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Measurements of  at hadron collidersmW

The discovery of the Higgs boson and the 
measurement of its mass allow for the prediction of 
the W mass with high precision

mW = 80.350 ± 8 GeV
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FIG. 1. Posterior from a global fit of all EWPO in the SM in the mt vs. MW (top) and sin2 ✓lepte↵ vs. MW (bottom) planes,
superimposed to the posteriors obtained omitting di↵erent observables from the fit in the standard average scenario. Dark
(light) regions correspond to 68% (95%) probability ranges. Direct measurements are shown in grey. The corresponding results
in the conservative average scenario are presented in Figure 3.

As in the top-quark mass case, there is however a sig-
nificant tension between the new CDF measurement and
the other measurements that enter in the calculation of
Eq. (5), with �2/ndof = 3.59. Therefore, in a conserva-
tive average, we inflate the error on MW to 0.015 GeV.

We then perform a series of fits to the di↵erent EWPO
using both the standard (see Eqs. 4 and 5) and conser-
vative assumptions for the uncertainties of the top-quark
and W -boson masses. 3 (Although we will discuss both
scenarios throughout the text, in most of the tables and
figures in the main text we will report the results per-
taining to the standard average. The results for the con-
servative average scenario are shown in the appendix.)
In particular, we are interested in comparing the new
averages with the corresponding predictions obtained in
the SM. For that purpose we first perform a pure SM fit
of all EWPO, excluding the experimental input for MW

and, from the posterior of such fit, we compute the SM
prediction for MW . The results are shown in Table I,
where we also compare with the combined MW values in
each scenario via the 1D pull, computed as explained in
Ref. [5]. As it is apparent, there exists a significant 6.5�

6.9 MeV, the total CDF systematic uncertainty [2]. In particu-
lar, the combined uncertainty ranges between 7.7 and 8.4 MeV,
whereas the central values can change by slightly less than 1 �.
Thus, waiting for an o�cial combination of LHC and TeVatron
results, we take the result in Eq. 5 as our best estimate of MW .

3 Unlike in Ref. [5], we do not consider an inflated uncertainty
for the Higgs-boson mass in the conservative scenario since, as
noted in that reference, this has little impact on the output of
the EW fit. We thus use mH = (125.21 ± 0.12) GeV in all the
fits presented here.

discrepancy with the SM in the standard average, which
persists at the level of 3.7� even in the conservative sce-
nario, due to the large di↵erence between the new CDF
measurement and the SM prediction.

Model Pred. MW [GeV] Pull Pred. MW [GeV] Pull
standard average conservative average

SM 80.3499± 0.0056 6.5� 80.3505± 0.0077 3.7�
ST 80.366± 0.029 1.6� 80.367± 0.029 1.4�
STU 80.32± 0.54 0.2� 80.32± 0.54 0.2�

SMEFT 80.66± 1.68 �0.1� 80.66± 1.68 �0.1�

TABLE I. Predictions and pulls for MW in the SM, in the
oblique NP models and in the SMEFT, using the standard
and conservative averaging scenarios. The predictions are
obtained without using the experimental information on MW .
See text for more details.

In Tables II and VI we present, in addition to the
experimental values for all EWPO used, the posterior
from the global fit, the prediction of individual parame-
ters/observables obtained omitting the corresponding ex-
perimental information, the indirect determination of SM
parameters obtained solely from EWPO, and the full pre-
diction obtained using only the experimental information
on SM parameters. For the individual prediction, indi-
rect determination and for the full prediction we also
report the pull for each experimental result. In this re-
gard, from the individual indirect determination of the
SM parameters in Table II, one can observe how the ten-
sions introduced by the new measurements in the SM fit
result into sizable pulls for the di↵erent SM inputs, at

the level of 4 � (6 �) for �↵(5)
had(MZ) and mH (MZ and

mt). Each pull can be converted in a p-value, and the
global consistency of the SM in the EWPO domain can

mW = 80.385 ± 15 GeV

Which is in a 2  agreement with the experimental 
average (pre-CDF II)

σ

[de Blas, Pierini, Reina, Silvestrini ’22]



Parton Showers and Resummation 2023, 8 June 20232

1995 2000 2005 2010 2015 2020 2025

D0 ICDF I D0 II ATLAS LHCb

Measurements of  at hadron collidersmW

80350  ±  8

(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.
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Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.

)2W boson mass (MeV/c
79900 80000 80100 80200 80300 80400 80500

CDF II    9±80433  

SM

ATLAS   19±80370  

SM

D0 II   23±80376  

SM

ALEPH   51±80440  

SM

OPAL   52±80415  

SM

L3   55±80270  

SM

DELPHI   67±80336  

SM

CDF I   79±80432  

SM
D0 I   83±80478  

SM

Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.
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Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.
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Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.
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Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.
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Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.
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Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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LHCb

(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.
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Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.
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Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.
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Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.
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Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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LHCb

(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.
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Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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Outline

• The Drell-Yan kinematical distributions and the  determination: strategy and challenges


• Recent progress in theoretical computations


• Proposal of a new observable and discussion of the associated theory uncertainties 


mW
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Measurements of  at hadron collidersmW

Full kinematics of charged DY production is not accessible at hadron colliders; in particular, the invariant mass 
of the neutrino-lepton pair cannot be reconstructed

Reconstruction possible in the transverse plane (requires precise measurement of the hadronic recoil)

Precise determinations of the W mass exploit observables with high sensitivity to small variations  of , 

such as the lepton transverse momentum  or the transverse mass  

𝒪(10−4) mW

pℓ
T mT = 2pℓ

T pν
T(1 − cos Δϕℓν)

dσ
d |pℓ

T |2 ∼
1

1 − 4
|pℓ

T |2

̂s

∼
1

1 − 4
|pℓ

T |2

m2
W

Jacobian peak at pℓ
T ∼ mW /2

Enhanced sensitivity to   in both distributions at the —  level.mW 𝒪(10−3) 𝒪(10−2)
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Measurements of  at hadron collidersmW

pℓ
T

dσ/dpℓ
T

dσ/dMT

MT

Fixed order description 

Different sensitivity to experimental uncertainties and quality of theoretical modelling
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Measurements of  at hadron collidersmW

pℓ
T

dσ/dpℓ
T

dσ/dMT

MT

Fixed order description 

Transverse recoil

Description of the data requires:


• Modelling of IS QCD + FS QED radiation


Different sensitivity to experimental uncertainties and quality of theoretical modelling
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Measurements of  at hadron collidersmW

pℓ
T

dσ/dpℓ
T

dσ/dMT

MT

Fixed order description 

Transverse recoil

Detector effects

Description of the data requires:


• Modelling of IS QCD + FS QED radiation

• Modelling of the smearing of the distributions due to the reconstruction of the neutrino in the transverse plane

Different sensitivity to experimental uncertainties and quality of theoretical modelling
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Measurements of  at hadron collidersmW

pℓ
T

dσ/dpℓ
T

dσ/dMT

MT

Different sensitivity to experimental uncertainties and quality of theoretical modelling

Mostly QCD + QED radiation Mostly detector effects

Requires precise determination of the neutrino 
transverse momentum: challenging at the LHC 
due to worse control of the hadronic recoil

mT = 2pℓ
T pν

T(1 − cos Δϕℓν)
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Measurements of  at hadron colliders: template fittingmW

Given one experimental kinematical distribution
  ∙ we compute the corresponding theoretical distribution for several hypotheses of one Lagrangian input parameters (e.g. )
  ∙ we compute, for each  hypothesis, a   defined in a certain interval around the jacobian peak (fitting window)

  ∙ we look for the minimum of the  distribution

The  value associated to the position of the minimum is the experimental result

mW
m(k)

W χ2
k

χ2

mW

MW determination at hadron colliders: template fitting

0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

1.001

25 30 35 40 45 50 55 60 65 70

R

pl
⊥

[GeV]

LHC W+ 8 TeV

R = MW=80.398

MW,i

∆MW = 2 MeV
∆MW = 10 MeV
∆MW = 20 MeV

A determination at the  level requires 
a control over the shape of the distributions at the per mille level

The theoretical uncertainties of the templates 
contribute to the theoretical systematic error on 

10−4

mW
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Extraction of  performed by template 
fittings of relevant kinematic observables e.g. 
lepton transverse momentum 

mW

pℓ
⊥

1. Compute theoretical distributions for 
different values of 


2. For each hypothesis, compute a figure of 
merit  for a defined window in 


3. The minimum value of  defines the 
experimental value of 

m(k)
W

χ2
k pℓ

⊥
χ2

k
mW

Permille-level control of the shape is 
necessary to obtain  with 10-4 precision mW

Precise control of the associated theoretical uncertainties needed to assess the 
theoretical systematic error on  mW

The description of experimental data plays a crucial role
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Template fitting and tuning

The template fitting procedure is acceptable if the data are described by the theoretical distribution with high quality
Template fitting: description of the single lepton transverse momentum distribution

Scale variation of the N3LO+N3LL prediction for ptlep  
provides a set of equally good templates 
but the width of the uncertainty band is at the few percent level 
a factor 10 larger than the naive estimate would require !

for the kinematical distributions of the final-state leptons.
A particularly relevant distribution is the leptonic trans-
verse momentum, which plays a central role in the precise
extraction of the W-boson mass at the LHC [2,6]. Figure 3
shows the differential distribution of the negatively charged
lepton at three different orders, for our default value
pcut
T ¼ 0.81 GeV. Unlike for the fiducial cross section,

the inclusion of pll
T resummation in this observable is

crucial to cure local (integrable) divergences in the spec-
trum due to the presence of a Sudakov shoulder [120] at
pl−
T ∼mll=2. The figure shows an excellent convergence

of the perturbative prediction, with residual uncertainties at
N3LOþ N3LL of the order of a few percent across the
entire range.
Conclusions.—In this Letter, we have presented state-of-

the-art predictions for the fiducial cross section and differ-
ential distributions in the Drell-Yan process at the LHC,
through both N3LO and N3LOþ N3LL in QCD. These new
predictions are obtained through the combination of an
accurate NNLO calculation for the production of a Drell-
Yan pair in association with one jet, and the N3LL
resummation of logarithmic corrections arising at small
pll
T . The high quality of these results allowed us to carry

out a thorough study of the performance of the computa-
tional method adopted, reaching an excellent control over
all systematic uncertainties involved. We presented pre-
dictions for two different definitions of the fiducial vol-
umes, relying either on symmetric cuts Eq. (2a) on the
transverse momentum of the leptons, or on a recently
proposed product cuts Eq. (2b) which is shown to improve
the stability of the perturbative series. Our results display
residual theoretical uncertainties at the Oð1%Þ level in the

fiducial cross section, and at the few-percent level in
differential distributions. These predictions will play an
important role in the comparison of experimental data with
an accurate theoretical description of the Drell-Yan process
at the LHC.
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Ⱦ data driven approach
     a Monte Carlo event generator is tuned to the data in NCDY ( )
                                                    ȿ
     the same parameters are then used to prepare the CCDY templates
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distributions in the muon (left) and electron (right) channels.
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inputs, χ2/dof and the probability of obtaining a χ2/dof at least as large, are summarized in Table S9.

B. Consistency checks

We compare the electron and muon p!T fit results obtained from subsamples of the data chosen to enhance possible
residual instrumental effects (Table S10). The uncertainty on the difference between the W+ → µ+ν and W− → µ−ν
fits includes the uncertainty due to the COT alignment (the uncertainty in the intercept of the linear fit in Fig. S6),
which contributes to this mass splitting. The mass fit differences for the electron channel are shown with and without
applying an E/p-based calibration from the corresponding subsample. The stability of the momentum and energy
scales is verified by performing Z-boson mass fits in subsamples separated in chronological time (indicated by run
number in Table S10).

We additionally test the stability of the mass fits as the fit ranges are varied. The variations of the fitted mass values
relative to the nominal results are consistent with expected statistical fluctuations, as shown in Figs. S39-S41 [107].

CDF collaboration, Scince 376, 170-176 (2022)     Eur.Phys.J.C 78 (2018) 2, 110, Eur.Phys.J.C 78 (2018) 11, 898 (erratum) 
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Template fitting procedure requires that the theoretical distribution can describe the data with high quality 


Data-driven approach: 
Monte Carlo event 
generators tuned with NCDY 
data exploiting astonishing 
precision of  spectrum 
pℓℓ

⊥

Templates prepared for CCDY using the same tuned parameters
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Figure 7: Distributions of pZT (left) before and (right) after the fit for the di↵erent candidate
models of the unpolarised cross-sections. The fit only considers the region pZT < 30GeV, indicated
by the dashed vertical line. In the lower panels the ratios with respect to the POWHEGPythia
model are shown.

Table 2: Results of fits of di↵erent models to the pZT distribution. The uncertainties quoted are
statistical, and the �2 comparison of the di↵erent models to the data is evaluated considering
only statistical uncertainties. The right-hand column lists the fit values of the kintrT parameter
or, for DYTurbo, the analogous g parameter. The fit with DYTurbo has one more degree
of freedom than the fits with the other models since only one tuning parameter (g) is used for
DYTurbo.

Program �2/ndf ↵s

DYTurbo 208.1/13 0.1180 g = 0.523± 0.047GeV2

POWHEGPythia 30.3/12 0.1248± 0.0004 kintr
T = 1.470± 0.130GeV

POWHEGHerwig 55.6/12 0.1361± 0.0001 kintr
T = 0.802± 0.053GeV

Herwig 41.8/12 0.1352± 0.0002 kintr
T = 0.753± 0.052GeV

Pythia, CT09MCS 69.0/12 0.1287± 0.0004 kintr
T = 2.113± 0.032GeV

Pythia, NNPDF31 62.1/12 0.1289± 0.0004 kintr
T = 2.109± 0.032GeV

importance of A3 can be understood by inspection of Eq. 2: an increase in A3 enhances
the cross-section for events with large sin# and cos'. The contribution to the muon
pT from the W boson mass scales with sin# while the contribution from the transverse
momentum of the W boson scales with ± cos' for W± boson production. By allowing
a single A3 scaling factor, which is shared between the W+ and W� processes, to vary
freely in the mW fit the angular coe�cient uncertainty is reduced by roughly a factor
of three, to 10MeV. E↵ectively the resulting model only depends on DYTurbo for the
kinematic dependence of A3, while all other coe�cients are fully modelled by DYTurbo.

7.4 Parametric correction at high transverse momentum

While POWHEGPythia is shown in Sect. 7 to describe the pZT distribution in the region
below 30GeV, it systematically underestimates the cross-section at higher pZT. This is
expected due to the missing matrix elements for the production of a weak boson and more
than one jet. Figure 8 compares the pZT distribution in the data with the model prediction
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Table 2: Results of fits of di↵erent models to the pZT distribution. The uncertainties quoted are
statistical, and the �2 comparison of the di↵erent models to the data is evaluated considering
only statistical uncertainties. The right-hand column lists the fit values of the kintrT parameter
or, for DYTurbo, the analogous g parameter. The fit with DYTurbo has one more degree
of freedom than the fits with the other models since only one tuning parameter (g) is used for
DYTurbo.

