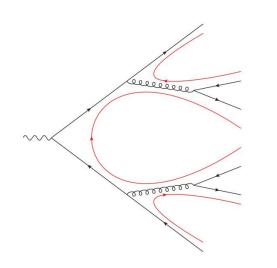

Validation and examples:

[A. Masouminia, P. Richardson JHEP 04 (2022) 112]

PSR23, Milan, Italy, 6 - 8 July 2023

Parton-showers in Herwig 7: EW Angular-Ordered Shower

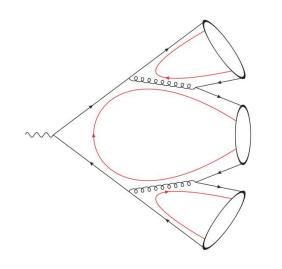
Used already for Phenomenology of Electroweak Corrections


[A. Masouminia,, N. Darvishi, Nucl.Phys.B 985 (2022) 116025]

Next steps:

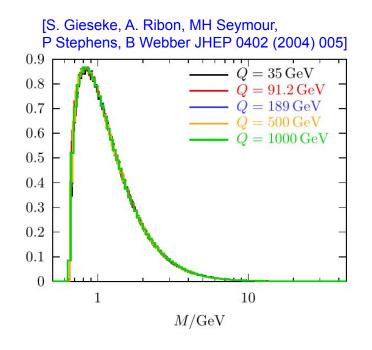
- EW matching and updating to a NLO EW PS.
- EW radiations in Dipole shower.
- BSM radiations is now possible.
- Effect of EW PS is precision calculation.
- Coming soon in Herwig 7.3.
- Related work ongoing, e.g. [Plätzer, Sjödahl arXiv:2204.03258]

What if we have PS (more perturbative input before hadronization).


The philosophy of the model: use information from perturbative QCD as an input for hadronization. QCD **pre-confinement** discovered by Amati & Veneziano [*Phys.Lett.B* 83 (1979) 87-92]:

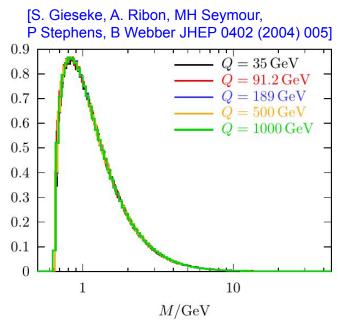
• QCD provide pre-confinement of colour

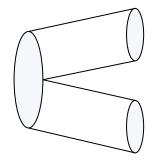
What if we have PS (more perturbative input before hadronization).


The philosophy of the model: use information from perturbative QCD as an input for hadronization. QCD **pre-confinement** discovered by Amati & Veneziano [*Phys.Lett.B* 83 (1979) 87-92]:

- QCD provide pre-confinement of colour
- Colour-singlet pair end up close in phase space and form highly excited hadronic states, the clusters

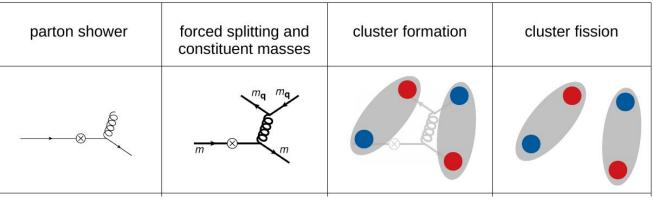
What if we have PS (more perturbative input before hadronization).

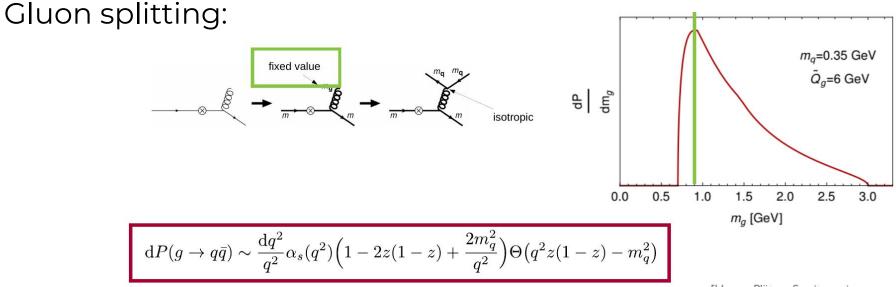

The philosophy of the model: use information from perturbative QCD as an input for hadronization. QCD **pre-confinement** discovered by Amati & Veneziano [*Phys.Lett.B* 83 (1979) 87-92]:


- QCD provide pre-confinement of colour
- Colour-singlet pair end up close in phase space and form highly excited hadronic states, the clusters
- Pre-confinement states that the spectra of clusters are independent of the hard process and energy of the collision

What if we have PS (more perturbative input before hadronization).

