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Isospin symmetry

The formal Nf �avor QCD Lagrangian

L
Nf

QCD =

Nf∑

i=1

ψi (i(γµD
µ)−m)ψi −

1

4
G a
µνG

µν
a

in the case of degenerate up and down quarks, is invariant under SU(2)
rotations in the (u-d) �avor space.

Isospin breaking (IB) has two sources

mu 6= md (strong IB)
Qu 6= Qd (EM IB)

The separation makes sense classically. Renormalization e�ects induce a
mass gap, even with bare degenerate masses (→ scheme dependence).

IB is responsible for the neutron-proton mass splitting, whose value
played an important role in nucleosynthesis and the evolution of
stars [BMW, Science 347 (2015)].
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More motivations

The 2021 FLAG review [arXiv:2111.09849] gives

fπ = 130.2(8) MeV , fK = 155.7(7) MeV [Nf = 2 + 1]

fD = 212.0(7) MeV , fDs
= 249.9(5) MeV [Nf = 2 + 1 + 1]

obtained in the isospin limit. EM corrections can be included
following [Phys.Rev. D91 (2015) no.7, 074506 and Phys.Rev.D 103 (2021) 1, 014502 (Rome-Soton)]

These hadronic parameters are relevant for the extraction of CKM
elements from purely leptonic decays. In that game the error is
dominated by experiments, as opposed to the semileptonic
case. [arXiv:1811.06364 (Rome-Soton)]
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Gauge symmetry with PBC

Periodic boundary conditions (PBC)

ψ(x + Lµµ̂) = ψ(x) , Aµ(x + Lν ν̂) = Aµ(x)

The Lagrangian with one fermion of charge 1 (and e = 1) invariant for

Aµ(x) → Aµ(x) + ∂µΛ(x)

ψ(x) → e iΛ(x)ψ(x)

ψ(x) → ψ(x)e−iΛ(x)

Λ(x) does not need to be periodic

Λ(x + Lµµ̂) = Λ(x) + 2πrµ

The quantization in rµ follows from the periodicity of the fermions. In
general

Λ(x) = Λ0(x) + 2π
( r
L

)
µ
xµ

with Λ0(x) periodic.
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Gauge symmetry with PBC

Let us consider the �large gauge transformations� de�ned by Λ0 = 0

Aµ(x)→ Aµ(x) + 2π
rµ

Lµ
, ψ(x)→ ψ(x)e

i2π( r
L )

µ
xµ

they act as a �nite volume shift symmetry on the gauge �elds.

Considering now the correlator 〈ψ(T/4, 0)ψ(0, 0)〉, it is clear that it
vanishes as a consequence of invariance under large gauge
transformations (choose r0mod(4)=2).

OK, let's gauge away the shift symmetry and require the 0-mode of Aµ
to vanish ∫

d4xAµ(x) = 0

that is a non-local constraint, which cannot be imposed through a local
gauge-�xing ! Not a derivative one at least .... We like those because

gauge-independence of physical quantities is manifest.
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Gauss law with PBC and workarounds

Another way to look at the problem

Electric �eld of a point charge cannot be made periodic and continuous
El. field not continuos
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Q =

∫
d3xρ(x) =

∫
d3x∂iEi (x) = 0

Introduce uniform, time-independent background current cµ then

∫
d3xρ(x) +

∫
d3xc0 = 0 ,

which allows to have a net charge.
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Gauss law with PBC and workarounds

Promoting cµ to a �eld, the Lagrangian density is modi�ed by a term

Aµ(x)

∫
d4y cµ(y)

whose EoM is
∫
d4xAµ(x) = 0. When enforcing this on each conf (not

just on average) one obtains the QEDTL prescription used �rst in [Duncan et

al.,Phys.Rev.Lett. 76 (1996)]. It is

• non-local

• without a Transfer matrix

An Hamiltonian formulation can be recovered adopting the QEDL

prescription [Hayakawa and Uno, Prog.Theor.Phys. 120 (2008)], requiring

∫
d3xAµ(t, x) = 0

(Imagine coupling a uniform but time-dependent current, as for charged
particles propagators).
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Gauss law with PBC and workarounds

Both prescriptions

• Introduce some degree of non-locality (issues with renormalization ?
O(a) improvement ? Mixing of IR and UV ?)

• Remove modes, which in the electroquenched approximation, would
be un-constrained and cause algorithmic problems (wild �uctuations)

QEDL is to be preferred as it has a Transfer matrix. The 'quenched'
modes should not play a role in the in�nite-vol dynamics (�elds vanish at
in�nity), so it is a matter of �nite volume e�ects (see for example [Davoudi

et al., arXiv:1810.05923] for studies in PT and numerically for scalar-QED).
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Gauss law with PBC and workarounds

Another natural approach:
the quantization of the shift symmetry was due to BC for fermions. How
about changing it to: [Lucini et al., JHEP 1602 (2016) 076] (C∗ BC)

Aµ(x + Lν ν̂) = −Aµ(x) = ACµ (x)

ψ(x + Lν ν̂) = ψC (x) = C †ψ
T

(x)

ψ(x + Lν ν̂) = −ψ(x)TC with C †γµC = −γTµ
Completely local, no zero-modes allowed, however at the price of
violations of �avor and charge conservation (by boundary e�ects).