Program �2/ndf ↵s

DYTurbo 208.1/13 0.1180 g = 0.523± 0.047GeV2

POWHEGPythia 30.3/12 0.1248± 0.0004 kintr
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POWHEGHerwig 55.6/12 0.1361± 0.0001 kintr
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Herwig 41.8/12 0.1352± 0.0002 kintr
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Pythia, CT09MCS 69.0/12 0.1287± 0.0004 kintr
T = 2.113± 0.032GeV

Pythia, NNPDF31 62.1/12 0.1289± 0.0004 kintr
T = 2.109± 0.032GeV

importance of A3 can be understood by inspection of Eq. 2: an increase in A3 enhances
the cross-section for events with large sin# and cos'. The contribution to the muon
pT from the W boson mass scales with sin# while the contribution from the transverse
momentum of the W boson scales with ± cos' for W± boson production. By allowing
a single A3 scaling factor, which is shared between the W+ and W� processes, to vary
freely in the mW fit the angular coe�cient uncertainty is reduced by roughly a factor
of three, to 10MeV. E↵ectively the resulting model only depends on DYTurbo for the
kinematic dependence of A3, while all other coe�cients are fully modelled by DYTurbo.

7.4 Parametric correction at high transverse momentum

While POWHEGPythia is shown in Sect. 7 to describe the pZT distribution in the region
below 30GeV, it systematically underestimates the cross-section at higher pZT. This is
expected due to the missing matrix elements for the production of a weak boson and more
than one jet. Figure 8 compares the pZT distribution in the data with the model prediction

15

Procedure heavily relies on the 
similarities between NC and CC DY, 
and assumes that the information 
obtained from the data is fully 
correlated between the two processes

[ATLAS ’17] [CDF ’22]

[LHCb ’21] [LHCb ’21]
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Template fits and their limitations

• Possible that BSM effects are absorbed in the tuning


• Tuning assumes universality of CCDY and NCDY, although several differences play a role (experimental 
acceptances, different phase spaces, different QED corrections, PDFs and heavy quark effects…)


• Tuning performed at the level of the  spectrum: uncertainty related to the transfer of information to 
other kinematic distribution in W production ( , )


• Template fitting procedure relies on tools with low formal accuracy; missing higher order information 
captured only within some approximation (e.g. reweighing)

pℓℓ
⊥

pℓ
⊥ Mℓν

⊥

χ2 = (D − T)T ⋅ C−1 ⋅ (D − T)
C = Σstat + Σsyst + ΣMC + ΣPDF

• Minimisation procedure sensible when  ~ 1χ2/Ndat

Inclusion of  contribution to the covariance matrix not possible due to non-statistical 
nature of theory uncertainty 

Σth

Data-driven approach allows the possibility to determine  via template fits at the price of

1. losing the possibility to assess robustly the theoretical uncertainties on the modelling

2. incapability to fully exploit recent progress in theoretical calculations for candle LHC processes

4.

mW
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Progress in theoretical calculations
1995 2000 2005 2010 2015 2020 2025

D0 ICDF I D0 II ATLAS

NNLL’QCD+NNLOQCD(N)NLLQCD+NLOQCD
[Balasz, Yuan ’97] [Bozzi, Catani, Ferrera, De 

Florian, Grazzini ’10]

Huge progress in the theoretical 
description of NC and CC Drell-Yan 
processes in the last few years
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Progress in theoretical calculations

N3LL’QCD+N3LOQCD

1995 2000 2005 2010 2015 2020 2025

D0 ICDF I D0 II ATLAS LHCb CDF II

NNLL’QCD+NNLOQCD N3LLQCD+NNLOQCD(N)NLLQCD+NLOQCD
[Balasz, Yuan ’97] [Bozzi, Catani, Ferrera, De 

Florian, Grazzini ’10]
[Bizon, Monni, Re, 
LR, Torrielli ’17]

[Chen, Gehrmann, 
Glover, Huss, Monni, 
Re, LR, Torrielli ’22]

[Camarda, Cieri, 
Ferrera ’21]

[Neumann, Campbell ’22] 

Fixed-order description now reaches  (N3LOQCD)𝒪(α3
s )

Huge progress in the theoretical 
description of NC and CC Drell-Yan 
processes in the last few years

All-order resummation up to N3LL’QCD

QCD-EW correction at order   NNLOQCD-EW𝒪(αsα)

NNLOQCD-EW

[Buccioni, Caola, Chawdhry, Devoto, 
Heller, von Manteuffel, Melnikov, 
Röntsch, Signorile-Signorile ’22] 

[Re, LR, Torrielli ’21]

[Armadillo, Bonciani, Buonocore, 
Devoto, Grazzini, Kallweit, Rana, 
Savoini, Tramontano, Vicini ’21, ’22]

(N4LL(‘)QCD approx.)
[Campbell, Ellis, Neumann, Seth ’23] [Camarda, Cieri, Ferrera ’23]
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Fiducial Drell-Yan production at N3LOQCD

dσNkLO
V ≡ ℋNkLO

V ⊗ dσLO
V + [dσNk−1LO

V+jet − [dσNkLL
V ]𝒪(αk

s )]
qT>qcut

t

+ 𝒪((qcut
T /M)n)

dσNkLO
V ≡ dσNkLO

V
qT<qcut

T

+ dσNkLO
V

qT>qcut
T

dσ
dqT

qcut
T

+∞

−∞

 resummationqT

• Expand to fixed order


•  ingredients𝒪(α3
s )

[Li, Zhu ’16][Luo,Yang,Zhu,Zhu ’19]
[Ebert,Mistlberger,Vita ’20]

Hard function


Beam and soft functions
[Gehrmann,Glover,Huber,Ikizlerli,Studerus ’10]

-subtraction formalismqT
[Catani, Grazzini ’08]

V+j @ Nk-1LO

1
qT

ln2k−1 qT

Q

qT
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4

rcut = cutqT /Q[%]
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Figure 1: Dependence of the NLO QCD Drell–Yan cross

section, calculated in the qT-subtraction method with (or-

ange) and without (green) linPCs, on the cutoff rcut, nor-
malized to the reference CS result (blue) and with sta-

tistical errors. The horizontal lines show the respective

rcut → 0 extrapolations, with their combined numerical

and extrapolation uncertainties depicted as bands.

instructive to study the effects of linPCs in compari-

son to a reference prediction, the inclusion of linPCs

in the qT -slicing cutoff becomes much more relevant

at next-to-NLO (NNLO) in QCD perturbation the-

ory. The evaluation of the O(α2
s) coefficient in Ma-

trix relies entirely on the qT -subtraction method, and

no rcut-independent NNLO QCD cross section can be

computed with the code. In Figure 2 we study the

rcut dependence of the NNLO QCD coefficient for dif-

ferent partonic channels, normalized to the respective

rcut → 0 results with linPCs. The symbols for the

partonic channels (qq̄, qg, gg, q(q̄)q′) are defined as

usually, i.e. symmetrically with respect to the beam

directions: gg for the gluon–gluon channel, qg includ-

ing all (anti-)quark–gluon channels, qq̄ referring to the

diagonal quark–(anti-)quark channels present already

at leading order, and q(q̄)q′ collecting all remaining

(anti-)quark–(anti-)quark channels such that the four

categories sum up to the full result.

In Figure 2 we observe that the NNLO QCD co-

efficient features an analogous reduction in the rcut
dependence when accounting for linPCs by includ-

ing the contribution of Eq. (2). We note that start-

ing from NNLO QCD the linear scaling can be en-

hanced by additional logarithms in rcut (i.e. terms

of order rcut ln
k
(rcut), 1 < k < 2), as can be seen

from the figures. Like at NLO QCD the extrapolated

rcut → 0 results are fully compatible, but the cross

section with linPCs exhibits a considerably reduced

rcut dependence with the advantages discussed above.ll

We continue with the discussion of differential dis-
tributions within the fiducial phase-space selection.

Figure 3 shows the rapidity distribution of the pos-

itively charged lepton (yℓ+) at NLO QCD (left) and

at NNLO QCD (right) in the main panel. Results for

the fixed values rcut = 1% (dotted) and rcut = 0.15%
(dashed) with their statistical uncertainties indicated

by error bars are shown with (orange) and without

rcut = cutqT /Q[%]
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Figure 2: Dependence of the NNLO QCD Drell–Yan co-

efficient on rcut for each partonic channel with (orange)

and without (green) linPCs, normalized to the rcut → 0 re-

sult with linPCs. The horizontal lines show the respective

rcut → 0 extrapolations. Errors indicated as in Figure 1.

(green) linPCs in the upper and lower ratio panels,

respectively. The extrapolated rcut → 0 results with

(orange) and without (green) linPCs with their com-

bined numerical and extrapolation uncertainties indi-

cated by bands are depicted in both ratio panels. At

NLO QCD all curves in the two ratio panels are nor-

malized to the reference rcut-independent CS result

(blue), while at NNLO QCD all curves in the upper

(lower) ratio panel are normalized to the extrapolated

result without (with) linPCs.

The agreement at NLO QCD with the CS result is

truly remarkable, especially considering the very fine

binning. As expected, only the curve with a high cut-

off (rcut = 1%) and without linPCs is off by about

1%. Notably, this difference at rcut = 1% is removed

by including the linPCs. In all cases the extrapolated

results are fully compatible with that of the CS calcu-

lation at the permille level and within the respective

uncertainties.

At NNLO QCD we can appreciate the much bet-

ter convergence in rcut when linPCs are included. In

the first ratio panel, which shows the curves without

linPCs, the rcut = 0.15% (rcut = 1%) result is about

0.5% (more than 1%) from the extrapolated result.

By contrast, the curves including the linPCs in the

second ratio panel all agree within a few permille up

to statistical fluctuations. Therefore, the much higher

rcut value of 1% would be sufficient to obtain a reliable

dσNkLO
V ≡ ℋNkLO

V ⊗ dσLO
V + [dσNk−1LO

V+jet − [dσNkLL
V ]𝒪(αk

s )]
qT>qcut

t

+ 𝒪((qcut
T /M)n)

Competing interests:   as large as possible   as small as possibleqcut
T ↔ qcut

T

Fiducial Drell-Yan production at N3LOQCD

Suppress power 
corrections

Numerical stability

Power corrections larger when symmetric cuts applied 
on final state leptons due to enhanced sensitivity to soft 
radiation in back-to-back configurations [Salam, Slade ’21]

[Kallweit, Buonocore, LR, Wiesemann ’21]

Control of fiducial linear power corrections improves 
dramatically the efficiency of the non-local subtraction

Necessary to reach N3LO accuracy for fiducial setup 

[Kallweit, Buonocore, LR, Wiesemann ’21][Camarda, Cieri, Ferrera ’21]
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Fiducial Drell-Yan production at N3LOQCD

3

Order � [pb] Symmetric cuts � [pb] Product cuts

k NkLO NkLO+NkLL NkLO NkLO+NkLL

0 721.16+12.2%
�13.2% — 721.16+12.2%

�13.2% —

1 742.80(1)+2.7%
�3.9% 748.58(3)+3.1%

�10.2% 832.22(1)+2.7%
�4.5% 831.91(2)+2.7%

�10.4%

2 741.59(8)+0.42%
�0.71% 740.75(5)+1.15%

�2.66% 831.32(3)+0.59%
�0.96% 830.98(4)+0.74%

�2.73%

3 722.9(1.1)+0.68%
�1.09% ± 0.9 726.2(1.1)+1.07%

�0.77% 816.8(1.1)+0.45%
�0.73% ± 0.8 816.6(1.1)+0.87%

�0.69%

TABLE I. Fiducial cross sections for the symmetric (2a) and product (2b) cuts both at fixed perturbative order and including
all-order resummation.

dow is 66GeV < m`` < 116GeV and the lepton rapidi-
ties are confined to |⌘`

±
| < 2.5. The transverse momen-

tum of the two leptons is constrained as

Symmetric cuts [113]: |~p `±

T | > 27GeV , (2a)

Product cuts [100]:
q

|~p `+
T | |~p `�

T | > 27GeV ,

min{|~p `±

T |} > 20GeV . (2b)

The central factorisation and renormalisation scales

are chosen to be µR = µF =
q

m``
2 + p``T

2
and the cen-

tral resummation scale is set to Q = m``/2. In the results
presented below, the theoretical uncertainty is estimated
by varying the µR and µF scales by a factor of two about
their central value, while keeping 1/2  µR/µF  2. In
addition, for the resummed results, for central µR = µF

scales we vary Q by a factor of two around its central
value. Moreover, a matching-scheme uncertainty is esti-
mated by including the full scale variation of the additive
matching scheme of Ref. [59] (27 variations that comprise
the one of the central matching scale v0 introduced in
Eq. (5.2) of that article). The final uncertainty is ob-
tained as the envelope of all the above variations, corre-
sponding to 7 and 36 curves for the fixed-order and re-
summed computations, respectively. In the fiducial cross
sections quoted below at N3LO and N3LO+N3LL, we do
not consider the uncertainty related to the missing N3LO
parton distributions, which are currently unavailable.