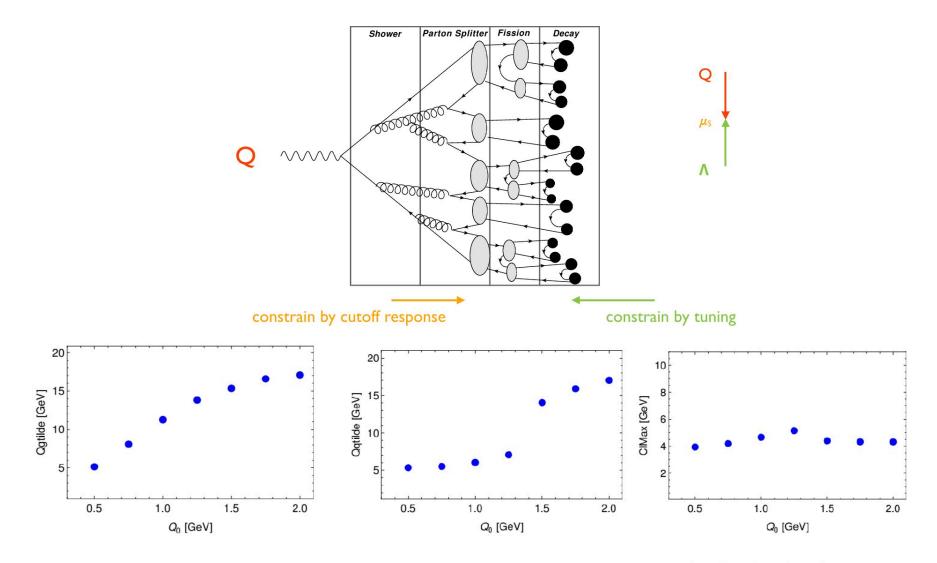
The philosophy of the model: use information from perturbative QCD as an input for hadronization. QCD **pre-confinement** discovered by Amati & Veneziano [*Phys.Lett.B* 83 (1979) 87-92]:




- QCD provide pre-confinement of colour
- Colour-singlet pair end up close in phase space and form highly excited hadronic states, the clusters
- Pre-confinement states that the spectra of clusters are independent of the hard process and energy of the collision
- Peaked at low mass (1-10 GeV) typically decay into 2 hadrons
- Small fraction of clusters too heavy for isotropic two-body decay, heavy cluster decay first into lighter cluster C → CC, or radiate a hadron C → HC, it is rather string-like.
- ~ 15% of primary clusters get split but ~ 50% of hadrons come from them!

Matching the cluster model to the shower

Dynamic model: cluster fission

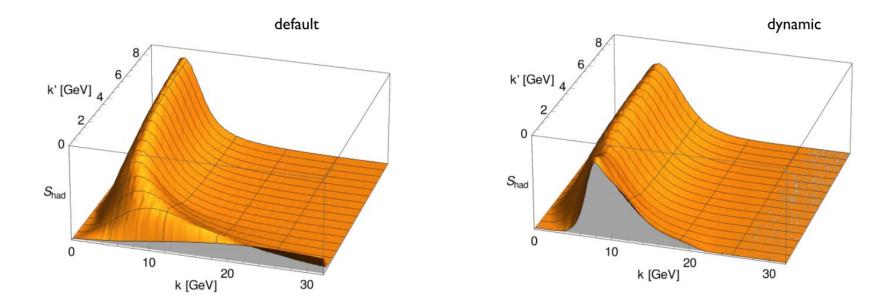


[Hoang, Plätzer, Samitz — in progress]

PSR23, Milan, Italy, 6 - 8 July 2023

Matching the cluster model to the shower

Gluon splitting and cluster fission drivers pick up cutoff dependence.


Significantly reduced sensitivity to other cluster parameters.

[Hoang, Plätzer, Samitz — in progress]

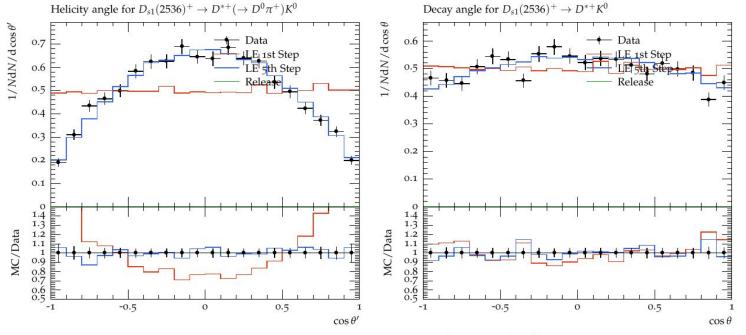
Andrzej Siódmok

Matching the cluster model to the shower

Significantly different shapes of hadronization corrections

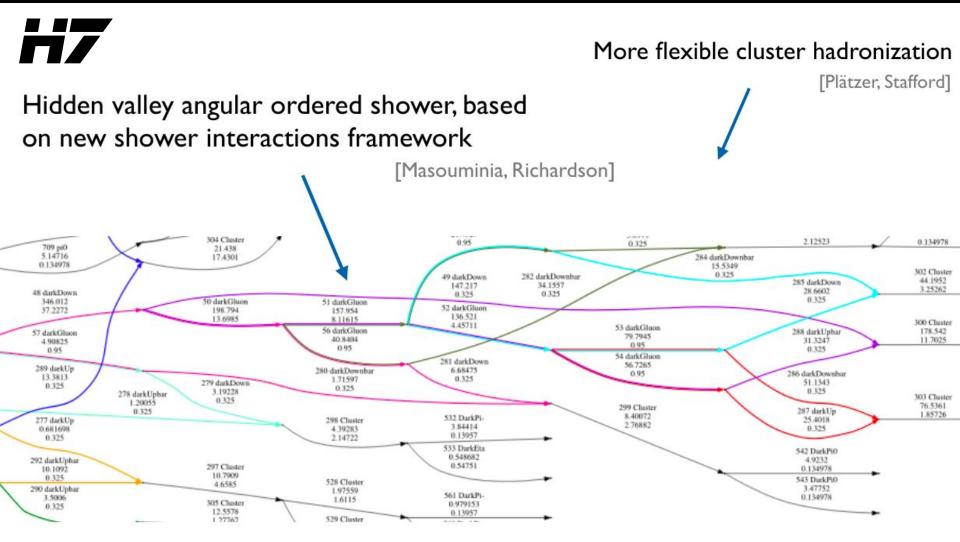
C parameter parton versus hadron level

Analytically, for event shapes, dynamic model gives you a universal shift in the distribution.