Also, SU(3) dynamical con�gurations need to be generated again.

It is useful to look at �nite volume corrections, e.g. to point-like particles
at O(α) (1/L and 1/L2 universal) [Lucini et al., JHEP 1602 (2016) 076]
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Gauss law with PBC and workarounds

A PT-inspired approach [RM123, JHEP 1204 (2012) 124, Phys.Rev. D87 (2013) no.11, 114505]

Simpler in the case of strong IB:

L = Lkin + Lm

= Lkin +
mu + md

2
(ūu + d̄d)− md −mu

2
(ūu− d̄d)

= Lkin + mud q̄q −∆mud q̄τ3q

= L0 −∆mud L̂ ,

∑

〈O〉 ≃
∫

Dφ O (1 + ∆mud Ŝ) e−S0

∫
Dφ (1 + ∆mud Ŝ) e−S0

=
〈O〉0 + ∆mud 〈OŜ〉0

1 + ∆mud 〈Ŝ〉0

= 〈O〉0 + ∆mud 〈OŜ〉0 ,

Similarly, for QED corrections, one inserts Jµ(x) (and possible lattice
tadpoles) over 4dim vol in correlators evaluated in isospin-symm QCD.

+ One does not compute something tiny rather, derivatives wrt α and
∆mud , which may be O(1)

+ Only renormalization in QCD needs to be discussed
= Still a zero-mode prescription for the explicit photon propagator is

needed. With some caveats, the approach can be combined with the
in�nite-volume propagator [X. Feng and L. Jin, Phys.Rev.D 100 (2019) 9, 094509].
Anyhow, much better control as the computation is �xed order in α.

� The expansion produces quark-disconnected diagrams (' those
neglected in electroquenched).
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Massive QED

LQEDm
=

1

4
F 2
µν +

1

2
m2
γA

2
µ + Lf = LProca + Lf

+ is renormalizable by power counting once the Feynman gauge is
imposed through the Stückelberg mechanism [see book by Zinn-Justin]

+ it is local, softly breaks gauge symmetry and has a smooth mγ → 0
limit.

+ Clearly the shift-transformation is not a symmetry anymore. The
mass term acts as an extra non-derivative gauge-�xing.

= It introduces a new IR scale on top of L. First one should take
L→∞ and then mγ → 0.

+ Finite volume corrections are (exponentially) small, as long as
mγL ≥ 4 and mγ � mπ.
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The mass term introduces a Gaussian damping factor for the zero mode

e
− 1

2
m2

γ Ã
2
µ(0)

e
− 1

2
m2

γ

∑
p 6=0

Ã2µ(p)

in the path integral. The zero-mode vanishes on average and has
variance m−1γ (so in limmγ →∞ one smoothly recovers QEDTL).

The �uctuations of the di�erent modes

σÃµ(p) ≈
1

p2 + m2
γ

in particular σÃµ(0) ≈
1

m2
γ

allow to distinguish two regimes (smallest non-zero lattice p = 2π
L
)

• mγ <<
2π
L

i.e. Lmγ << 2π. The quantum �uctuations are
dominated by the zero-mode, which needs to be treated separately
(εγ regime ).

• mγ >>
2π
L

i.e. Lmγ >> 2π. All modes have similar �uctuations (pγ
regime ).
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Finite size e�ects

Finite size e�ects

In the pγ regime e�ects are exponential in mγL [M. Endres et al., Phys.Rev.Lett. 117

(2016) ]. Using non-relativistic QED:

δMLO = 2παQ2mγI1(mγL)

in terms of Bessel functions. NLO in the e�ective theory also available.
The computation is very similar to what is done in χPT, e.g. [J. Bijnens et al.,

JHEP 1401 (2014) 019].

In the εγ regime 0-modes contribute and one may expect power-law FSE.