In Fig. 1, we start by showing the transverse-
momentum distribution of the Drell–Yan lepton pair in
the fiducial volume (2a), obtained with Eq. (1), compared
to experimental data [113]. In the figure we label the
distributions by the perturbative accuracy of their inclu-
sive integral over p``T . Our state-of-the-art N3LO+N3LL
prediction provides an excellent description of the data
across the spectrum, with the exception of the first bin at
small p``T which is susceptible to non-perturbative correc-
tions not included in our calculation. We point out that
the term d�NNLO

DY+jet
�
⇥
d�N

3
LL

DY

⇤
O(↵3

s)
in Eq. (1) gives a non-

negligible contribution even for p``T  15GeV. The resid-
ual theoretical uncertainty in the intermediate p``T region
is at the few-percent level, and it increases to about 5%
for p``T & 50GeV. A more accurate description of the

large-p``T region requires the inclusion of EW corrections,
which we neglect in our calculation.
We now consider the fiducial cross section with sym-

metric cuts (2a). In order to gain control over the slicing
systematic error, we choose pcutT as low as 0.81GeV. In
the first column of Tab. I, denoted as NkLO, we show the
fixed-order results toO(↵k

s ). The second column of Tab. I
displays the result obtained including resummation ef-
fects. In the fixed-order case, the theoretical uncertainty
at N3LO, estimated as discussed above, is supplemented
with an estimate of the slicing uncertainty obtained by
varying pcutT in the range [0.45, 1.48]GeV and taking the
average di↵erence from the result with pcutT = 0.81GeV.
In the resummed case, we quote the total theoretical un-
certainty including also the matching scheme variation.
In both cases the statistical uncertainty is reported in
parentheses.
We observe that the new N3LO corrections decrease

the fiducial cross section by about 2.5%, and the final
prediction at N3LO has larger theoretical errors than
the NNLO counterpart, whose uncertainty band does not
capture the N3LO central value. This indicates a poor
convergence of the fixed-order perturbative series for this
process, which is consistent with what has been observed
in the inclusive case in Refs. [10–12]. In the resummed
case, the theoretical uncertainty is more reliable and
within errors the convergence of the perturbative series
is improved. The presence of linear power corrections is
also responsible for the moderate di↵erence between the
fixed-order and the resummed prediction for the symmet-
ric cuts (2a), which in turn indicates a sensitivity of the
cross section to the infrared region of small p``T . This ul-
timately worsens further the perturbative convergence of
the fixed-order series thereby challenging the perspectives
to reach percent-accurate theoretical predictions within
symmetric cuts.
A possible solution to this problem [100] is to slightly

modify the definition of the fiducial cuts as in Eq. (2b)
in order to reduce such a sensitivity to infrared physics.
We present for the first time theoretical predictions up
to N3LO and N3LO+N3LL for this set of cuts, reported
in the third and fourth column of Tab. I. The relative
di↵erence between the fixed-order and resummed calcu-
lations for the fiducial cross section never exceeds the

Includes 
resummation of 
linear power 
corrections

[Chen, Gehrmann, Glover, Huss, Monni, Re, LR, Torrielli]

• 2.5% negative correction at N3LO in the ATLAS fiducial region. N3LO larger than the 
NNLO correction and outside its error band


• More robust estimate of the theory uncertainty when resummation effects are included
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vi = kt,i/M, ζi = vi/v1

Result at NLL accuracy with scale-independent PDFs

Resummation in direct space: RadISH in a nutshell

× R′￼(v1)
∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
R′￼(ζiv1) Θ (pT − | ⃗k t,i + ⋯ ⃗k t,n+1 | ))

σ(pT) = σ0 ∫
dv1

v1 ∫
2π

0

dϕ1

2π
e−R(ϵv1)

RadISH performs resummation in direct space - similar in spirit to a parton shower, with control on formal accuracy
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Result at NLL accuracy with scale-independent PDFs

12

vi = kt,i/M, ζi = vi/v1
Simple observable

Resummation in direct space: RadISH in a nutshell

ln kt /Q
η

× R′￼(v1)
∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
R′￼(ζiv1) Θ (pT − | ⃗k t,i + ⋯ ⃗k t,n+1 | ))

σ(pT) = σ0 ∫
dv1

v1 ∫
2π

0

dϕ1

2π
e−R(ϵv1)

RadISH performs resummation in direct space - similar in spirit to a parton shower, with control on formal accuracy
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Result at NLL accuracy with scale-independent PDFs

12

× R′￼(v1)
∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
R′￼(ζiv1) Θ (pT − | ⃗k t,i + ⋯ ⃗k t,n+1 | ))

vi = kt,i/M, ζi = vi/v1

Transfer function

σ(pT) = σ0 ∫
dv1

v1 ∫
2π

0

dϕ1

2π
e−R(ϵv1)

Resummation in direct space: RadISH in a nutshell

ln kt /Q
η

ln 1/ϵ

Simple observable

RadISH performs resummation in direct space - similar in spirit to a parton shower, with control on formal accuracy
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× R′￼(v1)
∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
R′￼(ζiv1) Θ (pT − | ⃗k t,i + ⋯ ⃗k t,n+1 | ))× R′￼(v1)

∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1 dζi

ζi ∫
2π

0

dϕi

2π
R′￼(ζiv1) Θ (pT − | ⃗k t,i + ⋯ ⃗k t,n+1 | ))

σ(pT) = σ0 ∫
dv1

v1 ∫
2π

0

dϕ1

2π
e−R(ϵv1)σ(pT) = σ0 ∫

dv1

v1 ∫
2π

0

dϕ1

2π
e−R( v1)

Logarithmic accuracy defined in terms of ln(M/kt1)
Result formally equivalent to the -space formulationb

Formula can be evaluated with Monte Carlo methods; dependence on  vanishes (as ) and result is finite in four 
dimensions 

ϵ 𝒪(ϵ)

12

[Bizon, Monni, Re, LR, Torrielli ’17]

vi = kt,i/M, ζi = vi/v1

Resummation formalism can be extended at higher accuracies; resummation at N3LL’ available [Re, LR, Torrielli ’21]

Resummation in direct space: RadISH in a nutshell

Result at NLL accuracy with scale-independent PDFs

RadISH performs resummation in direct space - similar in spirit to a parton shower, with control on formal accuracy
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Description of experimental data at N3LOQCD+N3LL’QCD

3.2 Total fiducial cross-section 3 RESULTS

Table 2.: Fiducial cuts for Z ! l+l� used in the CMS
13TeV analysis [3].

Lepton cuts qlT > 25GeV, |⌘l| < 2.4

Separation cuts 76.2GeV < ml+l� < 106.2GeV,

|yl+l� | < 2.4

and data at the highest order. Going from ↵2
s to ↵3

s

decreases uncertainties and improves agreement with
data noticeably at both large and small qT . In the
first bin 0GeV < qT < 1GeV we notice a relatively
large difference to the data, but this is also where one
would expect a non-negligible contribution from non-
perturbative effects. We note that the impact of the
corrections included in N4LLp is a noticeable shift in this
distribution, compared to N3LL’, as discussed further in
appendix B.

For the �⇤ distribution shown in fig. 4 results are over-
all very similar. For the transverse momentum distri-
bution we neglect matching corrections at ↵3

s below
qT < 5GeV. Here we correspondingly neglect them be-
low �⇤ < 5GeV/mZ ⇠ 0.05 and at lower orders below
�⇤ < 1GeV/mZ ⇠ 0.01, an overall per-mille level effect
in that region.

Since our resummation implementation is fully differ-
ential in the electroweak final state we can naturally
also present the transverse momentum distribution of
the final state lepton, see fig. 5. This is plagued by
a Jacobian peak at fixed-order and crucially requires
resummation. The higher-order ↵3

s corrections further
stabilize the results with smaller uncertainties.

3.2. Total fiducial cross-section

In table 3 we present total fiducial cross sections. Uncer-
tainties of the fixed-order NNLO (↵2

s) result, obtained
by taking the envelope of a variation of renormalization
and factorization scales by a factor of two, are partic-
ularly small at the level of 0.5% and do not improve
towards N3LO with large corrections. The resummation
improved results are obtained by integrating over the
matched qT spectrum shown in fig. 3. Uncertainties
of the resummation improved predictions are obtained
by taking the envelope of the variation of hard, low
and rapidity scales in the fixed-order and resummation
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Figure 3.: Differential transverse-momentum resumma-
tion improved predictions for the ql

�l+
T distri-

bution at order ↵s, ↵2
s and ↵3

s.

region. The matching uncertainty from the transition
function variation is quoted separately. We estimate the
effect of neglecting matching corrections at ↵3

s below
qT  5GeV to be less than 1 pb.

The resummation improved result at ↵s has large un-
certainties that stem from an insufficient order of the
resummation (N2LL), which still has substantial un-
certainties in the Sudakov peak region (c.f. fig. 3).
The results quickly stabilize, with less than a percent
difference between the central ↵2

s and ↵3
s predictions.

Nevertheless, the uncertainties we obtain are noticeably
larger than the fixed-order uncertainties. We further
observe that going from N3LL/↵2

s to N4LLp/↵3
s does not

reduce uncertainties as substantially as when going from
↵s to ↵2

s. This is because the resummation uncertainties
around the Sudakov peak region at small qT ⇠ 5GeV
do not improve dramatically.

While this behavior, of only moderately decreasing un-
certainties going from ↵2

s to ↵3
s, is consistent with the

7

The theoretical progress made in the the past 5 years has significantly improved the description of the experimental 
data, pinning down the theoretical uncertainties to the few percent level in the description of differential spectra

[Neumann, Campbell ’22] 
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shower using a colour-exact variant of the MC@NLO algo-
rithm [86]. Different parton multiplicities are then merged
into an inclusive sample using an improved CKKW matching
procedure [87,88] which is extended to NLO accuracy using
the MEPS@NLO prescription [89]. The merging threshold
is set to 20 GeV. Uncertainties from missing higher orders
are evaluated [90] using seven variations of the QCD factor-
ization and renormalization scales in the matrix elements by
factors of 0.5 and 2, avoiding variations in opposite direc-
tions. For the computation of uncertainties in the normalized
spectra the effect of a certain variation is fully correlated
across the full spectrum and an envelope of all variations is
taken at the end, which results in uncertainties of 3–4% at low

p!!
T and up to 25% at high p!!

T . The effects of uncertainties in
the PDF set are evaluated using 100 replica variations and are
found to be very small, typically < 1% up to p!!

T < 100 GeV
and a few percent above. Sherpa does describe the data in
the high p!!

T > 30 GeV and φ∗
η > 0.1 region to within about

4% up to the point where statistical uncertainties in the data
exceed that level, which is better than the uncertainty esti-
mate obtained from scale variations. On the other hand, the
Sherpa prediction disagrees with the shape of the data at
low p!!

T < 25 GeV and somewhat less with the φ∗
η distribu-

tion. The data may be useful in improving the parton shower
settings in this regime.

Finally a prediction based on the RadISH program
[91,92] is presented that combines a fixed-order NNLO
prediction of Z+jet production (O(α3

S)) from NNLO-
jet [93] with resummation of log(m!!/p!!

T ) terms at next-to-
next-to-next-to-leading-logarithm (N3LL) accuracy [7]. The
NNPDF3.1nnlo set of PDFs [94] is used with QCD scales

set to µr = µf =
√
(m!!)2 + (p!!

T )2 and the resummation
scale set to Q = m!!/2. Uncertainties in this prediction are
derived from variations of µr and µf in the same way as for
the Sherpa prediction described above and, in addition, two
variations of Q by a factor of two up and down, assuming
that the effects of scale variations are fully correlated across
the full spectrum. Within the uncertainties of typically 1–
3% the RadISH prediction agrees with the data over the full
spectrum of p!!

T and φ∗
η , apart from a small tension in the

very low p!!
T and φ∗

η region where non-perturbative effects
are relevant, highlighting the benefits of this state-of-the-art
prediction.

Figure 6 compares the p!!
T measurement with predictions

in the range of p!!
T > 10 GeV. In addition to the Sherpa

prediction described above, the data are compared with the
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rithm [86]. Different parton multiplicities are then merged
into an inclusive sample using an improved CKKW matching
procedure [87,88] which is extended to NLO accuracy using
the MEPS@NLO prescription [89]. The merging threshold
is set to 20 GeV. Uncertainties from missing higher orders
are evaluated [90] using seven variations of the QCD factor-
ization and renormalization scales in the matrix elements by
factors of 0.5 and 2, avoiding variations in opposite direc-
tions. For the computation of uncertainties in the normalized
spectra the effect of a certain variation is fully correlated
across the full spectrum and an envelope of all variations is
taken at the end, which results in uncertainties of 3–4% at low

p!!
T and up to 25% at high p!!

T . The effects of uncertainties in
the PDF set are evaluated using 100 replica variations and are
found to be very small, typically < 1% up to p!!

T < 100 GeV
and a few percent above. Sherpa does describe the data in
the high p!!

T > 30 GeV and φ∗
η > 0.1 region to within about

4% up to the point where statistical uncertainties in the data
exceed that level, which is better than the uncertainty esti-
mate obtained from scale variations. On the other hand, the
Sherpa prediction disagrees with the shape of the data at
low p!!

T < 25 GeV and somewhat less with the φ∗
η distribu-

tion. The data may be useful in improving the parton shower
settings in this regime.

Finally a prediction based on the RadISH program
[91,92] is presented that combines a fixed-order NNLO
prediction of Z+jet production (O(α3

S)) from NNLO-
jet [93] with resummation of log(m!!/p!!

T ) terms at next-to-
next-to-next-to-leading-logarithm (N3LL) accuracy [7]. The
NNPDF3.1nnlo set of PDFs [94] is used with QCD scales

set to µr = µf =
√
(m!!)2 + (p!!

T )2 and the resummation
scale set to Q = m!!/2. Uncertainties in this prediction are
derived from variations of µr and µf in the same way as for
the Sherpa prediction described above and, in addition, two
variations of Q by a factor of two up and down, assuming
that the effects of scale variations are fully correlated across
the full spectrum. Within the uncertainties of typically 1–
3% the RadISH prediction agrees with the data over the full
spectrum of p!!

T and φ∗
η , apart from a small tension in the

very low p!!
T and φ∗

η region where non-perturbative effects
are relevant, highlighting the benefits of this state-of-the-art
prediction.

Figure 6 compares the p!!
T measurement with predictions

in the range of p!!
T > 10 GeV. In addition to the Sherpa

prediction described above, the data are compared with the
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shower using a colour-exact variant of the MC@NLO algo-
rithm [86]. Different parton multiplicities are then merged
into an inclusive sample using an improved CKKW matching
procedure [87,88] which is extended to NLO accuracy using
the MEPS@NLO prescription [89]. The merging threshold
is set to 20 GeV. Uncertainties from missing higher orders
are evaluated [90] using seven variations of the QCD factor-
ization and renormalization scales in the matrix elements by
factors of 0.5 and 2, avoiding variations in opposite direc-
tions. For the computation of uncertainties in the normalized
spectra the effect of a certain variation is fully correlated
across the full spectrum and an envelope of all variations is
taken at the end, which results in uncertainties of 3–4% at low

p!!
T and up to 25% at high p!!

T . The effects of uncertainties in
the PDF set are evaluated using 100 replica variations and are
found to be very small, typically < 1% up to p!!

T < 100 GeV
and a few percent above. Sherpa does describe the data in
the high p!!

T > 30 GeV and φ∗
η > 0.1 region to within about

4% up to the point where statistical uncertainties in the data
exceed that level, which is better than the uncertainty esti-
mate obtained from scale variations. On the other hand, the
Sherpa prediction disagrees with the shape of the data at
low p!!

T < 25 GeV and somewhat less with the φ∗
η distribu-

tion. The data may be useful in improving the parton shower
settings in this regime.

Finally a prediction based on the RadISH program
[91,92] is presented that combines a fixed-order NNLO
prediction of Z+jet production (O(α3

S)) from NNLO-
jet [93] with resummation of log(m!!/p!!

T ) terms at next-to-
next-to-next-to-leading-logarithm (N3LL) accuracy [7]. The
NNPDF3.1nnlo set of PDFs [94] is used with QCD scales

set to µr = µf =
√
(m!!)2 + (p!!

T )2 and the resummation
scale set to Q = m!!/2. Uncertainties in this prediction are
derived from variations of µr and µf in the same way as for
the Sherpa prediction described above and, in addition, two
variations of Q by a factor of two up and down, assuming
that the effects of scale variations are fully correlated across
the full spectrum. Within the uncertainties of typically 1–
3% the RadISH prediction agrees with the data over the full
spectrum of p!!

T and φ∗
η , apart from a small tension in the

very low p!!
T and φ∗

η region where non-perturbative effects
are relevant, highlighting the benefits of this state-of-the-art
prediction.