[Hoang, Plätzer, Samitz — in progress]

PSR23, Milan, Italy, 6 - 8 July 2023

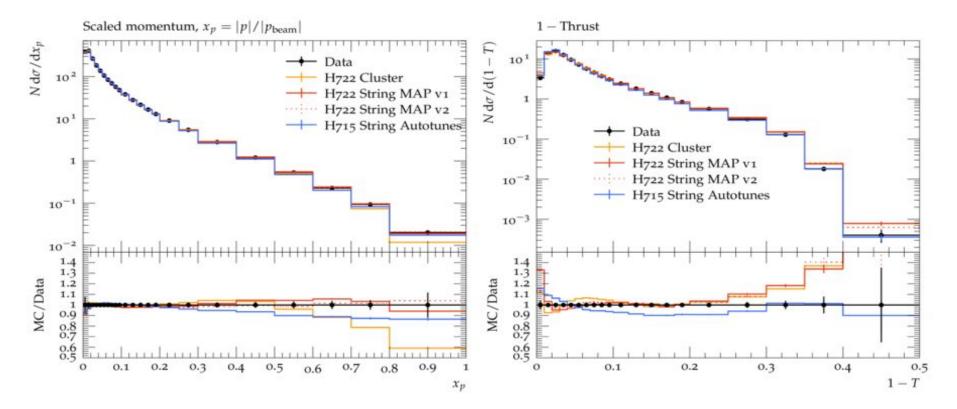
Cluster model recent development


H7

"Polarization of Heavy Hadrons" Aidin Masouminia & Peter Richardson [to be published]

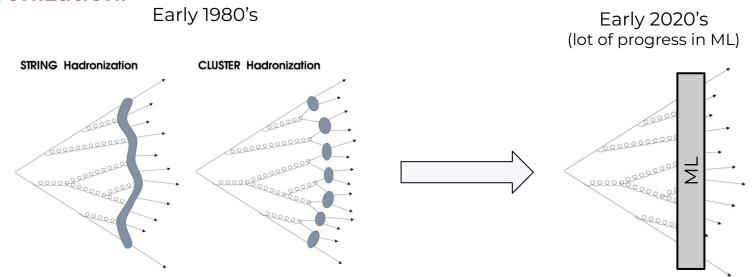
LEP measurement of decay angles in the decay $D_{s1}(2536)^+ \rightarrow D^{\star+}K^0$ at $\sqrt{s} = 10.6$ GeV.

Dark Cluster Hadronization


[Kulkarni, Masouminia, Papaefstathiou, Plätzer, Siodmok, Stafford — in progress]

PSR23, Milan, Italy, 6 - 8 July 2023

Tuning Angular Ordered PS + String [M.Myska, P. Sarmah, AS to be published]


To **evaluate uncertainties** stemming from the hadronization, Sherpa provides an interface to the Lund string fragmentation in Pythia 6, Herwig has an interface using P8I [Lönnblad] to the Lund string fragmentation in Pythia 8

• Plots from the analysis DELPHI_1996_S3430090

ML Hadronization

Hadronization:

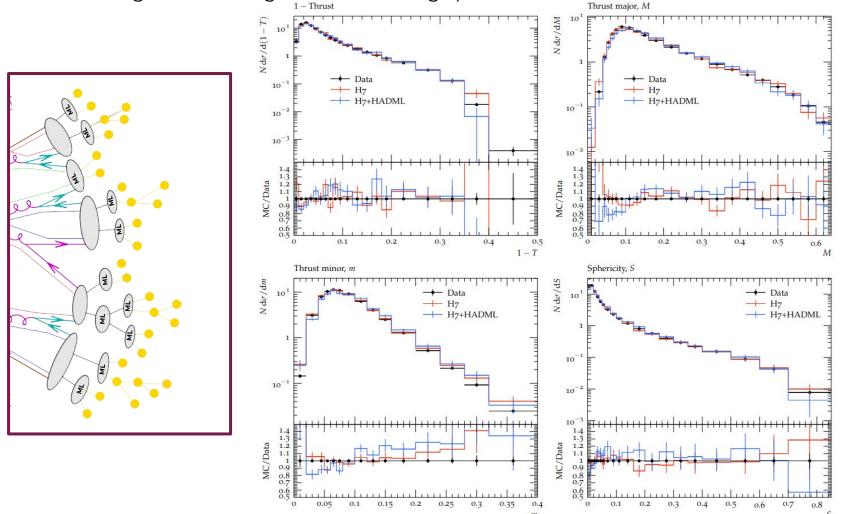
- → Increased control of perturbative corrections ⇒ more often the precision of LHC measurements is limited by MCEG's non-perturbative components, such as hadronization.
- → Hadronization (phenomenological models with many free parameters ~ 30 parameters)
- → Hadronization is a fitting problem ML is proved to be well suited for such a problems.

