Massive QED on the lattice

Michele Della Morte

November 15, 2022, TH Informal Lattice Meeting, CERN

In collaboration with: K. Clark, Z. Hall, B. Hörz, A. Nicholson, A. Shindler, J. T. Tsang, A. Walker Loud and H. Yan

Massive QED

Plan of the talk

Introduction and motivations

QED on the Lattice Gauge symmetry with PBC Gauss law with PBC and workarounds

Massive QED Finite size effects Results

Conclusions and outlook

lsospin symmetry

The formal N_f flavor QCD Lagrangian

$$L_{QCD}^{N_f} = \sum_{i=1}^{N_f} \overline{\psi}_i (\mathrm{i}(\gamma_\mu D^\mu) - m) \psi_i - \frac{1}{4} G_{\mu\nu}^a G_a^{\mu\nu}$$

Massive QED

in the case of degenerate up and down quarks, is invariant under SU(2)rotations in the (u-d) flavor space.

Isospin breaking (IB) has two sources

$$m_u \neq m_d$$
 (strong IB)
 $Q_u \neq Q_d$ (EM IB)

The separation makes sense classically. Renormalization effects induce a mass gap, even with bare degenerate masses (\rightarrow scheme dependence).

IB is responsible for the neutron-proton mass splitting, whose value played an important role in nucleosynthesis and the evolution of Stars (BMW, Science 347 (2015)).

More motivations

The 2021 FLAG review [arXiv:2111.09849] gives

$$\begin{split} f_\pi &= 130.2(8) \; \text{MeV} \; , \qquad f_K = 155.7(7) \; \text{MeV} \quad [N_f = 2+1] \\ f_D &= 212.0(7) \; \text{MeV} \; , \qquad f_{D_s} = 249.9(5) \; \text{MeV} \quad [N_f = 2+1+1] \end{split}$$

Massive QED

obtained in the isospin limit. EM corrections can be included following [Phys.Rev. D91 (2015) no.7, 074506 and Phys.Rev.D 103 (2021) 1, 014502 (Rome-Soton)]

These hadronic parameters are relevant for the extraction of CKM elements from purely leptonic decays. In that game the error is dominated by experiments, as opposed to the semileptonic

Case [arXiv:1811.06364 (Rome-Soton)]

Periodic boundary conditions (PBC)

$$\psi(\mathbf{x} + \mathbf{L}_{\mu}\hat{\mu}) = \psi(\mathbf{x}), \quad A_{\mu}(\mathbf{x} + \mathbf{L}_{\nu}\hat{\nu}) = A_{\mu}(\mathbf{x})$$

Massive QED

The Lagrangian with one fermion of charge 1 (and e=1) invariant for

$$\begin{array}{ccc} A_{\mu}(x) & \to & A_{\mu}(x) + \partial_{\mu} \Lambda(x) \\ \psi(x) & \to & e^{i\Lambda(x)} \psi(x) \\ \overline{\psi}(x) & \to & \overline{\psi}(x) e^{-i\Lambda(x)} \end{array}$$

 $\Lambda(x)$ does not need to be periodic

$$\Lambda(x + L_{\mu}\hat{\mu}) = \Lambda(x) + 2\pi r_{\mu}$$

The quantization in r_{μ} follows from the periodicity of the fermions. In general

$$\Lambda(x) = \Lambda^{0}(x) + 2\pi \left(\frac{r}{L}\right)_{\mu} x_{\mu}$$

with $\Lambda^0(x)$ periodic.

Let us consider the "large gauge transformations" defined by $\Lambda^0=0$

$$A_{\mu}(x)
ightarrow A_{\mu}(x) + 2\pi rac{r_{\mu}}{L_{\mu}} \;, \quad \psi(x)
ightarrow \psi(x) e^{i2\pi \left(rac{r}{L}
ight)_{\mu} x_{\mu}}$$

they act as a finite volume shift symmetry on the gauge fields.