Figure 6 compares the p!!
T measurement with predictions

in the range of p!!
T > 10 GeV. In addition to the Sherpa

prediction described above, the data are compared with the
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Thanks to the availability of theoretical prediction at high 
accuracy, it is possible to assess reliably the behaviour of the 
perturbative series for crucial observables such as  ratiopZ

T /pW
T

Stability of the ratio indicates high level of correlation 
between the two spectra

Wojciech Bizoń et al.: The transverse momentum spectrum of weak gauge bosons at N3LL+NNLO 7

Fig. 4. Ratios of Z/W+ and W�/W+ normalised di↵erential
distributions at NLL+LO (green, dotted), NNLL+NLO (blue,
dashed) and N3LL+NNLO (red, solid) at

p
s = 13 TeV. The

three lower panels show three di↵erent prescriptions for the
theory uncertainty, as described in the text.
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Fig. 5. Ratios of Z/W+ and W�/W+ normalised di↵eren-
tial distributions at NNLO (green, dotted), NNLL+NLO (blue,
dashed) and N3LL+NNLO (red, solid) at

p
s = 13 TeV. For

reference, the Pythia8 prediction in the AZ tune is also shown,
and the lower panels show the ratio of each prediction to the
latter.

Comparison with tuned event generator such as PYTHIA* 
however indicates that full correlation might be too strong 
an assumption
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* “PYTHIA is not QCD”
[Kirill Melnikov, QCD@LHC 2016]

https://indico.cern.ch/event/516210/contributions/2212477/attachments/1327382/1993168/melnikovsummary.pdf
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for the kinematical distributions of the final-state leptons.
A particularly relevant distribution is the leptonic trans-
verse momentum, which plays a central role in the precise
extraction of the W-boson mass at the LHC [2,6]. Figure 3
shows the differential distribution of the negatively charged
lepton at three different orders, for our default value
pcut
T ¼ 0.81 GeV. Unlike for the fiducial cross section,

the inclusion of pll
T resummation in this observable is

crucial to cure local (integrable) divergences in the spec-
trum due to the presence of a Sudakov shoulder [120] at
pl−
T ∼mll=2. The figure shows an excellent convergence

of the perturbative prediction, with residual uncertainties at
N3LOþ N3LL of the order of a few percent across the
entire range.
Conclusions.—In this Letter, we have presented state-of-

the-art predictions for the fiducial cross section and differ-
ential distributions in the Drell-Yan process at the LHC,
through both N3LO and N3LOþ N3LL in QCD. These new
predictions are obtained through the combination of an
accurate NNLO calculation for the production of a Drell-
Yan pair in association with one jet, and the N3LL
resummation of logarithmic corrections arising at small
pll
T . The high quality of these results allowed us to carry

out a thorough study of the performance of the computa-
tional method adopted, reaching an excellent control over
all systematic uncertainties involved. We presented pre-
dictions for two different definitions of the fiducial vol-
umes, relying either on symmetric cuts Eq. (2a) on the
transverse momentum of the leptons, or on a recently
proposed product cuts Eq. (2b) which is shown to improve
the stability of the perturbative series. Our results display
residual theoretical uncertainties at the Oð1%Þ level in the

fiducial cross section, and at the few-percent level in
differential distributions. These predictions will play an
important role in the comparison of experimental data with
an accurate theoretical description of the Drell-Yan process
at the LHC.
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FIG. 2: W boson charge asymmetry distribution from
LO to N3LO. The colored bands represent theory
uncertainties from 31 scale variations. The bottom

panel is the ratio with respect to NNLO.

and the error bars indicate the numerical integration er-
ror. Our state-of-the-art predictions at N3LO accuracy
amount to a contribution of about �2.5% with respect
to NNLO with relatively flat corrections for all rapidities.
While the NLO and NNLO scale variation bands overlap,
the N3LO prediction is found to be non-overlapping with
the previous order within the respective scale uncertain-
ties. This feature at N3LO has already been observed for
the total cross sections for neutral current [56, 57] and
charged-current [13] Drell-Yan production and for the
neutral-current Drell-Yan rapidity distribution [33] and
fiducial cross sections [58]. The relative size of scale vari-
ation remains comparable at NNLO and N3LO at about
±1% for central rapidity and slightly increasing at large
rapidity. We use three di↵erent qcutT values (1, 1.5 and
2GeV) to confirm that the contribution from sub-leading
power corrections is su�ciently suppressed in the plotted
fiducial region, thereby establishing qcutT -independence of
the results within integration errors. A strong check on
our results is provided by the rapidity-integrated charged
current Drell-Yan cross section at N3LO, where our re-
sults for qcutT = 1.5 GeV agree with [13] within our nu-
merical integration error of 1.5 per-mille.

The W boson charge asymmetry AW at hadron collid-
ers reveals details of the proton structure. It has been
measured at the Tevatron [59, 60] and the LHC [7, 9, 61]
and is defined as

AW(|yW|) =
d�/d|yW+ |� d�/d|yW� |

d�/d|yW+ |+ d�/d|yW� |
. (2)

In Fig. 2, we display the predictions of AW(|yW|) at

FIG. 3: W+ transverse mass distribution from LO to
N3LO accuracy. The colored bands represent theory
uncertainties from 7-point scale variation. The bot-
tom panel is the ratio with respect to NNLO, with

di↵erent cuto↵ qcutT .

13TeV center of mass energy with up to N3LO correc-
tions. We independently vary the scale choices between
the numerator and the denominator of Eq. (2) while re-
quiring 1/2  µ/µ0

 2 for any pair of scales. This
leads to 31 combinations of scale variations for estimat-
ing theoretical uncertainties of AW(|yW|). We observe
positive N3LO corrections of about 2% relative to the
NNLO predictions. The N3LO contribution is not flat in
rapidity. In contrast to the individual rapidity distribu-
tions, the charge asymmetry demonstrates convergence
of the perturbative expansion from NLO to N3LO with
scale variation uncertainty reduced to about ±1.5% at
N3LO.
Finally, we consider the transverse mass distribution

in charged-current Drell-Yan production. The transverse
mass is constructed as

mW
±

T =
q
2E`±

T E⌫
T (1� cos��), (3)

with E`±(⌫)
T denoting the transverse energies of the final

state charged lepton and neutrino and �� being their
azimuthal angle di↵erence. It is a characteristic observ-
able in measurements of MW [3–5, 10] and �W [62, 63]
at hadron colliders, since its distribution peaks around
MW and the shape of its tail is sensitive to �W. Fig. 3
presents the new state-of-the-art precision for the W+

boson transverse mass distribution with up to N3LO cor-
rections. Starting from NNLO, we observe a large reduc-
tion in scale uncertainties to the level of ±1%. There
is a non-trivial modification in the shape of the distri-

[Gehrmann, Glover, Huss, Chen, Monni, Re, LR, Torrielli, 2203.01565 ][Gehrmann, Glover, Huss, Chen, Yang, Zhu 2205.11426]

Shape of differential spectra is affected by higher order predictions

Impact of N3LOQCD corrections 
relatively flat in the fit window for mT

N3LL’QCD+N3LOQCD modifies the shape 
after the Jacobian peak for pℓ

T

* resummation 
effects not included

Residual uncertainties 
at N3LOQCD are at the 

 level𝒪(1 − 2%)

Interplay of QCD and EW corrections further modify the shape of the differential distributions

Control of the differential distributions in DY production

See previous talk by G. Ferrera
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The lepton transverse momentum distribution in charged-current Drell-Yan

The lepton transverse momentum distribution has a jacobian peak 

induced by the factor   .

When studying the W resonance region, the peak appears at 

Kinematical end point at MW/2  at LO

The decay width allows to populate the upper tail of the distribution

Sensitivity to soft radiation Ⱦ double peak at NLO-QCD

The QCD-ISR leading log resummation broadens the distribution
and cures the sensitivity to soft radiation at the jacobian peak.

1/ 1 − s
4p2⊥

p⊥ ∼ mW

2
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The presence of an end point is the source of specific sensitivity to mW

13
13

The lepton transverse momentum distribution features a 
Jacobian peak at pℓ

T ∼ mW /2

At LO, in the narrow width approx., the distribution 
features a kinematical endpoint at mW /2

Width effects broaden the distribution above  mW /2

Beyond LO, sensitivity to soft radiation creates 
unphysical instabilities around  in fixed-order 
computations

mW /2

All-order resummation effects cure such instabilities ad 
provide physical prediction

[Catani, Webber ’97]

Presence of the endpoint makes the distribution particularly sensitive to mW
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pret the extracted mW as the fundamental SM parame-
ter; on the other hand, the observable displays excellent
perturbative convergence, which enables a robust study
of the associated perturbative-QCD (pQCD) uncertain-
ties, and its theoretical description is systematically im-
provable by adding subleading QCD and EW e↵ects. The
simple dependence of the observable uponmW in turn al-
lows a plain study of the impact of non-perturbative QCD
(npQCD) e↵ects, as well as a consistent propagation of
their uncertainties in the prediction.

Lepton transverse momentum and sensitivity to mW .
The modelling of p`

? in CCDY requires a precise descrip-
tion of the QCD contributions to the transverse and lon-
gitudinal degrees of freedom of the final state [77]. At
leading order (LO) the charged lepton and the neutrino
are back-to-back, p`⌫

? = 0, thus, neglecting lepton masses
and the W -boson decay width �W , the p`

? distribution
has a sharp kinematical endpoint at p`

? = mW /2, which
is the origin of its sensitivity to the W -boson mass (see
also [78, 79]). Beyond LO in QCD, the region around the
endpoint develops a sensitivity to soft radiation, which in
turn generates an integrable singularity [80] in the fixed-
order di↵erential p`

? spectrum. The all-order treatment
of soft and collinear initial-state QCD radiation, achieved
by a resummation of enhanced logarithms log(p`⌫

? /mW ),
is therefore a central ingredient for a reliable descrip-
tion of p`

?. Such a resummation nowadays reaches next-
to-next-to-next-to-leading-logarithmic (N3LL) accuracy,
matched with the next-to-next-to-leading-order (NNLO)
predictions for the transverse-momentum spectrum [27].

In the following, we consider the p`
? distribution at the

Large Hadron Collider (LHC) with centre-of-mass energyp
S = 13 TeV and acceptance cuts p`

? > 20 GeV, M `⌫
? >

27 GeV, |⌘`| < 2.5, 66 GeV < M `⌫ < 116 GeV (⌘` and
M `⌫ being the charged-lepton rapidity and the lepton-
pair invariant mass, respectively), using the central
replica of the NNPDF4.0 NNLO proton PDF set [81] with
strong coupling constant ↵s(mZ) = 0.118 through the
LHAPDF interface [82]. We give predictions for three dif-
ferent QCD approximations, NLO+NLL, NNLO+NNLL
and NNLO+N3LL [83], using the RadISH [31, 84–86] code
for p`⌫

? resummation, with a fixed-order prediction pro-
vided by MCFM [87]. We match the two results using the
qT -subtraction formalism [88], with a technical slicing
cuto↵ qcut

T = 0.81 GeV in the MCFM calculation. Linear
fiducial power corrections are included in the RadISH pre-
diction through transverse recoil [28, 89] using the pre-
scription described in [90, 91]. We consider 21 values
of mW between 80.329 GeV and 80.429 GeV, in steps
of 5 MeV. Renormalisation, factorisation and resumma-

tion scales are chosen as µR,F = ⇠R,F

q
(M `⌫)2 + (p`⌫

? )2,

and µQ = ⇠Q M `⌫ , respectively. We estimate pQCD un-
certainties by varying ⇠R and ⇠F independently in the
range (1/2, 1, 2), excluding ⇠R,F /⇠F,R = 4, while keeping
⇠Q = 1/2 (7 variations). In addition, we consider the 2
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Figure 1. Upper panel: charged-lepton transverse-
momentum distribution in CCDY, computed with di↵erent
QCD approximations and referencemW = 80.379 GeV. Lower
panel: ratio of p`? distributions computed with two mW val-
ues di↵ering by 20 MeV.

variations of ⇠Q in (1/4, 1) at central values ⇠R = ⇠F = 1,
thereby obtaining a total envelope of 9 variations.

The upper panel of Figure 1 displays the perturbative
convergence of the p`

? distribution, for a given value of
mW = 80.379 GeV: one can notice how the inclusion
of higher-order pQCD e↵ects in resummed predictions
translates into a significant reduction of theoretical sys-
tematics. The lower panel of Figure 1 shows the impact
on the p`

? distribution of a 20-MeV shift of the reference
mW value. As evinced by the plot, such a shift induces
a shape distortion at the 0.5%-level around the jacobian
peak, an e↵ect which is clearly resolvable beyond the the-
oretical uncertainty. We also note that, starting from

Progress in theoretical computations allows for a 
precise theoretical description of the distribution, with 

 residual uncertainties 𝒪(2%)

Uncertainty band encodes canonical 7-point scale 
variation envelope and resummation scale variation for 
central scales (total: 9-point envelope)

μF,R = ξF,R m2
ℓν + p2

⊥,ℓν Q = ξQmℓν

ξF,R ∈ {1/2,1,2}, ξQ ∈ {1/4,1/2,1}

When width and resummation effects are included, the 
peak is located at ~38.5 GeV

17

[LR, P. Torrielli, A. Vicini ’23]
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pret the extracted mW as the fundamental SM parame-
ter; on the other hand, the observable displays excellent
perturbative convergence, which enables a robust study
of the associated perturbative-QCD (pQCD) uncertain-
ties, and its theoretical description is systematically im-
provable by adding subleading QCD and EW e↵ects. The
simple dependence of the observable uponmW in turn al-
lows a plain study of the impact of non-perturbative QCD
(npQCD) e↵ects, as well as a consistent propagation of
their uncertainties in the prediction.

Lepton transverse momentum and sensitivity to mW .
The modelling of p`

? in CCDY requires a precise descrip-
tion of the QCD contributions to the transverse and lon-
gitudinal degrees of freedom of the final state [77]. At
leading order (LO) the charged lepton and the neutrino
are back-to-back, p`⌫

? = 0, thus, neglecting lepton masses
and the W -boson decay width �W , the p`

? distribution
has a sharp kinematical endpoint at p`

? = mW /2, which
is the origin of its sensitivity to the W -boson mass (see
also [78, 79]). Beyond LO in QCD, the region around the
endpoint develops a sensitivity to soft radiation, which in
turn generates an integrable singularity [80] in the fixed-
order di↵erential p`

? spectrum. The all-order treatment
of soft and collinear initial-state QCD radiation, achieved
by a resummation of enhanced logarithms log(p`⌫

? /mW ),
is therefore a central ingredient for a reliable descrip-
tion of p`

?. Such a resummation nowadays reaches next-
to-next-to-next-to-leading-logarithmic (N3LL) accuracy,
matched with the next-to-next-to-leading-order (NNLO)
predictions for the transverse-momentum spectrum [27].