NNPDF

NNPDF used successfully ML to nonperturbative Parton Density Functions (PDF) Fragmentation functions (closely related to hadronization) were considered the counterpart of PDFs.

First steps for ML hadronization:

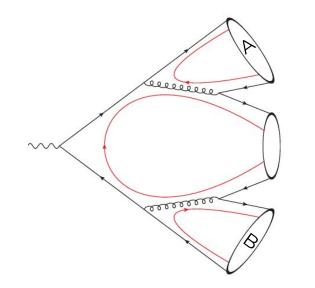
- HADML Generative Adversarial Networks [A. Ghosh, Xi. Ju, B. Nachman AS, *Phys.Rev.D* 106 (2022) 9]
- MLhad Variational Autoencoder [P. Ilten, T. Menzo, A. Youssef and J. Zupan, arXiv:2203.04983]


PSR23, Milan, Italy, 6 - 8 July 2023

HADML Results

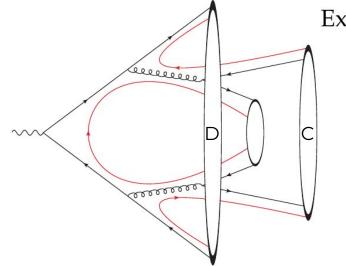
Full-event Validation

(Full events using HADML integrated into Herwig 7)



The ultimate goal of is to train the ML model directly on data to improve hadronization models.

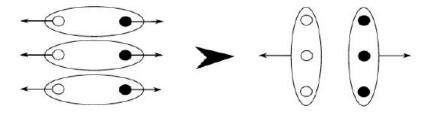
First step: [J. Chan, A. Ghosh, Xi. Ju, A.Kania, B. Nachman, V. Sangli, AS, 2305.17169]


PSR23, Milan, Italy, 6 - 8 July 2023

[Gieseke, Röhr, AS, EPJC 72 (2012)]

Extending Herwig's hadronization model:

 QCD parton showers provide *pre-confinement* ⇒ colour-anticolour pairs form highly excited hadronic states, the *clusters*



Different approaches in Herwig

Extending Herwig's hadronization model:

- QCD parton showers provide *pre-confinement* ⇒ colour-anticolour pairs form highly excited hadronic states, the *clusters*
 - CR in the cluster hadronization model: allow *reformation* of clusters, if $M_C + M_D < M_A + M_B$ accept alternative clustering with probability p_{reco}

- "Space-time CR" [J. Bellm, C. Duncan, S. Gieseke, M. Myska, AS EPJC 79 (2019) no.12, 1003]
- "Baryonic colour reconnection" [S. Gieseke, P. Kirchgaeßer, S. Plätzer Eur.Phys.J. C78 (2018)]

• Colour Reconnection from Soft Gluon Evolution [Gieseke, Kirchgaesser, Plätzer, AS JHEP 11 (2018) 149]

(see Simon's Plätzer talk)

What is KrKNLO? :)

It is the youngest NLO+PS matching method.

Why would you like another method of NLO+PS matching?

- The method is extremely simple.
- No negative weight events.
- In angular ordered PS no need for a truncated shower.
- Simple at NLO ⇒ you may hope that pushing the method to
- NNLO+NLO PS should be possible

Idea behind the KrKNLO method

Basic idea of the MC scheme

DY cross section at NLO in collinear \overline{MS} factorization for the $q\bar{q}$ channel:

$$\sigma^1_{\mathsf{DY}} - \sigma^{\mathcal{B}}_{\mathsf{DY}} = \sigma^{\mathcal{B}}_{\mathsf{DY}} D_1^{\overline{\mathsf{MS}}}(x_1, \mu^2) \otimes rac{lpha_s}{2\pi} C_q^{\overline{\mathrm{MS}}}(z) \otimes D_2^{\overline{\mathrm{MS}}}(x_2, \mu^2),$$

where

$$C_q^{\overline{\text{MS}}}(z) = C_F\left[4\left(1+z^2\right)\left(\frac{\ln(1-z)}{1-z}\right)_+ -2\frac{1+z^2}{1-z}\ln z + \delta(1-z)\left(\frac{2}{3}\pi^2 - 8\right)\right].$$

All solutions for NLO + PS matching which use $\overline{\text{MS}}$ PDFs, need to implement collinear remnant term of the type $4(1 + z^2)\left(\frac{\ln(1-z)}{1-z}\right)_+$ that are technical artefacts of $\overline{\text{MS}}$ scheme.

The implementation is not easy since those terms correspond to the collinear limit but Monte Carlo lives in 4 dimensions and not in the phase space restricted by $\delta(k_T^2)$.

The idea behind the MC scheme is to absorb those terms to PDF.