QED on the Lattice

Considering now the correlator $\langle \psi(T/4,\underline{0})\overline{\psi}(0,\underline{0})\rangle$, it is clear that it vanishes as a consequence of invariance under large gauge transformations (choose $r_0 \mod(4)=2$).

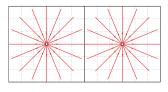
OK, let's gauge away the shift symmetry and require the 0-mode of A_{μ} to vanish

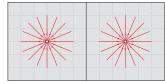
$$\int d^4x A_{\mu}(x) = 0$$

that is a non-local constraint, which cannot be imposed through a local gauge-fixing! Not a derivative one at least We like those because gauge-independence of physical quantities is manifest.

Another way to look at the problem

Electric field of a point charge cannot be made periodic and continuous





$$Q = \int d^3x \rho(x) = \int d^3x \partial_i E_i(x) = 0$$

Introduce uniform, time-independent background current c_{μ} then

$$\int d^3x \rho(x) + \int d^3x c_0 = 0 ,$$

which allows to have a net charge.

Promoting c_{μ} to a field, the Lagrangian density is modified by a term

$$A_{\mu}(x)\int d^4y\;c_{\mu}(y)$$

Massive QED

whose EoM is $\int d^4x A_{\mu}(x) = 0$. When enforcing this on each conf (not just on average) one obtains the QEDTL prescription used first in [Duncan et al., Phys. Rev. Lett. 76 (1996)] | t is

- non-local
- without a Transfer matrix

An Hamiltonian formulation can be recovered adopting the QED_{I} prescription [Hayakawa and Uno, Prog. Theor. Phys. 120 (2008)], requiring

$$\int d^3x A_{\mu}(t,\underline{x}) = 0$$

(Imagine coupling a uniform but time-dependent current, as for charged particles propagators).

Both prescriptions

 Introduce some degree of non-locality (issues with renormalization? O(a) improvement? Mixing of IR and UV?)

Massive QED

 Remove modes, which in the electroquenched approximation, would be un-constrained and cause algorithmic problems (wild fluctuations)

QED, is to be preferred as it has a Transfer matrix. The 'quenched' modes should not play a role in the infinite-vol dynamics (fields vanish at infinity), so it is a matter of finite volume effects (see for example [Davoudi et al., arXiv:1810.05923] for studies in PT and numerically for scalar-QED).

Gauss law with PBC and workarounds

Another natural approach:

the quantization of the shift symmetry was due to BC for fermions. How about changing it to: [Ludni et al., JHEP 1602 (2016) 076] (C* BC)

Massive QED

$$A_{\mu}(x + L_{\nu}\hat{\nu}) = -A_{\mu}(x) = A_{\mu}^{C}(x)$$

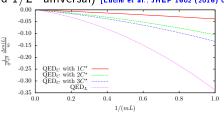
$$\psi(x + L_{\nu}\hat{\nu}) = \psi^{C}(x) = C^{\dagger}\overline{\psi}^{T}(x)$$

$$\overline{\psi}(x + L_{\nu}\hat{\nu}) = -\psi(x)^{T}C \text{ with } C^{\dagger}\gamma_{\mu}C = -\gamma_{\mu}^{T}$$

Completely local, no zero-modes allowed, however at the price of violations of flavor and charge conservation (by boundary effects).

Also, SU(3) dynamical configurations need to be generated again.