In the following, we consider the p`
? distribution at the

Large Hadron Collider (LHC) with centre-of-mass energyp
S = 13 TeV and acceptance cuts p`

? > 20 GeV, M `⌫
? >

27 GeV, |⌘`| < 2.5, 66 GeV < M `⌫ < 116 GeV (⌘` and
M `⌫ being the charged-lepton rapidity and the lepton-
pair invariant mass, respectively), using the central
replica of the NNPDF4.0 NNLO proton PDF set [81] with
strong coupling constant ↵s(mZ) = 0.118 through the
LHAPDF interface [82]. We give predictions for three dif-
ferent QCD approximations, NLO+NLL, NNLO+NNLL
and NNLO+N3LL [83], using the RadISH [31, 84–86] code
for p`⌫

? resummation, with a fixed-order prediction pro-
vided by MCFM [87]. We match the two results using the
qT -subtraction formalism [88], with a technical slicing
cuto↵ qcut

T = 0.81 GeV in the MCFM calculation. Linear
fiducial power corrections are included in the RadISH pre-
diction through transverse recoil [28, 89] using the pre-
scription described in [90, 91]. We consider 21 values
of mW between 80.329 GeV and 80.429 GeV, in steps
of 5 MeV. Renormalisation, factorisation and resumma-

tion scales are chosen as µR,F = ⇠R,F

q
(M `⌫)2 + (p`⌫

? )2,

and µQ = ⇠Q M `⌫ , respectively. We estimate pQCD un-
certainties by varying ⇠R and ⇠F independently in the
range (1/2, 1, 2), excluding ⇠R,F /⇠F,R = 4, while keeping
⇠Q = 1/2 (7 variations). In addition, we consider the 2
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Figure 1. Upper panel: charged-lepton transverse-
momentum distribution in CCDY, computed with di↵erent
QCD approximations and referencemW = 80.379 GeV. Lower
panel: ratio of p`? distributions computed with two mW val-
ues di↵ering by 20 MeV.

variations of ⇠Q in (1/4, 1) at central values ⇠R = ⇠F = 1,
thereby obtaining a total envelope of 9 variations.

The upper panel of Figure 1 displays the perturbative
convergence of the p`

? distribution, for a given value of
mW = 80.379 GeV: one can notice how the inclusion
of higher-order pQCD e↵ects in resummed predictions
translates into a significant reduction of theoretical sys-
tematics. The lower panel of Figure 1 shows the impact
on the p`

? distribution of a 20-MeV shift of the reference
mW value. As evinced by the plot, such a shift induces
a shape distortion at the 0.5%-level around the jacobian
peak, an e↵ect which is clearly resolvable beyond the the-
oretical uncertainty. We also note that, starting from

17

Determination of  with  precision 
requires control of the shape at the few permille level 

mW 𝒪(10 MeV)

Distortion of the shape largely independent of the 
accuracy or scale choice in pure QCD

Sensitivity to  independent on the QCD 
approximation

mW

Sensitivity to  related to propagation and decay of 
the W boson 

mW

Consequence of the factorisation between production 
(subject to QCD effect) and propagation and decay 

Uncertainty on  instead related to the QCD 
approximation 

mW

[LR, P. Torrielli, A. Vicini ’23]
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covariance matrix (II)
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p�
t = 47 GeV

I First eigenvalue dominates: bulk of MW sensitivity captured by a single bin combination.

I Stemming from the fact that the dominant effect of �MW is a rigid shift of the spectrum by
�MW /2.

I Coefficients of the dominant eigenvector change sign around p`
t

⇠ 37 GeV.

I Define a simple (theoretically and experimentally) observable mimicking dominant covariance
eigenvector: jacobian asymmetry.

Paolo Torrielli On the determination of the W mass at hadron colliders 11 / 21

C(mW)
ij = ⟨σiσj⟩ − ⟨σi⟩⟨σj⟩

⟨x⟩ =
1
N

N

∑
k=1

xk

First eigenvalue dominates: bulk of  
sensitivity captured by a single bin combination. 

mWCoefficients of the dominant 
eigenvector change sign 
around  ∼ 37 GeV.  pℓ

⊥

Sensitivity on  of the bins of the  distribution can be quantified by means of the covariance matrix 
with respect to  variations

mW pℓ
T

mW

The eigenvalues of this matrix express sensitivity on  on linear combinations of bins of the distributionmW
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The jacobian asymmetry 𝒜pℓ
⊥

19

𝒜(pℓ
⊥,min, pℓ

⊥,mid, pℓ
⊥,max) =

Lpℓ
⊥

− Upℓ
⊥

Lpℓ
⊥

+ Upℓ
⊥

L = ∫
pℓ

⊥,mid

pℓ
⊥,min

dpℓ
⊥

dσ
dpℓ

⊥
U = ∫

pℓ
⊥,max

pℓ
⊥,mid

dpℓ
⊥

dσ
dpℓ

⊥

Scalar observable (i.e. it is measurable via counting) which 
depends only on the edges of the two defining bins 

[LR, P. Torrielli, A. Vicini ’23]

Following this indication, we design a new observable
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L = ∫
pℓ

⊥,mid

pℓ
⊥,min

dpℓ
⊥

dσ
dpℓ

⊥
U = ∫

pℓ
⊥,max

pℓ
⊥,mid

dpℓ
⊥

dσ
dpℓ

⊥

Increasing  shifts the peak to the rightmW

Orange bin gets more populated  asymmetry decreases→

The jacobian asymmetry 𝒜pℓ
⊥

[LR, P. Torrielli, A. Vicini ’23]

𝒜(pℓ
⊥,min, pℓ

⊥,mid, pℓ
⊥,max) =

Lpℓ
⊥

− Upℓ
⊥

Lpℓ
⊥

+ Upℓ
⊥

Scalar observable (i.e. it is measurable via counting) which 
depends only on the edges of the two defining bins 

Following this indication, we design a new observable
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Figure 2. The asymmetry Ap`
?

as a function of mW , in

di↵erent QCD approximations.

Figure 3. The range of mW values obtained comparing the
band of theoretical predictions at di↵erent orders in pQCD,
with the central experimental value of Ap`

?
. Di↵erent choices

of [p`,min
? , p`,mid

? , p`,max
? ] are considered.

proxy. The pattern of convergence against variations
of [p`,min

? , p`,mid
? , p`,max

? ] largely reflects our considerations
below Eq. (2). We also remark the need of N3LL resum-
mation for a sizeable reduction of theoretical uncertainty,
and a precise mW determination.

Discussion. The asymmetry Ap`
?

defined in Eq. (2)
o↵ers some interesting features, compared to a template
fit of the whole p`

? distribution. First, it is defined in

terms of inclusive rates integrated over relatively wide
phase-space regions: this allows to obtain a fairly stable
QCD prediction on the theoretical side, and an excellent
statistical precision and the possibility to unfold detec-
tor e↵ects on the experimental side. Second, the asym-
metry enables a determination of mW based on CCDY
data which, upon including state-of-the-art pQCD pre-
dictions, is not dominated by the tuning of model param-
eters on NCDY measurements. Third, through its linear
dependence on mW , the asymmetry o↵ers the possibil-
ity to cleanly disentangle the impact on mW determina-
tion of all e↵ects contributing to the p`

? spectrum. On
top of the pQCD predictions scrutinised in this paper,
which constitute a robust starting point, it is conceptu-
ally straightforward to include final-state QED radiation,
as well as EW and mixed QCD-EW perturbative correc-
tions. All of these additional e↵ects induce modifications
to Ap`

?
that can be separately assessed and systemati-

cally refined. E↵ects of npQCD origin, relevant for a fully
realistic description, can also be included as a separate
component to the prediction of Ap`

?
, but as opposed to

template-fitting, their inclusion is not instrumental for
the whole mW -extraction procedure. As they involve
initial-state QCD radiation, their inclusion is expected
to simply induce a vertical o↵set to Ap`

?
without altering

its slope, i.e. its sensitivity to mW . This o↵set in turn
yields a shift of the preferred mW value, which can be
easily estimated thanks to the linear mW -dependence of
Ap`

?
. The underlying npQCD model can be constrained

via the simultaneous analysis of more observables, other
than Ap`

?
: the improvement in the accuracy of this model

is thus a problem fully decoupled from mW determina-
tion.
To illustrate how npQCD contributions can be consis-

tently studied through the asymmetry Ap`
?
, we consider

e↵ects on mW coming from collinear proton PDFs and
from the modelling of an intrinsic transverse momentum
k? of partons in the proton (further details on the results
of this study can be found in the Appendix). The un-
certainty on collinear PDFs enters transverse kinematics
indirectly, through the finite lepton-rapidity acceptance,
while intrinsic k? directly shifts leptonic momenta.
As for the e↵ect of collinear PDFs, predictions for

Ap`
?
(32GeV, 37GeV, 47GeV) obtained using all 100

replicas of the NNPDF4.0 set yield a PDF uncer-
tainty of ±11.5 MeV. More conservatively, we also
consider the central replicas of the CT18NNLO [93],
MSHT20nnlo [94], and NNPDF3.1 [95] PDF sets. The
corresponding spread of mW values is of ⇠ 30 MeV. A
reduction of PDF uncertainty can be achieved by profil-
ing PDF replicas through the simultaneous inclusion of
additional information, such as data in di↵erent rapid-
ity regions [68, 69], all bins of the p`

? distribution [73],
di↵erent W charges at the LHC [2].

Turning to the intrinsic k? of partons in the proton,
it can be precisely modelled studying the p`+`�

? distribu-

20

The asymmetry features a linear dependence on , 
which stems from the linear dependence of the end-
point position in the  distribution

mW

pℓ
⊥

Sensitivity to  expressed through the slope in each 
 window

mW
(pℓ

⊥,min, pℓ
⊥,mid, pℓ

⊥,max)

Slope independent on the QCD approximation

Bin size  has threefold advantage

1. Small statistical error

2. Perturbative stability of the QCD result 

3. Unfolding to particle level viable

𝒪(10 GeV)

Experimental result and theoretical predictions can 
be directly compared by looking at the intersection 
between the lines

The main systematics on the two fiducial cross sections is related to the lepton momentum scale resolution 


Determination at the ±15 MeV level from the experimental side seems possible ( =0.0007 with 140 fb-1 
and 0.001 systematic error on U, L)

δApℓ
⊥

The jacobian asymmetry  and 𝒜pℓ
⊥

mW

[LR, P. Torrielli, A. Vicini ’23]
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The jacobian asymmetry  and its theoretical uncertainty𝒜pℓ
⊥

4

Figure 2. The asymmetry Ap`
?

as a function of mW , in

di↵erent QCD approximations.
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Figure 3. The range of mW values obtained comparing the
band of theoretical predictions at di↵erent orders in pQCD,
with the central experimental value of Ap`

?
. Di↵erent choices

of [p`,min
? , p`,mid

? , p`,max
? ] are considered.

proxy. The pattern of convergence against variations
of [p`,min

? , p`,mid
? , p`,max

? ] largely reflects our considerations
below Eq. (2). We also remark the need of N3LL resum-
mation for a sizeable reduction of theoretical uncertainty,
and a precise mW determination.

Discussion. The asymmetry Ap`
?

defined in Eq. (2)
o↵ers some interesting features, compared to a template
fit of the whole p`

? distribution. First, it is defined in

terms of inclusive rates integrated over relatively wide
phase-space regions: this allows to obtain a fairly stable
QCD prediction on the theoretical side, and an excellent
statistical precision and the possibility to unfold detec-
tor e↵ects on the experimental side. Second, the asym-
metry enables a determination of mW based on CCDY
data which, upon including state-of-the-art pQCD pre-
dictions, is not dominated by the tuning of model param-
eters on NCDY measurements. Third, through its linear
dependence on mW , the asymmetry o↵ers the possibil-
ity to cleanly disentangle the impact on mW determina-
tion of all e↵ects contributing to the p`

? spectrum. On
top of the pQCD predictions scrutinised in this paper,
which constitute a robust starting point, it is conceptu-
ally straightforward to include final-state QED radiation,
as well as EW and mixed QCD-EW perturbative correc-
tions. All of these additional e↵ects induce modifications
to Ap`

?
that can be separately assessed and systemati-

cally refined. E↵ects of npQCD origin, relevant for a fully
realistic description, can also be included as a separate
component to the prediction of Ap`

?
, but as opposed to

template-fitting, their inclusion is not instrumental for
the whole mW -extraction procedure. As they involve
initial-state QCD radiation, their inclusion is expected
to simply induce a vertical o↵set to Ap`

?
without altering

its slope, i.e. its sensitivity to mW . This o↵set in turn
yields a shift of the preferred mW value, which can be
easily estimated thanks to the linear mW -dependence of
Ap`

?
. The underlying npQCD model can be constrained

via the simultaneous analysis of more observables, other
than Ap`

?
: the improvement in the accuracy of this model

is thus a problem fully decoupled from mW determina-
tion.
To illustrate how npQCD contributions can be consis-

tently studied through the asymmetry Ap`
?
, we consider

e↵ects on mW coming from collinear proton PDFs and
from the modelling of an intrinsic transverse momentum
k? of partons in the proton (further details on the results
of this study can be found in the Appendix). The un-
certainty on collinear PDFs enters transverse kinematics
indirectly, through the finite lepton-rapidity acceptance,
while intrinsic k? directly shifts leptonic momenta.
As for the e↵ect of collinear PDFs, predictions for

Ap`
?
(32GeV, 37GeV, 47GeV) obtained using all 100

replicas of the NNPDF4.0 set yield a PDF uncer-
tainty of ±11.5 MeV. More conservatively, we also
consider the central replicas of the CT18NNLO [93],
MSHT20nnlo [94], and NNPDF3.1 [95] PDF sets. The
corresponding spread of mW values is of ⇠ 30 MeV. A
reduction of PDF uncertainty can be achieved by profil-
ing PDF replicas through the simultaneous inclusion of
additional information, such as data in di↵erent rapid-
ity regions [68, 69], all bins of the p`

? distribution [73],
di↵erent W charges at the LHC [2].