KrKNLO

Procedure:

- 1. Take a parton shower that covers the (α, β) phase space completely (no gaps, no overlaps) and produces emissions according to approx. real matrix element K.
- 2. Upgrade the real emissions to exact ME R by reweighting the PS events by $W_R = R/K$.
- 3. We define the coefficion function $C^R(z) = \int (R K)$. To avoid unphysical artifacts of \overline{MS} .
- 4. Transform PDF for MS scheme to this new physical MC factorization scheme.
- 5. As a result the virtual+soft correction, Δ_{S+V} , is just a constant, without x-depended collinear remnant terms now. Multiply the whole result by $1 + \Delta_{S+V}$ to achieve complete NLO accuracy.

KrKNLO

- 1. Run LO PS¹ (Herwig/Sherpa) using MC PDF (via LHAPDF interface)
- 2. Get and an event record (for example in the HepMC format).

```
GenEvent: #8 ID=0 SignalProcessGenVertex Barcode: 0
Momenutm units:
                     GEV
                             Position units:
                                                  MM
Cross Section: 697.653 +/- 206.627
Entries this event: 1 vertices, 5 particles.
Beam Particles are not defined.
RndmState(0)=
Wgts(9)=(0,3023.17) (1,0.17886) (2,3023.17) (3,9) (4,0) (5,1.14371) (6,0) (7,1) (8,1)
EventScale -1 [energy]
                                 alphaQCD=0.139387
                                                         alphaQED=-1
                                    GenParticle Legend
        Barcode
                  PDG ID
                              ( Px,
                                                            E ) Stat DecayVtx
                                          Py,
                                                    Ρz,
GenVertex:
                 -1 ID:
                           0 (X,cT):0
          10001
                       1 +0.00e+00,+0.00e+00,+6.26e+02,+6.26e+02
I: 2
                                                                    2
                                                                             -1
          10002
                      21 +0.00e+00,+0.00e+00,-1.84e+01,+1.84e+01
                                                                   2
                                                                             -1
0: 3
                       1 -1.82e+00,+5.68e-01,-1.50e+01,+1.51e+01
          10003
                                                                    1
          10004
                      11 +2.58e+01,+9.16e+00,+5.71e+02,+5.71e+02
                                                                    1
                     -11 -2.40e+01, -9.73e+00, +5.17e+01, +5.78e+01
          10005
                                                                    1
```

- 3. Book histograms (for example using Rivet) with MC weight calculated from the event record (and information on α_s).
- It is almost as fast as LO+PS calculation!

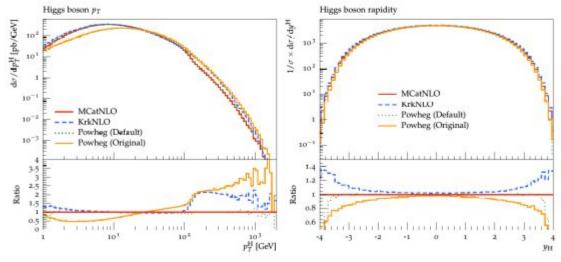
KrKNLO - history

[S. Jadach, W. Placzek, S. Sapeta, AS, M. Skrzypek, JHEP 1510 (2015) 052]
 Our approach to NLO+PS matching (example: Drell-Yan)

Real part:

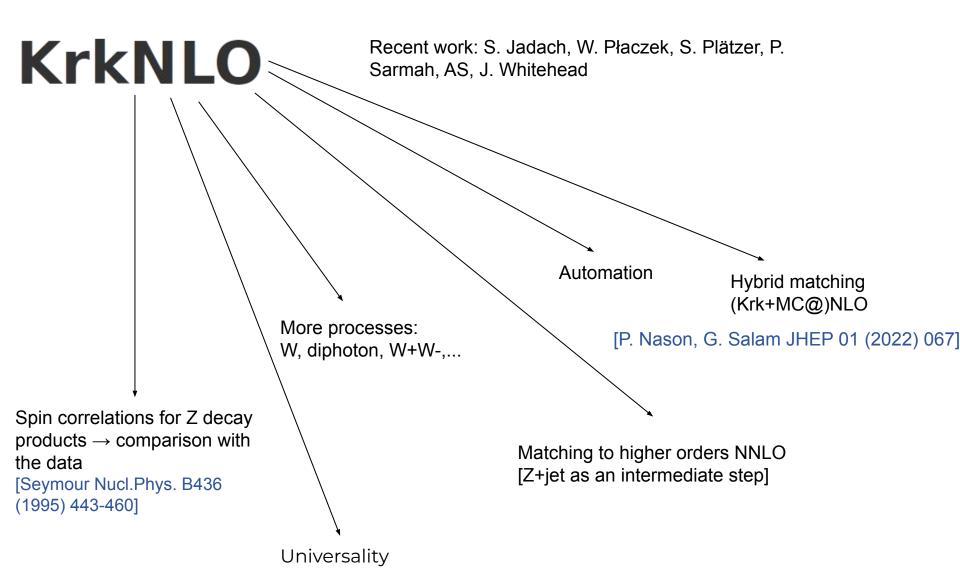
Virtual + soft:

$$\begin{split} W_R^{q\bar{q}}(\alpha,\beta) &= 1 - \frac{2\alpha\beta}{1 + (1 - \alpha - \beta)^2} \\ W_R^{qg}(\alpha,\beta) &= 1 + \frac{\alpha(2 - \alpha - 2\beta)}{1 + 2(1 - \alpha - \beta)(\alpha + \beta)} \end{split}$$