It is useful to look at finite volume corrections, e.g. to point-like particles at $\mathrm{O}(\alpha)$ (1/L and 1/L² universal) [Lucini et al., JHEP 1602 (2016) 076]



A PT-inspired approach [RM123, JHEP 1204 (2012) 124, Phys. Rev. D87 (2013) no.11, 114505] Simpler in the case of strong IB:

$$\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_m$$

$$= \quad \mathcal{L}_{kin} + \frac{m_u + m_d}{2} (\bar{u}u + \bar{d}d) - \frac{m_d - m_u}{2} (\bar{u}u - \bar{d}d)$$

$$= \mathcal{L}_{kin} + m_{ud} \bar{q}q - \Delta m_{ud} \bar{q}\tau^3 q$$

$$= \mathcal{L}_0 - \Delta m_{ud} \hat{\mathcal{L}}.$$

$$\langle \mathcal{O} \rangle \simeq \int D\phi \mathcal{O} (1 + \Delta m_{ud} \hat{S}) e^{-S_0} = \frac{\langle \mathcal{O} \rangle_0 + \Delta m_{ud} \langle \mathcal{O} \hat{S} \rangle_0}{1 + \Delta m_{ud} \langle \hat{S} \rangle_0} = \frac{\langle \mathcal{O} \rangle_0 + \Delta m_{ud} \langle \mathcal{O} \hat{S} \rangle_0}{1 + \Delta m_{ud} \langle \hat{S} \rangle_0}$$

$$= \langle \mathcal{O} \rangle_0 + \Delta m_{ud} \langle \mathcal{O} \hat{S} \rangle_0,$$

Massive QED

Similarly, for QED corrections, one inserts $J_{\mu}(x)$ (and possible lattice tadpoles) over 4dim vol in correlators evaluated in isospin-symm QCD.

- + One does not compute something tiny rather, derivatives wrt α and Δm_{ud} , which may be O(1)
- + Only renormalization in QCD needs to be discussed
- = Still a zero-mode prescription for the explicit photon propagator is needed. With some caveats, the approach can be combined with the infinite-volume propagator [X. Feng and L. Jin, Phys. Rev. D 100 (2019) 9, 094509]. Anyhow, much better control as the computation is fixed order in α .
- The expansion produces quark-disconnected diagrams (\simeq those neglected in electroquenched).

Massive QED

$$L_{QED_m} = \frac{1}{4}F_{\mu\nu}^2 + \frac{1}{2}m_{\gamma}^2A_{\mu}^2 + L_f = L_{Proca} + L_f$$

Massive QED

- + is renormalizable by power counting once the Feynman gauge is imposed through the Stückelberg mechanism [see book by Zinn-Justin]
- + it is local, softly breaks gauge symmetry and has a smooth $m_{\gamma}
 ightarrow 0$ limit.
- + Clearly the shift-transformation is not a symmetry anymore. The mass term acts as an extra non-derivative gauge-fixing.
- = It introduces a new IR scale on top of L. First one should take $L \to \infty$ and then $m_{\gamma} \to 0$.
- + Finite volume corrections are (exponentially) small, as long as $m_{\gamma} L \geq 4$ and $m_{\gamma} \ll m_{\pi}$.

The mass term introduces a Gaussian damping factor for the zero mode

$$e^{-\frac{1}{2}m_{\gamma}^2\tilde{A}_{\mu}^2(0)} e^{-\frac{1}{2}m_{\gamma}^2\sum_{p\neq 0}\tilde{A}_{\mu}^2(p)}$$

in the path integral. The zero-mode vanishes on average and has variance m_{γ}^{-1} (so in $\lim m_{\gamma} \to \infty$ one smoothly recovers QED_{TL}).

The fluctuations of the different modes

$$\sigma_{\tilde{A}_{\mu}(p)} pprox rac{1}{p^2 + m_{\gamma}^2}$$
 in particular $\sigma_{\tilde{A}_{\mu}(0)} pprox rac{1}{m_{\gamma}^2}$

allow to distinguish two regimes (smallest non-zero lattice $p=rac{2\pi}{L}$)

- $m_{\gamma} << \frac{2\pi}{L}$ i.e. $Lm_{\gamma} << 2\pi$. The quantum fluctuations are dominated by the zero-mode, which needs to be treated separately $(\varepsilon_{\gamma} \text{ regime})$.
- $m_{\gamma}>> rac{2\pi}{L}$ i.e. $Lm_{\gamma}>> 2\pi$. All modes have similar fluctuations (p_{γ} regime).