Turning to the intrinsic k? of partons in the proton,
it can be precisely modelled studying the p`+`�

? distribu-

21

[LR, P. Torrielli, A. Vicini ’23]

For each interval choice the QCD scale-variation 
band determines a given  intervalmW

N3LL corrections play an important role in reducing 
uncertainty band

We check the convergence order-by-order. If we 
observe convergence the size of the  interval 
provides an estimate of the QCD uncertainty

mW

The choice of the midpoint is important to identify 
two regions with excellent QCD convergence 

(see regions with )pℓ

⊥,mid = 38 GeV

A perturbative QCD uncertainty at the  level 
is achievable using CC DY data alone

±5 MeV
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Excellent convergence properties of the asymmetry in perturbative QCD are a good starting point to discuss  
additional effects we did not include:

Impact on the central  value of

- missing perturbative corrections (QED, QCDxEW)

- non-perturbative effects

mW

𝒜pℓ
⊥

mW

The jacobian asymmetry : additional effects and uncertainties𝒜pℓ
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Excellent convergence properties of the asymmetry in perturbative QCD are a good starting point to discuss  
additional effects we did not include:

The jacobian asymmetry : additional effects and uncertainties𝒜pℓ
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Impact on the central  value of

- missing perturbative corrections (QED, QCDxEW)

- non-perturbative effects

mW

Each effect yields a vertical offset on the asymmetry
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Excellent convergence properties of the asymmetry in perturbative QCD are a good starting point to discuss  
additional effects we did not include:

The jacobian asymmetry : additional effects and uncertainties𝒜pℓ
⊥

Impact on the central  value of

- missing perturbative corrections (QED, QCDxEW)

- non-perturbative effects

mW

Each effect yields a vertical offset on the asymmetry


QED corrections might also change the shape

𝒜pℓ
⊥

mW shift on → mW

Impact of non-perturbative corrections expected to reduce when using NNLO+N3LL predictions with respect to 
results with lower accuracy: interplay of NP QCD model and perturbative accuracy

Linearity of the dependence on  allows an easy propagation of each uncertainty sourcemW

Parton distribution functions are an additional source of theoretical uncertainty 
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Information transfer from NCDY to CCDY
6

late both processes at NNLO+N3LL QCD, with ⇠R =
⇠F = 2 ⇠Q = 1 and take the results as a proxy for ex-
perimental data (we dub them “pseudo-data”, see also
[36]). We assume to have available an event generator
with NNLO+NNLL pQCD accuracy only, and compute
the NCDY p`+`�

? distribution with di↵erent scale choices.
The ratio of NNLO+NNLL predictions with pseudo-data
defines a reweighing factor, as a function of p`+`�

? , en-
coding the missing pQCD higher orders (with real data
as opposed to pseudo-data it would encode npQCD ef-
fects as well). We compute one such reweighing fac-
tor per pQCD scale choice in NCDY. We then use the
NNLO+NNLL generator to simulate the CCDY process
with scale variations, and reweigh all events in each vari-
ation according to their p`⌫

? value, using the correspond-
ing factor determined in NCDY. Since by construction
the reweighed NCDY NNLO+NNLL curves would ex-
actly match NCDY pseudo-data, one expects to a large
extent the same to happen with CCDY pseudo-data and
reweighed NNLO+NNLL CCDY distributions. We ob-
serve instead that the reweighed distributions do not ex-
actly reproduce CCDY pseudo-data, the discrepancy be-
ing comparable with, or larger than the NNLO+NNLL
scale-uncertainty band, i.e. �mW ⇠ ±27 MeV from
the study of Ap`

?
(32GeV, 37GeV, 47GeV). We conclude

that the procedure to model npQCD e↵ects due to an
intrinsic k? is intertwined with the underlying pQCD
formulation. We thus expect that the same approach,
using a NNLO+N3LL-accurate event generator and the
real data as a target, would lead to a smaller final spread
in Ap`

?
, providing a handle for a robust assessment of the

impact of npQCD e↵ects on the determination of mW .
We present in Figure 5 the results for di↵erent setups.

⇤ luca.rottoli@physik.uzh.ch
† paolo.torrielli@to.infn.it
‡ alessandro.vicini@mi.infn.it

[1] T. A. Aaltonen et al. (CDF, D0), Phys. Rev. D 88,
052018 (2013), arXiv:1307.7627 [hep-ex].

[2] M. Aaboud et al. (ATLAS), Eur. Phys. J. C 78,
110 (2018), [Erratum: Eur.Phys.J.C 78, 898 (2018)],
arXiv:1701.07240 [hep-ex].

[3] R. Aaij et al. (LHCb), JHEP 01, 036 (2022),
arXiv:2109.01113 [hep-ex].

[4] T. Aaltonen et al. (CDF), Science 376, 170 (2022).
[5] M. Awramik, M. Czakon, A. Freitas, and G. Weiglein,

Phys. Rev. D 69, 053006 (2004), arXiv:hep-ph/0311148.
[6] G. Degrassi, P. Gambino, and P. P. Giardino, JHEP

05, 154 (2015), arXiv:1411.7040 [hep-ph].
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NNLO+N3LL with central scales as our MC truth 

- pseudo-data generated both for NCDY and CCDY 

- reweighting function computed from NNLO+NNLL to 

the  pseudo-data in NC

- same reweighing function applied in CC DY

NNLO+NNLL taken as our theory model

The  and the  distributions get closer to the CCDY 
pseudodata but still maintain some shape differences 


pℓν
⊥ pℓ

⊥

Perturbative QCD uncertainty on  
estimated with or without reweighing is of similar size 

mW

Usage of the highest available perturbative order is 
recommended  to minimize the systematics in the transfer 
from Z to W 

delicate to assume that  rescaling 
applies equally well to 
→ pℓν

⊥
pℓ

⊥
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Conclusion and outlook
• Huge amount of theoretical work in the last few years in the computation of higher-order 

corrections (QCD resummation, mixed QCD and QED corrections), which now allows for a precise 
and accurate description of neutral and charged DY production 


• Future measurement of  should exploit these computation for a reliable estimates of the 
theoretical uncertainties


• Shape of the  distribution and presence of the Jacobian peak motivates the definition of a scalar 
observable which maximises the sensitivity on  and has several advantages


• Determination at the  level from the experimental side seems possible; perturbative QCD 
uncertainty at the  level is achievable using CC DY data alone


• For the future: thorough phenomenological study, including all the available SM radiative corrections 

mW

pℓ
T

mW

±15 MeV
±5 MeV
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- excellent pQCD convergence 
- large linear dependence on → sensitivity for a precision measurement 
- possibility to unfold the data to particle level → simplicity in a global combination 


mW
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Description of experimental data
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Figure 22: Ratio between the predictions of Pythia 8 AZ, DYRes and Powheg MiNLO+Pythia 8 and the data for
the (a) uT and (b) u`

k
distributions in W ! `⌫ events. The W-boson rapidity distribution is reweighted according

to the NNLO prediction. The error bars on the data points display the total experimental uncertainty, and the band
around the Pythia 8 AZ prediction reflects the uncertainty in the pW

T distribution. The uncertainty band around the
DYRes prediction assumes that uncertainties induced by variations of the QCD scales µF, µR and µRes, collectively
referred to as µQCD, are fully correlated in W and Z production.

dominant sources of experimental systematic uncertainty for the extraction of mW from the p`T distribu-
tion. These uncertainties vary from about 15 MeV to about 35 MeV for most measurement categories,
except the highest |⌘| bin in the muon channel where the total uncertainty of about 120 MeV is dominated
by the muon momentum linearity uncertainty. The uncertainty in the calibration of the recoil is the largest
source of experimental systematic uncertainty for the mT distribution, with a typical contribution of about
15 MeV for all categories. The determination of mW from the p`T and mT distributions in the various
categories is summarised in Table 10, including an overview of statistical and systematic uncertainties.
The results are also shown in Figure 23. No significant di↵erences in the values of mW corresponding to
the di↵erent decay channels and to the various charge and |⌘`| categories are observed.

The comparison of data and simulation for kinematic distributions sensitive to the value of mW provides
further validation of the detector calibration and physics modelling. The comparison is performed in
all measurement categories. The ⌘-inclusive p`T, mT and pmiss

T distributions for positively and negatively
charged W bosons are shown in Figures 24 and 25 for the electron and muon decay channels, respectively.
The value of mW used in the predictions is set to the overall measurement result presented in the next
section. The �2 values quantifying the comparison between data and prediction are calculated over the
full histogram range and account for all sources of uncertainty. The bin-to-bin correlations induced by the
experimental and physics-modelling systematic uncertainties are also accounted for. Overall, satisfactory
agreement is observed. The deficit of data visible for p`T ⇠ 40–42 GeV in the W+ ! e+⌫ channel does
not strongly a↵ect the mass measurement, as the observed e↵ect di↵ers from that expected from mW
variations. Cross-checks of possible sources of this e↵ect were performed, and its impact on the mass
determination was shown to be within the corresponding systematic uncertainties.

50

Predictions with formal higher accuracy 
could still be outperformed by tuned 
parton shower simulation

: projection of hadronic recoil on the 
axis parallel to reconstructed charged-
lepton transverse momentum 


uℓ
||

[ATLAS ’17]

E.g. ATLAS 2017 analysis found that 
(tuned) PYTHIA8 provided a better 
description of relevant kinematic 
distribution with respect to codes 
formally more accurate
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Impact of QED and mixed QCD QED corrections ×
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Figure 7. Upper plots: lepton-pair transverse mass (left plots) and lepton transverse momentum
(right plots) distributions in di↵erent approximations: without QCD corrections (Horace LO and
Horace with QED FSR PS) and with QCD corrections (Powheg-v2 NLO QCD + QCD PS
and Powheg-v2 NLO QCD + QCD PS interfaced to Photos) for the decay W

+
! µ

+
⌫ at the

LHC 14 TeV, with acceptance cuts as in table 11. Lower plots: relative contribution of QED FSR
normalized to the LO predictions and of QED FSR + mixed QCD-QED corrections normalized to
the Powheg-v2 NLO QCD + QCD PS predictions.

LO predictions (blue dots); we then consider the predictions in QCDNLOPS⇥QEDPS ap-

proximation and take the ratio with purely QCD corrected distributions (red dots). With

this ratio we express the impact of QED FSR corrections together with the one of mixed

QCD-QED terms present in a tool based on a factorized ansatz for the combination of

QCD and QED terms, removing exactly the e↵ect of pure QCD corrections. The QED

FSR corrections are common to the blue and red dots and the di↵erence between the two

sets of points is induced by the mixed QCD-QED corrections. As it can be seen from

figure 7, the shape and size of the QED FSR corrections to the transverse mass distribu-

tion is largely maintained after the inclusion of QCD corrections; the mixed QCD-QED

contributions are moderate but not negligible, with an e↵ect at the few per mille level. On

the contrary, the lepton pT distribution is strongly modified by mixed QCD-QED e↵ects,

which amount to some per cent and, more importantly, smear the varying shape of the

– 22 –

Both  and  features large radiative 
corrections due to QED final state radiation 
at the jacobian peak

pℓ
T mT

[Carloni Calame, Chiesa, Martinez, Montagna, Nicrosini, Piccinini, Vicini 1612.02841]
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Figure 7. Upper plots: lepton-pair transverse mass (left plots) and lepton transverse momentum
(right plots) distributions in di↵erent approximations: without QCD corrections (Horace LO and
Horace with QED FSR PS) and with QCD corrections (Powheg-v2 NLO QCD + QCD PS
and Powheg-v2 NLO QCD + QCD PS interfaced to Photos) for the decay W

+
! µ

+
⌫ at the

LHC 14 TeV, with acceptance cuts as in table 11. Lower plots: relative contribution of QED FSR
normalized to the LO predictions and of QED FSR + mixed QCD-QED corrections normalized to
the Powheg-v2 NLO QCD + QCD PS predictions.

LO predictions (blue dots); we then consider the predictions in QCDNLOPS⇥QEDPS ap-

proximation and take the ratio with purely QCD corrected distributions (red dots). With

this ratio we express the impact of QED FSR corrections together with the one of mixed

QCD-QED terms present in a tool based on a factorized ansatz for the combination of

QCD and QED terms, removing exactly the e↵ect of pure QCD corrections. The QED

FSR corrections are common to the blue and red dots and the di↵erence between the two

sets of points is induced by the mixed QCD-QED corrections. As it can be seen from

figure 7, the shape and size of the QED FSR corrections to the transverse mass distribu-

tion is largely maintained after the inclusion of QCD corrections; the mixed QCD-QED

contributions are moderate but not negligible, with an e↵ect at the few per mille level. On

the contrary, the lepton pT distribution is strongly modified by mixed QCD-QED e↵ects,

which amount to some per cent and, more importantly, smear the varying shape of the
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Both  and  features large radiative 
corrections due to QED final state radiation 
at the jacobian peak

pℓ
T mT

The precise shape of  at the Jacobian peak 
is determined by the interplay of QCD and 
QED corrections
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Figure 7. Upper plots: lepton-pair transverse mass (left plots) and lepton transverse momentum
(right plots) distributions in di↵erent approximations: without QCD corrections (Horace LO and
Horace with QED FSR PS) and with QCD corrections (Powheg-v2 NLO QCD + QCD PS
and Powheg-v2 NLO QCD + QCD PS interfaced to Photos) for the decay W

+
! µ

+
⌫ at the

LHC 14 TeV, with acceptance cuts as in table 11. Lower plots: relative contribution of QED FSR
normalized to the LO predictions and of QED FSR + mixed QCD-QED corrections normalized to
the Powheg-v2 NLO QCD + QCD PS predictions.

LO predictions (blue dots); we then consider the predictions in QCDNLOPS⇥QEDPS ap-

proximation and take the ratio with purely QCD corrected distributions (red dots). With

this ratio we express the impact of QED FSR corrections together with the one of mixed

QCD-QED terms present in a tool based on a factorized ansatz for the combination of

QCD and QED terms, removing exactly the e↵ect of pure QCD corrections. The QED

FSR corrections are common to the blue and red dots and the di↵erence between the two

sets of points is induced by the mixed QCD-QED corrections. As it can be seen from

figure 7, the shape and size of the QED FSR corrections to the transverse mass distribu-

tion is largely maintained after the inclusion of QCD corrections; the mixed QCD-QED

contributions are moderate but not negligible, with an e↵ect at the few per mille level. On

the contrary, the lepton pT distribution is strongly modified by mixed QCD-QED e↵ects,

which amount to some per cent and, more importantly, smear the varying shape of the
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pp ! W

+,
p
s = 14 TeV MW shifts (MeV)

Templates accuracy: LO W
+
! µ

+
⌫ W

+
! e

+
⌫

Pseudo–data accuracy MT p
`

T
MT p

`

T

1 Horace only FSR-LL at O(↵) -94±1 -104±1 -204±1 -230±2

2 Horace FSR-LL -89±1 -97±1 -179±1 -195±1

3 Horace NLO-EW with QED shower -90±1 -94±1 -177±1 -190±2

4 Horace FSR-LL + Pairs -94±1 -102±1 -182±2 -199±1

5 Photos FSR-LL -92±1 -100±2 -182±1 -199±2

Table 3. W mass shifts (in MeV) due to di↵erent QED/EW contributions and lepton-pair radi-
ation, for muons and bare electrons at 14 TeV LHC. The templates are computed at LO without
any shower correction, the pseudodata with the accuracy and the QED e↵ects as indicated in the
table.

determination of the W mass are in practice independent of the nominal c.m. energy. This

feature follows from the fact that these theoretical contributions are driven by logarithmic

terms of the form LQED = ln(ŝ/m2
`
), where m` is the mass of the radiating particle.

Independently of the accelerator energy, the configurations with ŝ ' M
2
W
, theW resonance,

dominate the cross section and the kinematical distributions relevant for the determination

of MW .

Comparing the di↵erent lines of table 3, it can be noticed that:

• 1 vs. 2: the contribution due to multiple photon emission, beyond O(↵), dominated

by two-photon radiation terms, amounts to some MeV for muons and to about 20

- 30 MeV for bare electrons, because of the very di↵erent impact of lepton-mass

dependent collinear logarithms LQED. This is in agreement with previous studies

at Tevatron energies, where the contribution of multiple FSR is taken into account

using Photos.

• 2 vs. 3: the contribution of non-logarithmic NLO EW corrections is a small e↵ect,

at a few MeV level, for both muons and electrons, and independent of the considered

observable. This result emphasizes the dominant rôle played by QED FSR at LL

level within the full set of NLO EW corrections.