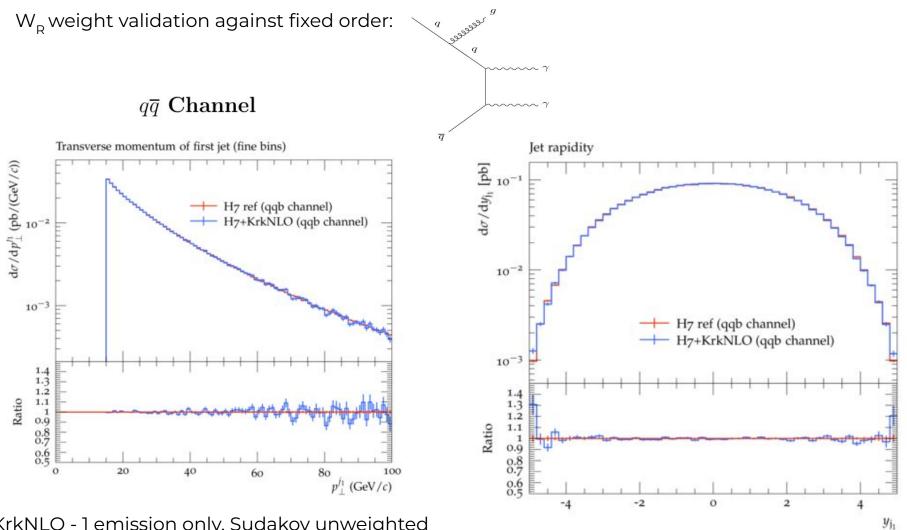

$$W_{V+S}^{q\bar{q}} = \frac{\alpha_s}{2\pi} C_F \left[\frac{4}{3}\pi^2 - \frac{5}{2}\right]$$
$$W_{V+S}^{qg} = 0$$

PDF in MC factorization scheme - full definition

[S. Jadach, W. Placzek, S. Sapeta, AS, M. Skrzypek, Eur.Phys.J.C 76 (2016) 12]


KrkNLO for the Higgs boson production

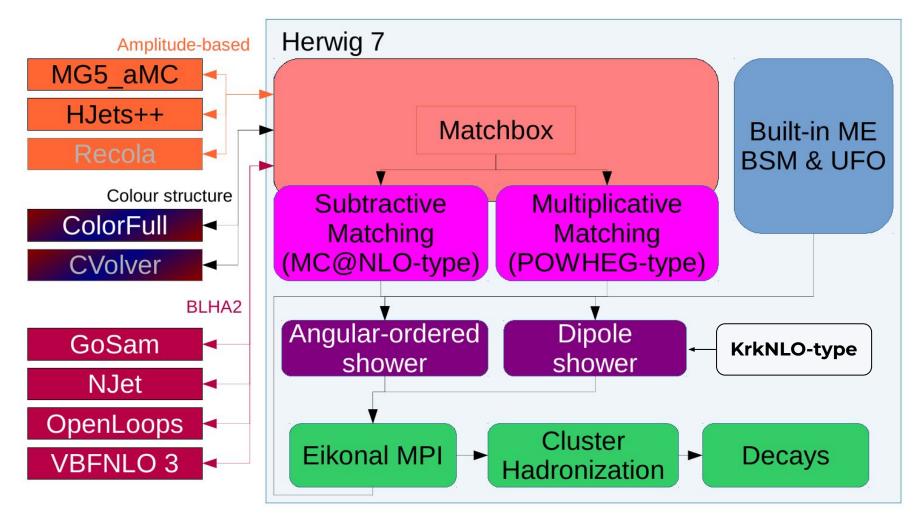
[S. Jadach, G. Nail, W. Placzek, S. Sapeta, AS, M. Skrzypek, Eur. Phys. J. C77 (2017)]



PSR23, Milan, Italy, 6 - 8 July 2023

Progresses on KrKNLO

KrKNLO - di-photon (1st process not used to define MC PDF)



KrkNLO - 1 emission only, Sudakov unweighted

 $\rm W_{\rm vs}$ weight is also validated

Structure

H7

Plot from S. Plätzer

PSR23, Milan, Italy, 6 - 8 July 2023

Matchbox's automated NLO matching divides contributions into three subtypes, generated independently:

• born-type:

$$\mathsf{d}\phi_m \ u(\phi_m) \ \Theta_{\mathsf{cut}} \left[\phi_m\right] \left\{ \mathsf{B}(\phi_m) + \mathsf{V}(\phi_m) + \sum_{\alpha} \left[\mathsf{I}^{(\alpha)}(\phi_m) + \mathsf{d}x \ (\mathsf{P} + \mathsf{K})^{(\alpha)}(x;\phi_m)\right] \right\}$$

• 'virtual' shower subtraction:

$$d\phi_{m+1} \left\{ -\sum_{\alpha} u(\Phi_m^{(\alpha)}) \Theta_{cut} \left[\Phi_m^{(\alpha)} \right] \mathsf{D}^{(\alpha)} (\phi_{m+1}) \Theta_{\mu_s}^{(\alpha)} \right. \\ \left. + \sum_{\alpha} u(\Phi_m^{(\alpha)}) \Theta_{cut} \left[\Phi_m^{(\alpha)} \right] \Theta_{\mathsf{PS}}^{(\alpha)} [\phi_{m+1}] \mathsf{PS}^{(\alpha)} [\phi_{m+1}] \Theta_{\mu_s}^{(\alpha)} \right\}$$