However, a conf. with a 0-mode cµ has a weight

e
− 1

2
m2

γc
2
µL

3T

which vanishes if any of the spatial or temporal extents goes to ∞.
⇒ We expect power-like FSE (or any 0-mode e�ect) to be ∝ (L3T )−1
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Finite size e�ects

Tree-level computation in scalar QED in εγ regime [J. T. Tsang, A. Shindler et al.,

LATTICE21, arXiv:2201.03251]

Aµ(x) = qµ(x) + Bµ , with

∫
d4xqµ(x) = 0

keeping only the non-interacting (with qµ(x)) part of the Lagrangian

Γ2(p) = (pµ + eBµ)2 + m2

for ~p = ~0, Γ2(p) = (p0 + eB0)2 + ω2
B with ω2

B = m2 + e2|~B|2

Integrating (non-perturbatively) over Bµ, the 2-pt function reads

〈0|Φ∗0(t)Φ0(0)|0〉 = Z−1
∫

d4B e−
1
2m

2
γB

2V4

∫
dp0

e ip0t

(p0 + eB0)2 + ω2
B

∝
∫

d3B e−
1
2m

2
γ |~B|2V4 e

−ωB t

2ωB

∫
dB0 e

− 1
2m

2
γB

2
0V4e−ieB0t
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Finite size e�ects

Fourier transform of a Gaussian is a Gaussian ....

→ e
− e2t2

2m2
γV4

∫
d3B e−

1
2m

2
γ |~B|2V4 e

−ωB t

2ωB

1st non-trivial e�ect of zero mode: there is a universal term in the
correlator falling as e−t

2
. The e�ect is V4 suppressed (in the e�ective

mass), as expected. [M. Endres et al., Phys.Rev.Lett. 117 (2016) and A. Patella, PoS LATTICE2016

(2017) 020].

The remaining integral by saddle point (exact for V4 →∞)

→ e
− e2t2

2m2
γV4 e

−m
(
1+ e2

2m2m2
γV4

)
t

2nd non-trivial e�ect of zero mode: there is a O(1/V4) FSE correction to
the hadron mass.
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Finite size e�ects

Looking at the power-like FSE
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Finite size e�ects

We conclude we want
mγL ≈ 1

Suppose at the same time we want

mγ ≤
mπ

n

for mγ → 0 extrapolation. All together this means

mπL ≥ n

with the lower bound mπL ≈ 4 from QCD FSE.
So we need to understand what n we need to safely extrapolate in mγ .
From [M. Endres et al., Phys.Rev.Lett. 117 (2016) ], the leading e�ect is linear in mγ

∆γM
LO = −α

2
Q2mγ
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Results

Results

- Mixed action setup [E. Berkovitz et al.,Phys. Rev. D 96, 054513 (2017)]:
Nf = 2 + 1 + 1 HISQ in the sea
Möbius domain wall in the valence (after gradient �owing confs)

- a12m310 and a12m310XL with T/a = 64 and L/a = 24 and 48 resp.

- Electroquenched approximation with Feynman gauge and compact
formulation

- Preliminary account in [J. T. Tsang, A. Shindler et al., LATTICE21, arXiv:2201.03251]

- Paper(s) in preparation, with measurements collected on a12m130 ,
a12m220and a09m310 to explore chiral and continuum limit.

- For the moment statistical errors only.
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Results

Dispersion relation E 2 = m2 + p2

As argued in [A. Patella, PoS LATTICE2016 (2017) 020], in the limit mγ → 0 at �nite L
one gets

lim
mγ→0

C (t, ~p) ∝ e
− e2

2m2
γV4

t2〈ψ(t,~0)ψ̄(0)δQ,0〉TL
(
1 + O(m2

γ)
)

i.e. some sti�ness to external momenta. We are not in that regime:
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Results

Still, we see zero-mode e�ects

Those are universal and can be subtracted though.
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Results
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Results
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Results
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Results
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Results
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Results
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We also have all other SU(3) baryons.
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Conclusions and outlook

- We have shown that QEDM is a viable approach to non-perturbative
QED on the lattice with the goal of high precision. We are
systematics dominated (error from FSE).

- We completed the due diligence by looking at the spectrum.

- We discussed the interplay between mγ and L and we empirically
obtained a rule mγL ≥ 1 (FSE correction 1/10 of the QED e�ect at
most) and mπ ≥ 3mγ (baryons) for FSE and mγ-e�ects to be under
control. All in all the mπL ≥ 4 QCD thumb-rule seems enough.

- In our simulations we see residual e�ects of zero-modes, in particular
FSE of O(1/V4).

- Short run: We plan to include strong-isospin breaking using the
'perturbative' RM123 method.

- Long run: QED corrections to form-factors, starting with gA.
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Short run: Dashen's theorem:

(∆M2
π)γ = (∆M2

K )γ

with ∆M2
X = M2

X+ −M2
X0 . Violations are parameterized by

ε =
(∆M2

K −∆M2
π)γ

∆M2
π

FLAG 21 gives ε = 0.79(6) for Nf = 2 + 1 + 1 from 3 computations
(RM123, MILC and BMW).

In order to address that we need to de�ne the isospin symmetric point at
α 6= 0. In [ A. Bussone et al., PoS LATTICE2018 (2018) 293] we de�ned a scheme for that
by requiring

MΣ+ = MΣ−
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... small valence retuning needed
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