• 2 vs. 4: the O(↵2) contribution due to lepton-pair radiation induces a shift of MW

of about 5±1 MeV for muons and 3±1 MeV for electrons, when considering the fits

to the transverse mass distribution. It is a not negligible e↵ect given the present

accuracy of the measurement at the Tevatron, where it is presently treated as a

contribution to the QED uncertainty, because the Photos version included in the

Tevatron analyses did not simulate pair radiation‡‡. For W decays into muons, the

shift is of the same order of the one induced by multiple photon emission, whereas

‡‡
At present a version of Photos including the e↵ects of light-pair radiation is available, as described in

ref. [79].
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C.Carloni Calame, M.Chiesa, H.Martinez, G.Montagna, O.Nicrosini, F.Piccinini, AV, arXiv:1612.02841 
Impact of EW and mixed QCDxEW corrections on MW

 • QED FSR plays the major role
 • subleading QED and weak induce further O(4 MeV) shifts

Alessandro Vicini - Doreen Wackeroth                                                                                                                                                                                                                                                                                     Munich, August 17th 2022

Largest shifts induced by QED FSR 


Subleading EW effects induce few MeV shifts

pp̄ ! W
+,

p
s = 1.96 TeV MW shifts (MeV)

Templates accuracy: NLO-QCD+QCDPS W
+
! µ

+
⌫ W

+
! e

+
⌫(dres)

Pseudodata accuracy QED FSR MT p
`
T MT p

`
T

1 NLO-QCD+(QCD+QED)PS Pythia -91±1 -308±4 -37±1 -116±4

2 NLO-QCD+(QCD+QED)PS Photos -83±1 -282±4 -36±1 -114±3

3 NLO-(QCD+EW)-two-rad+(QCD+QED)PS Pythia -86±1 -291±3 -38±1 -115±3

4 NLO-(QCD+EW)-two-rad+(QCD+QED)PS Photos -85±1 -290±4 -37±2 -113±3

Table 10. W mass determination for muons and dressed electrons at the Tevatron. MW shifts
(in MeV) due to multiple QED FSR and mixed QCD-EW corrections, computed with Pythia-qed
and Photos as tools for the simulation of QED FSR e↵ects. Pythia-qed and Photos have been
interfaced to Powheg-v2 with only QCD corrections (lines 1 and 2) or matched to Powheg-v2
two-rad with NLO (QCD+EW) accuracy (lines 3 and 4). The templates have been computed with
Powheg-v2 with only QCD corrections. The results are based on MC samples with 1⇥108 events.

constant given by ↵(0), no pair radiation and negligible e↵ect of QED ISR in Pythia-

qed).

• 3 vs. 4: the shifts induced by mixed O(↵↵s) corrections are independent of the QED

radiation model, or, in other words, the e↵ect of QED terms subleading in an expan-

sions in powers of LQED is negligible. In fact the shifts of lines 3 and 4 agree at the

level of 1 MeV, within the statistical error, both for MT and p
l

T
in the case of muons

and dressed electrons. This can be understood by the fact that the hardest QED

final state photon is described, in both approaches, with NLO matrix element accu-

racy and the QED LL shower simulates only higher-order e↵ects. As a consequence,

the di↵erences stemming from di↵erent QED simulations between Pythia-qed and

Photos start from O(↵2). The di↵erences for both lepton-pair transverse mass and

lepton transverse momentum distributions are at the 0.1% level, as shown in figure 10

(blue dots) and flat around the jacobian peak, yielding di↵erences in the MW shifts

below the 1 MeV target uncertainty.

• 1 vs. 3 and 2 vs. 4: the di↵erence between these theoretical options provides an

estimate of the contribution of mixed O(↵↵s) corrections, that are not included in

the stand-alone tools that simulate QED FSR and that become available only after

matching these tools with an exact NLO EW calculation.

We note that the estimate of the mixed O(↵↵s) corrections depends on the tool used

to simulate QED FSR. In particular, the estimate of these e↵ects with FSR simulated

with Pythia-qed amounts to a ⇠ 5±1 MeV shift for the lepton-pair transverse mass

and to a shift of the order of ⇠ 17± 5 MeV for the lepton transverse momentum, in

the case of muons; for recombined electrons the shifts are of the size of ⇠ 1± 1 MeV

and ⇠ 1 ± 5 MeV for MT and p
l

T
, respectively. When simulating QED FSR with

Photos the e↵ects amount to a ⇠ 2± 1 MeV shift for the transverse mass and to a

shift of the order of ⇠ 8 ± 5 MeV for the lepton transverse momentum, in the case

– 34 –

The impact on the  shifts of the 
mixed QCD QED corrections strongly 
depends on the underlying QCD model 

mW
×

Analyses do include the bulk of the 
QCD QED corrections×

[Carloni Calame, Chiesa, Martinez, Montagna, Nicrosini, Piccinini, Vicini 1612.02841]
Note: in this approach non-factorizable 
contributions are neglected 
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Progress in mixed QCD EW corrections ×

Complete set of corrections to neutral and charged current Drell-Yan production recently obtained by two groups

Impact of mixed  corrections estimated to be potentially relevant for  extraction at the LHC𝒪(αsα) 𝒪(10 MeV)

NNLO QCD-EW corrections to charged-current DY (2-loop contributions in pole approximation). 

exact NNLO QCD-EW corrections to neutral-current DY 

[Buonocore, Grazzini, Kallweit, Savoini, Tramontano 2102.12539]

[Buccioni, Caola, Chawdhry, Devoto, Heller, von Manteuffel, Melnikov, Röntsch, Signorile-Signorile 2203.11237] 

[Bonciani, Buonocore, Grazzini, Kallweit, Rana, Tramontano, Vicini, 2106.11953]
[Armadillo, Bonciani, Devoto, Rana, Vicini 2201.01754]

[Behring, Buccioni, Caola, Delto, Jaquier, Melnikov, Röntsch 2103.02671]

Matching of such corrections to QCD and QED all-order resummation of high relevance for accurate and 
precise analysis of the  distribution pℓ

T

Combination of QCD+QED resummation so far available only for Z/W production without decays
[Autieri, Cieri, Ferrera, Sborlini ’18, ’23]
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Thanks to the availability of theoretical prediction at high 
accuracy, it is possible to assess reliably the behaviour of the 
perturbative series for crucial observables such as  ratiopZ

T /pW
T

Stability of the ratio indicates high level of correlation 
between the two spectra

Wojciech Bizoń et al.: The transverse momentum spectrum of weak gauge bosons at N3LL+NNLO 7

Fig. 4. Ratios of Z/W+ and W�/W+ normalised di↵erential
distributions at NLL+LO (green, dotted), NNLL+NLO (blue,
dashed) and N3LL+NNLO (red, solid) at

p
s = 13 TeV. The

three lower panels show three di↵erent prescriptions for the
theory uncertainty, as described in the text.
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Fig. 5. Ratios of Z/W+ and W�/W+ normalised di↵eren-
tial distributions at NNLO (green, dotted), NNLL+NLO (blue,
dashed) and N3LL+NNLO (red, solid) at

p
s = 13 TeV. For

reference, the Pythia8 prediction in the AZ tune is also shown,
and the lower panels show the ratio of each prediction to the
latter.

Comparison with tuned event generator such as PYTHIA* 
however indicates that full correlation might be too strong 
an assumption

1
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Understanding the Z and W correlations

* “PYTHIA is not QCD”
[Kirill Melnikov, QCD@LHC 2016]

https://indico.cern.ch/event/516210/contributions/2212477/attachments/1327382/1993168/melnikovsummary.pdf
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CDF measurement and theoretical accuracy

CDF II measurement features very aggressive 
estimates for theory uncertainties, especially 
when compared to CDF I results with lower 
luminosity, as all the errors are reduced by a 
factor 2-3

(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.

)2W boson mass (MeV/c
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D0 II   23±80376  
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SM

L3   55±80270  

SM

DELPHI   67±80336  

SM

CDF I   79±80432  

SM
D0 I   83±80478  
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Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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Distribution W -boson mass (MeV) χ2/dof

mT (e, ν) 80 408 ± 19stat ± 18syst 52/48

p!T (e) 80 393 ± 21stat ± 19syst 60/62

pνT (e) 80 431 ± 25stat ± 22syst 71/62

mT (µ, ν) 80 379 ± 16stat ± 16syst 58/48

p!T (µ) 80 348 ± 18stat ± 18syst 54/62

pνT (µ) 80 406 ± 22stat ± 20syst 79/62

TABLE I: Fit results and uncertainties for MW . The fit win-
dows are 65 − 90 GeV for the mT fit and 32 − 48 GeV for
the p!T and pνT fits. The χ2 of the fit is computed using the
expected statistical errors on the data points.

from jets misidentified as leptons, Z → !! decays with
only one reconstrcted lepton, W → τν → !νν̄ν, pion and
kaon decays in flight (DIF), and cosmic rays. We esti-
mate jet, DIF, and cosmic ray backgrounds from the data
and Z → !! and W → τν backgrounds from simulation.
Background fractions for the muon (electron) datasets
are evaluated to be 7.35% (0.14%) from Z → !! decays,
0.88% (0.93%) fromW → τν decays, 0.04% (0.39%) from
jets, 0.24% from DIF, and 0.02% from cosmic rays.
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FIG. 3: The mT distribution for muons (top) and the p!T
distribution for electrons (bottom). The data (points) and
the best-fit simulation template (histogram) including back-
grounds (shaded) are shown. The arrows indicate the fitting
range.

The fit results (e.g., Fig. 3) are summarized in Table I.
As with the Z-boson mass measurements, theMW fit val-

Source Uncertainty (MeV)

Lepton energy scale and resolution 7

Recoil energy scale and resolution 6

Lepton removal 2

Backgrounds 3

pT (W ) model 5

Parton distributions 10

QED radiation 4

W -boson statistics 12

Total 19

TABLE II: Uncertainties for the final combined result onMW .

ues were blinded during analysis by adding another un-
known offset in the range [-75,75] MeV. The consistency
of these results confirms that the W -boson production,
decay, and the hadronic recoil are well-modeled. System-
atic uncertainties from analysis parameters are propa-
gated toMW by fitting events, generated with the param-
eter values varied by their uncertainties, with the nom-
inal templates. The statistical correlations between fits
are evaluated with simulated experiments and are found
to be 69% (68%) between mT and p!T (pνT ) fit values, and
28% between p!T and pνT fit values. We perform a numeri-
cal combination of the six individually fitted MW values,
including correlations, using the BLUE [22] method and
obtain MW = 80 387 ± 19 MeV, with χ2/dof = 6.6/5.
The mT , p!T and pνT fits in the electron (muon) channel
contribute weights of 17.5% (35.5%), 13.8% (17.3%), and
7.1% (8.8%), respectively. The systematic uncertainties
for the combined result are shown in Table II.

In conclusion, we report a new measurement of the
W -boson mass with the CDF II detector at the Fer-
milab Tevatron using data corresponding to 2.2 fb−1

of integrated luminosity. The measured value MW =
80 387± 12stat ± 15syst = 80 387± 19 MeV is more pre-
cise than all previous measurements of MW combined.
The world average [5] becomes MW = 80 390± 16 MeV.
This result has a significant impact on the global elec-
troweak fit [7]; the limit on the fitted mass of the SM
Higgs boson has been reduced from MH < 158 GeV to
MH < 145 GeV at the 95% C.L.

We thank the Fermilab staff and the technical staff
of the participating institutions for their vital contri-
butions. We thank C. Balazs, U. Baur, C. M. Carloni
Calame, K. Ellis, G. Montagna, R. Thorne, A. Vicini,
D. Wackeroth and Z. Was for helpful discussions. This
work was supported by the U.S. Department of Energy
and National Science Foundation; the Italian Istituto
Nazionale di Fisica Nucleare; the Ministry of Education,
Culture, Sports, Science and Technology of Japan; the
Natural Sciences and Engineering Research Council of
Canada; the National Science Council of the Republic
of China; the Swiss National Science Foundation; the
A.P. Sloan Foundation; the Bundesministerium für Bil-
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kaon decays in flight (DIF), and cosmic rays. We esti-
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the best-fit simulation template (histogram) including back-
grounds (shaded) are shown. The arrows indicate the fitting
range.

The fit results (e.g., Fig. 3) are summarized in Table I.
As with the Z-boson mass measurements, theMW fit val-

Source Uncertainty (MeV)

Lepton energy scale and resolution 7

Recoil energy scale and resolution 6

Lepton removal 2

Backgrounds 3

pT (W ) model 5

Parton distributions 10

QED radiation 4

W -boson statistics 12

Total 19

TABLE II: Uncertainties for the final combined result onMW .

ues were blinded during analysis by adding another un-
known offset in the range [-75,75] MeV. The consistency
of these results confirms that the W -boson production,
decay, and the hadronic recoil are well-modeled. System-
atic uncertainties from analysis parameters are propa-
gated toMW by fitting events, generated with the param-
eter values varied by their uncertainties, with the nom-
inal templates. The statistical correlations between fits
are evaluated with simulated experiments and are found
to be 69% (68%) between mT and p!T (pνT ) fit values, and
28% between p!T and pνT fit values. We perform a numeri-
cal combination of the six individually fitted MW values,
including correlations, using the BLUE [22] method and
obtain MW = 80 387 ± 19 MeV, with χ2/dof = 6.6/5.
The mT , p!T and pνT fits in the electron (muon) channel
contribute weights of 17.5% (35.5%), 13.8% (17.3%), and
7.1% (8.8%), respectively. The systematic uncertainties
for the combined result are shown in Table II.

In conclusion, we report a new measurement of the
W -boson mass with the CDF II detector at the Fer-
milab Tevatron using data corresponding to 2.2 fb−1

of integrated luminosity. The measured value MW =
80 387± 12stat ± 15syst = 80 387± 19 MeV is more pre-
cise than all previous measurements of MW combined.
The world average [5] becomes MW = 80 390± 16 MeV.
This result has a significant impact on the global elec-
troweak fit [7]; the limit on the fitted mass of the SM
Higgs boson has been reduced from MH < 158 GeV to
MH < 145 GeV at the 95% C.L.

We thank the Fermilab staff and the technical staff
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Culture, Sports, Science and Technology of Japan; the
Natural Sciences and Engineering Research Council of
Canada; the National Science Council of the Republic
of China; the Swiss National Science Foundation; the
A.P. Sloan Foundation; the Bundesministerium für Bil-
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Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Do these error reflect the improved theoretical understanding of Z/W production at hadron colliders?
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Not really: despite being published 10 years apart, the two 
analyses share most of the same underlying theoretical model

Reduction of the theoretical error obtained via additional 
data constraint and use of more modern PDF sets
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(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘

T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.

)2W boson mass (MeV/c
79900 80000 80100 80200 80300 80400 80500

CDF II    9±80433  

SM

ATLAS   19±80370  

SM

D0 II   23±80376  

SM

ALEPH   51±80440  

SM

OPAL   52±80415  

SM

L3   55±80270  

SM

DELPHI   67±80336  

SM

CDF I   79±80432  

SM
D0 I   83±80478  

SM

Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘

T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.