• 'real' shower subtraction:

$$d\phi_{m+1} \ u(\phi_{m+1}) \left\{ \mathsf{R}(\phi_{m+1}) \ \Theta_{\mathsf{cut}} \left[\phi_{m+1}\right] + \sum_{\alpha} (\Theta_{\mu_s}^{(\alpha)} - 1) \ \mathsf{D}^{(\alpha)}(\phi_{m+1}) \ \Theta_{\mathsf{cut}} \left[\Phi_m^{(\alpha)}\right] \right. \\ \left. - \sum_{\alpha} \Theta_{\mathsf{PS}}^{(\alpha)} \left[\phi_{m+1}\right] \ \mathsf{PS}^{(\alpha)}[\phi_{m+1}] \ \Theta_{\mu_s}^{(\alpha)} \ \Theta_{\mathsf{cut}} \left[\Phi_m^{(\alpha)}\right] \right\}$$

In practice, the 'virtual shower subtraction' can generate negative weights, whenever the dipoles oversubtract the shower.

Alternative structure:

- rather than a subtraction mapping for these terms, use a splitting
- combine born-type and virtual shower subtraction into a single 'InclusiveME':

$$d\phi_{m} u(\phi_{m}) \Theta_{cut} [\phi_{m}] \left[\begin{cases} \mathsf{B}(\phi_{m}) + \mathsf{V}(\phi_{m}) + \sum_{\alpha} \left[\mathsf{I}^{(\alpha)}(\phi_{m}) + \mathsf{d}x \left(\mathsf{P} + \mathsf{K}\right)^{(\alpha)}(x;\phi_{m}) \right] \right\} \\ - \sum_{\alpha} \mathsf{d}q^{(\alpha)} \left\{ \mathsf{D}^{(\alpha)} \left(\Phi^{(\alpha)}_{m+1} \right) \Theta^{(\alpha)}_{\mu_{s}} \right\} \\ + \sum_{\alpha} \mathsf{d}q^{(\alpha)} \left\{ \Theta^{(\alpha)}_{\mathsf{PS}} \left[\Phi^{(\alpha)}_{m+1} \right] \ \mathsf{PS}^{(\alpha)} \left[\Phi^{(\alpha)}_{m+1} \right] \ \Theta^{(\alpha)}_{\mu_{s}} \right\} \right]$$

This will reduce the fraction of negative weights.

New very flexible structure of Matchbox:

$$\hat{\sigma}^{\mathsf{NLO}+\mathsf{PS}}[u] = \hat{\sigma}^{\mathsf{NLO}}[u] + \mathcal{O}\left(\alpha_{\mathsf{s}}^{2}\right) + \mathcal{O}\left(\frac{\mu_{\mathsf{s}}}{Q}\right)$$

leads to:1

$$d\phi_{m} u(\phi_{m}) \Theta_{cut} [\phi_{m}] \left[\begin{cases} \mathsf{B}(\phi_{m}) + \mathsf{V}(\phi_{m}) + \sum_{\alpha} \left[\mathsf{I}^{(\alpha)}(\phi_{m}) + \mathsf{dx} \left(\mathsf{P} + \mathsf{K}\right)^{(\alpha)}(x;\phi_{m}) \right] \right\} \\ - \sum_{\alpha} \mathsf{d}q^{(\alpha)} \left\{ \mathsf{D}^{(\alpha)} \left(\Phi^{(\alpha)}_{m+1} \right) \right\} + \sum_{\alpha} \mathsf{d}q^{(\alpha)} \left\{ f^{(\alpha)}(\Phi^{(\alpha)}_{m+1}) \right\} \\ + \sum_{\alpha} \mathsf{d}q^{(\alpha)} \left\{ \Theta^{(\alpha)}_{\mathsf{PS}} \left[\Phi^{(\alpha)}_{m+1} \right] \mathsf{PS}^{(\alpha)} \left[\Phi^{(\alpha)}_{m+1} \right] \Theta^{(\alpha)}_{\mu_{s}} \right\} \right] \\ + d\phi_{m+1} u(\phi_{m+1}) \left[\mathsf{R}(\phi_{m+1}) \Theta_{cut} [\phi_{m+1}] - \sum_{\alpha} \left\{ f^{(\alpha)}(\phi_{m+1}) \right\} \Theta_{cut} \left[\Phi^{(\alpha)}_{m}(\phi_{m+1}) \right] \\ - \sum_{\alpha} \left\{ \Theta^{(\alpha)}_{\mathsf{PS}} [\phi_{m+1}] \mathsf{PS}^{(\alpha)}[\phi_{m+1}] \Theta^{(\alpha)}_{\mu_{s}} \right\} \Theta_{cut} \left[\Phi^{(\alpha)}_{m}(\phi_{m+1}) \right] \right]$$

Currently we are validation the implementation against old version

Enables:

- Automation of KrkNLO (validation by results "by hand", Z, H, di-photons)
- Hybrid methods like (Krk+MC@)NLO
- Less negative weights in other matching methods

Summary

Herwig 7:

Parton Shower:

- Recent developments triggered by understanding the accuracy of Parton Shower
- EW Shower will be available in next release Herwig 7.3 (coming soon)
- BSM Showers possible

Hadronization:

- Dynamic model
- Polarization of Heavy Hadrons
- Dark Hadronization

<u>Matching:</u>

• Matchbox new structure - less negative weights, many new possibilities (see KrkNLO)

Herwig 7.3 (coming soon)

KrkNLO:

New processes:

- di-photon coming soon
- W coming soon

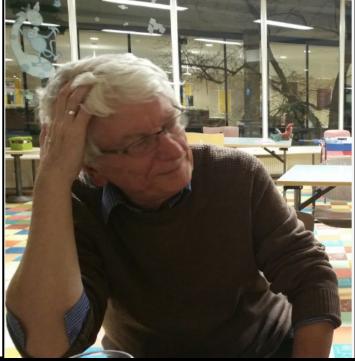
Spin-correlation:

• W/Z

Automation:

- Possible after Matchbox is ready (Krk+MC@)NLO
 - Possible after Matchbox is ready

Longer term:


- NNLO + PS (step Z+jet NLO)
- Universality

Advertisement

XXX Cracow EPIPHANY Conference

on Precision Physics at High Energy Colliders dedicated to the memory of Staszek Jadach

8-12 January 2024

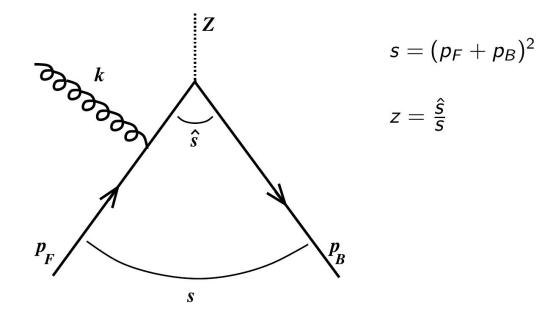
PSR23, Milan, Italy, 6 - 8 July 2023

Polarization of Heavy Hadrons

1st Step: Passing through the polarization of heavy hadrons at the end of parton shower. [arXiv:hep-ph/9308241]

- For $m_Q \gg \Lambda_{\rm QCD}$, the light degrees of freedom become insensitive to m_Q .
- Heavy quarks act as non-recoiling sources of color at the end of PS.
- A spin-flavor symmetry appears for heavy quarks.
- A net polarization of the initial heavy quark may be detected, either in a polarization of the final ground state or in the decay products of the excited heavy mesons and heavy baryons.
- Falk-Peskin "no-win" theorem: no polarization information would be found in non-excited mesons.

2nd Step: Improving the Strong decay modes the excited heavy mesons, i.e charm, and bottom mesons.


- Heavy Quark Effective Field Theory (HQEFT) usually determines which decay modes are possible and also gives the relations between the involving couplings.
- In the absence of experimental data on many of the decays, we need to rely on HQ symmetries to determine the decay modes, widths and branching ratios.
- We consider charm and bottom meson decays with:

[arXiv:hep-ph/9209239]

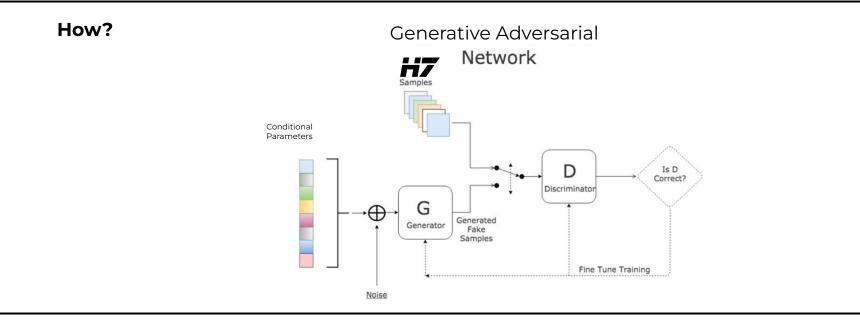
•
$$J^P = 0^-, 1^-$$
 doublets with $l = 0$ (D and D^*).
• $J^P = 1^+, 2^+$ doublets with $l = 1$ and $j = 3/2$ (D_1 and D_2^*).
• $J^P = 0^+, 1^+$ doublets with $l = 1$ and $i = 1/2$ (D^* and D').

• $J^P = 0^+, 1^+$ doublets with l = 1 and j = 1/2 $(D_0^* \text{ and } D_1^{\tilde{j}})$.

Drell-Yan process

Sudakov variables:

$$\alpha = \frac{2k \cdot p_B}{\sqrt{s}} = \frac{2k^+}{\sqrt{s}} \qquad z = 1 - \alpha - \beta$$
$$\beta = \frac{2k \cdot p_F}{\sqrt{s}} = \frac{2k^-}{\sqrt{s}} \qquad y = \frac{1}{2} \ln \frac{\alpha}{\beta}$$


PSR23, Milan, Italy, 6 - 8 July 2023

Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons

Training data:

 e^+e^- collisions at $\sqrt{s} = 91.2 \text{ GeV}$

Cluster
$$(E, p_x, p_y, p_z)$$

$$\mathbf{T}^{\mathsf{O}}(E, p_x, p_y, p_z)$$
$$\mathbf{T}^{\mathsf{O}}(E, p_x, p_y, p_z)$$

Pert = 0/1 memory of quarks direction

PSR23, Milan, Italy, 6 - 8 July 2023