)2W boson mass (MeV/c
79900 80000 80100 80200 80300 80400 80500

CDF II    9±80433  
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ATLAS   19±80370  
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D0 II   23±80376  
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ALEPH   51±80440  
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OPAL   52±80415  

SM

L3   55±80270  

SM

DELPHI   67±80336  

SM

CDF I   79±80432  

SM
D0 I   83±80478  
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Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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“RESBOS offers one of the most 
accurate theoretical calculations 
available for these processes”

NNLL’QCD+NNLOQCD N3LLQCD+N3LOQCD(N)NLLQCD+NLOQCD

ResBos 

[Balasz, Yuan ’97] DYTURBO


[Camarda et al,’19]

CDF measurement and theoretical accuracy

CDF Collaboration et al., Science 376, 170–176 (2022) 
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How to systematically study the 
theoretical error associated to the use 
of predictions at a given accuracy?

CDF measurement and theoretical accuracy
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The lepton transverse momentum distribution in CC DY
5

tion in NCDY. Assuming its universality [96], it can be
applied to the CCDY simulation, inducing a shift in mW .
We have investigated the interplay between the scale un-
certainty of the perturbative NCDY SM description and
the size of the npQCD component extracted from NCDY
data (using the central NNLO+N3LL NCDY prediction
as pseudo-data, hence actually extracting a “pseudo-
npQCD” contribution). To this goal, we have deter-
mined one pseudo-npQCD contribution per scale choice,
included it in the CCDY simulation, and assessed its im-
pact on mW determination. The point which emerges
from this analysis is that, even if the NCDY pseudo-data
are a unique set of numbers, the propagation of their in-
formation to CCDY depends on the underlying pQCD
approximation, and the outcome is not unique. The
CCDY results, improved with the pseudo-npQCD con-
tribution, are spread in a range compatible with, or even
larger than the scale uncertainty of the NNLO+NNLL
calculation. This result stresses the importance of us-
ing state-of-the-art pQCD results in these high-precision
studies.

Conclusions. We have presented a new observable,
Ap`

?
, sensitive to the value of the W -boson mass

mW , with promising experimental properties and robust
pQCD convergence. Its linear dependence on mW allows
to systematically disentangle the impact of each contribu-
tion, perturbative or not, a↵ecting the determination of
mW and to estimate the associated uncertainty, a crucial
feature for the comparison of data with SM predictions.
The study of Ap`

?
highlights the importance of state-of-

the-art predictions to reduce the pQCD uncertainty on
mW down to the ±5 MeV level at the LHC. We argue
that, using Ap`

?
, an experimental error on mW at the

±15 MeV level is achievable already with Run-2 data;
moreover, the possibility is given to unfold the data to
particle level, easing the combination of results from dif-
ferent experiments. Given these properties, we hope that
this observable will be considered for an independent de-
termination of mW from available CCDY data.
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Figure 4. Same as Fig. 3, now comparing the range of mW

values obtained with di↵erent PDF sets.

APPENDIX

In this Appendix we detail the study described in the
main text about the impact of non-perturbative e↵ects
on mW determination. The discussion focuses on the
uncertainty due to collinear PDFs, and on the modelling
of an intrinsic k? of partons in the proton.

Proton-PDF uncertainties. Concerning the ef-
fect of di↵erent collinear PDFs, predictions for
Ap`

?
(32GeV, 37GeV, 47GeV) obtained with the 100

replicas of the NNPDF4.0 set yield a bundle of parallel
straight lines, as expected due to the factorisation of
QCD e↵ects from W -boson production and decay. The
intercepts with the experimental Ap`

?
value yield a

distribution of 100 mW values. We compute mean value
and standard deviation of this distribution, obtaining
at NLO+NLL with central scales a spread in mW of
±11.5 MeV. We also consider the central replicas of the
CT18NNLO [93], MSHT20nnlo [94], and NNPDF3.1 [95]
PDF sets. The spread induced on mW , using the
central-scale NNLO+N3LL prediction, is of ⇠ 30 MeV.
We present in Figure 4 the results for di↵erent setups.

Modelling of the parton intrinsic k?. With the fol-
lowing exercise, we schematically describe the encod-
ing of information present in NCDY data and absent
from a purely perturbative description of the process.
We then consider the usage of such an information in
the simulation of CCDY, and eventually its impact on
mW determination. In particular, the pQCD stability
of Ap`

?
allows to study the role of scale variations in

porting these e↵ects from NCDY to CCDY. We simu-

24

PDF uncertainties on  evaluated conservatively using 
the 100 replicas of the NNPDF4.0 set at NLO+NLL

mW

δmW = ± 11 MeV
Spread of the central values of CT18NNLO, MSHTnnlo, 
NNPDF4.0 of ∼ 30 MeV

Size of the uncertainty expected, as the asymmetry is a 
single scalar observable particularly sensitive to PDF 
variations

More information needed to mitigate PDF uncertainty, 
e.g. profiling using additional bins of the  distributionpℓ

⊥

PDF uncertainty can be reduced to the few MeV level 

thanks to the strong anti correlated behaviour of the 
two tails of 
pℓ

⊥
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The jacobian asymmetry  and its theoretical uncertainty𝒜pℓ
⊥

Asymmetry good starting point to investigate size of the QCD uncertainty at a given accuracy (without tuning)
QCD uncertainty at lower accuracy considerably larger than state-of-the-art predictions for  
(more than 30 MeV at Tevatron, CDF kinematics for some combinations)

pℓ
⊥

±
QCD uncertainties can be smaller for transverse mass but still notably larger than those quoted by CDF

See also [Isaacson, Fu, Yuan 2205.02788] [CERN-LPCC-2022-06]
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PDFs and their uncertainties

Uncertainties related to PDFs can have different origin:

• Uncertainty propagated from the statistical and systematic errors on the measurements used 
in their determination (canonical “PDF uncertainty”)


• Theoretical uncertainties of the predictions used in PDF fits, such as missing higher order 
uncertainty: these are starting to be addressed only recently, and are typically not included in 
the nominal PDF uncertainty

Comparisons between different groups used to assess sources of methodological uncertainty in the PDF extraction

 measurements typically include the nominal PDF uncertainty and, more conservatively, they also assess that it 
encompasses the envelope of various PDF sets
mW

[Abdul Khalek, Ball, LR, et al, (NNPDF Coll.), 1905.04311 ]

[J. McGowan, T. Cridge, L. Harland-Lang, R. Thorne (MSHT Coll.) 2207.04739 ]
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PDFs uncertainties not an obstacle at Tevatron; they 
have long been considered a limiting factor at the 
LHC due to the smaller values of the partonic  
probed (higher collider energy) and the larger 
contribution from the second quark generation

x

PDFs and their uncertainties

The relative size of PDFs uncertainties at the Tevatron and at the LHC is affected by the different centre-of-mass 
energy of the collision and the different initial states

Numerous studies on the impact of PDF uncertainties have been performed at both colliders

Latest generation of NNPDF parton densities (large 
number of LHC datasets included, new machine-
learning based methodology) achieves substantial 
reduction of PDF uncertainty

[Tevatron 0707.0085,0708.3642,0908.0766,1203.0275,1203.0293,1307.7627] [Bozzi, Citelli, Rojo, Vesterinen, Vicini  1104.2056, 1501.05587, 1508.06954 ]

[ATLAS 1701.07240] [Kotwal PRD 98, 033008] [Manca, Cerri, Foppiani, Rolandi 1707.09344] [Bianchini, Rolandi 1902.03028] [Farry, Lupton, Pili, Vesterinen, 1902.04323]

[Hussein, Isaacson, Huston 1905.00110][Gao, Liu, Xie 2205.03942][Bagnaschi, Vicini 1910.04726]



Parton Showers and Resummation 2023, 8 June 2023

PDFs and their uncertainties: template fits
PDF-induced uncertainty typically computed by generating templates with a given PDF member i for various 
values of mW, and subsequently fitting all other members j defining a proper figure of merit

χ2
i,j = ∑

k∈bins

(Tj
k − Di

k)2

σ2
k

Once the preferred value for mW for each member has been determined by minimising the figure of merit, 
compute PDF-induced uncertainty

Numerical results: without any covariance
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࣢ χࡽȋ,ɮ =
∑

Ǯ∈ŻǮȩɾ(Tࡱ,ȋ −Dɮ)ࡽǮ /σ
ࡽ
Ǯ ࣖ

࣢ ,ɄȭɱŗʚǶſțƨ ɼƨʌʯțʚʌ ǑɄɼ ࣯ȳƨŗɼț˦ࣱ ʚǫƨ ʌŗȭƨ ̇ʚ ˝ǶȳƕɄ˝ࣖ
࣢ ÿǫƨ ʌʚʯƕ˦ ʌǫɄ˝ʌ ŗ ʌǶ˲ŗſțƨ ˙ŗɼǶŗſǶțǶʚ˦ Ʉȳ ʚǫƨ ̇ʚ ɼŗȳǖƨࣖ

,Ʉȭȭƨȳʚʌ Ʉȳ ʚǫƨ ƕƨʚƨɼȭǶȳŗʚǶɄȳ ɄǑ ŗ ȭɄƕƨț ɱŗɼŗȭƨʚƨɼ ǑɼɄȭ ȕǶȳƨȭŗʚǶƉŗț ƕǶʌʚɼǶſʯʚǶɄȳʌ Eȭŗȳʯƨțƨ �ࣖ $ŗǖȳŗʌƉǫǶ ࣯�¥bࣱ ࢙ ࣩ ࢅࡹ

PDF uncertainties with this strategy are relatively 
large at the LHC, with a resulting uncertainty 
larger than 10 MeV and considerably large 
spreads between different PDF sets

[Bozzi, Citelli, Vicini 1501.05587]

Cfr. ~ 4 MeV quoted by CDF II with NNLO PDFs

4 MeV also claimed by CDF II to be the shift 
between NNPDF3.1 NNLO and ~15 years old 
NLO CTEQ6.6 PDFs
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Numerical results: with sys+stat+PDF covariance

࣢ İƨ ʚɼǶƨƕ ʚɄ ɸʯŗțǶʚŗʚǶ˙ƨ ʯȳƕƨɼʌʚŗȳƕ ʚǫƨ ǶȭɱŗƉʚ ɄǑ ƕƨʚƨƉʚɄɼ ƨ˽ƨƉʚʌ Ʉȳ ɤȑ⊥ ࣖ
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࣢ İƨ ƉɄȭɱʯʚƨ ŗ ए,¡óࣽƉɄ˙ŗɼǶŗȳƉƨ
ȭŗʚɼǶ˥ऐ ʯʌǶȳǖ ࡱࡱࡹ ʚɄ˦ʌࣖ İƨ ʌʯȭ Ƕʚ ʚɄ
ʚǫƨ â6bॻʌʚŗʚ ƉɄ˙ŗɼǶŗȳƉƨ ȭŗʚɼǶ˥ࣖ

࣢ 6ƨʚƨƉʚɄɼ ƨ˽ƨƉʚʌ ɼƨƕʯƉƨ ʚǫƨ ƨ˾ƉŗƉ˦
ɄǑ ʚǫƨ ȭƨʚǫɄƕࣖ

࣢ � ɸʯŗȳʚǶʚŗʚǶ˙ƨ ɱɼƨƉǶʌƨ ʌʚŗʚƨȭƨȳʚ Ʉȳ
ʚǫƨ â6b ʯȳƉƨɼʚŗǶȳʚ˦ ƕƨɱƨȳƕʌ Ʉȳ ʚǫƨ
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ʚǫƨ ȭƨŗʌʯɼƨȭƨȳʚʌࣖ

,Ʉȭȭƨȳʚʌ Ʉȳ ʚǫƨ ƕƨʚƨɼȭǶȳŗʚǶɄȳ ɄǑ ŗ ȭɄƕƨț ɱŗɼŗȭƨʚƨɼ ǑɼɄȭ ȕǶȳƨȭŗʚǶƉŗț ƕǶʌʚɼǶſʯʚǶɄȳʌ Eȭŗȳʯƨțƨ �ࣖ $ŗǖȳŗʌƉǫǶ ࣯�¥bࣱ ࢁࡹ ࣩ ࢅࡹ

PDFs and their uncertainties: bin-by-bin correlations
Bin-by-bin correlations between PDF replicas can be taken into account inserting the information about PDFs 
in the covariance matrix 

(ΣPDF)ij = ⟨(𝒯 − ⟨𝒯⟩PDF)i(𝒯 − ⟨𝒯⟩PDF)j⟩PDFs

Compute  using full covariance matrix in the definitionχ2

χ2
i,min = ∑

k,l∈bins

(T0,i − D)k(C−1)k(T0,i − D)l ∀mW,i C = ΣPDF + ΣMC + Σstat + Σexp,syst

Inserting the information about PDFs in the covariance 
matrix leads to a profiling action given by the data

[Bagnaschi, Vicini 1910.04726]

PDF uncertainty can be reduced to the few MeV level 

thanks to the strong anti correlated behaviour of the 
two tails of 
pℓ

⊥

22

PDF uncertainty on MW: exploiting the theoretical constraints
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all PDF replicas are correlated because the parton densities are developed in the same QCD framework
    1) obey sum rules,  2) satisfy DGLAP equations,   3) are based on the same data set

the “unitarity constraint” of each parton density affects the parton-parton luminosities, which, convoluted with the partonic xsec,
     in turn affect the hadron-level xsec

E.Bagnaschi, AV, Phys.Rev.Lett.126 (2021) 4, 041801 

Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                                                   Milano, February 1st 2023

χ2
k, min = ∑

r,s∈bins
(&0,k − 'exp)r

C−1
rs (&0,k − 'exp)s

          total covarianceC = ΣPDF + Σstat + ΣMC + Σexp syst

Inserting the information about PDFs in the covariance matrix

leads to a profiling action “in situ”, given by the data themselves

the PDF uncertainty can be reduced to the few MeV level

thanks to the strong anti correlated behaviour of the two tails of pℓ
⊥

22-2

ρij =
⟨(𝒪i − ⟨𝒪⟩)(𝒪j − ⟨𝒪⟩)⟩

σiσj
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Data-driven approach to  extractionmW

A theory-agnostic extraction of mW

Exploit statistics collected by CMS during Run II at the LHC to extract the value of  simultaneously 
with ,  and polarization spectra to obtain a statistically-dominated measurement of 

mW
qW

T yW mW

[E. Manca, PhD Thesis 2016; V. Bertacchi, Tesi di Perfezionamento 2021]

dσ
dq2

T,WdyWd cos θμdϕμdmW
=

3
16π

dσU+L

dq2
T,WdYWdmW [(1 + cos2 θμ) +

7

∑
i=0

AiPi(cos θμ, ϕμ)]
unpolarised cross section

W and lepton 
variables

angular coefficients

Decoupling of the (unknown) production physics from the (known) decay physics

1. Decompose inclusive  distribution in bins of , ,  for each ημ × pμ
T mW YW qW

T Pi

3. Unfolding from the sole lepton kinematics to the underling boson kinematics

2. Fit  distribution measured on dataημ × pμ
T