Finite size effects

In the p_{γ} regime effects are exponential in $m_{\gamma}L$ [M. Endres et al., Phys.Rev.Lett. 117 (2016)]. Using non-relativistic QED:

$$\delta M^{LO} = 2\pi\alpha Q^2 m_{\gamma} \mathcal{I}_1(m_{\gamma} L)$$

in terms of Bessel functions. NLO in the effective theory also available. The computation is very similar to what is done in χ PT, e.g. [J. Bijnens et al., JHEP 1401 (2014) 019].

In the ε_{γ} regime 0-modes contribute and one may expect power-law FSE. However, a conf. with a 0-mode c_{μ} has a weight

$$e^{-\frac{1}{2}m_{\gamma}^{2}c_{\mu}^{2}L^{3}T}$$

which vanishes if any of the spatial or temporal extents goes to ∞ . \Rightarrow We expect power-like FSE (or any 0-mode effect) to be $\propto (L^3T)^{-1}$

Tree-level computation in scalar QED in ε_{γ} regime [J. T. Tsang, A. Shindler et al., LATTICE21, arXiv:2201.03251]

$$A_\mu(x) = q_\mu(x) + B_\mu \; , \quad ext{with} \quad \int d^4x q_\mu(x) = 0$$

keeping only the non-interacting (with $q_{\mu}(x)$) part of the Lagrangian

$$\Gamma_2(p) = (p_\mu + eB_\mu)^2 + m^2$$

for
$$\vec{p} = \vec{0}$$
, $\Gamma_2(p) = (p_0 + eB_0)^2 + \omega_B^2$ with $\omega_B^2 = m^2 + e^2 |\vec{B}|^2$

Integrating (non-perturbatively) over B_{μ} , the 2-pt function reads

$$\langle 0|\Phi_0^*(t)\Phi_0(0)|0\rangle = Z^{-1} \int d^4B \, e^{-\frac{1}{2}m_\gamma^2 B^2 V_4} \int dp_0 \frac{e^{ip_0 t}}{(p_0 + eB_0)^2 + \omega_B^2}$$

$$\propto \int d^3B \, e^{-\frac{1}{2}m_\gamma^2 |\vec{B}|^2 V_4} \frac{e^{-\omega_B t}}{2\omega_B} \int dB_0 \, e^{-\frac{1}{2}m_\gamma^2 B_0^2 V_4} e^{-ieB_0 t}$$

Fourier transform of a Gaussian is a Gaussian

$$ightarrow e^{-rac{e^2t^2}{2m_{\gamma}^2V_4}} \int d^3B \ e^{-rac{1}{2}m_{\gamma}^2|\vec{B}|^2V_4} rac{e^{-\omega_Bt}}{2\omega_B}$$

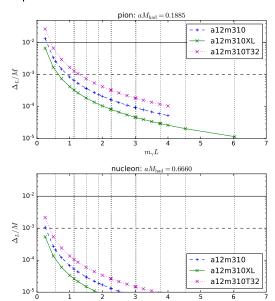
<u>1</u>st non-trivial effect of zero mode: there is a universal term in the correlator falling as e^{-t^2} . The effect is V_4 suppressed (in the effective mass), as expected. [M. Endres et al., Phys.Rev.Lett. 117 (2016) and A. Patella, Pos LATTICE2016 (2017) 020].

The remaining integral by saddle point (exact for $V_4 o \infty$)

$$\rightarrow e^{-\frac{e^2t^2}{2m_{\gamma}^2V_4}}e^{-m\left(1+\frac{e^2}{2m^2m_{\gamma}^2V_4}\right)t}$$

 2^{nd} non-trivial effect of zero mode: there is a $O(1/V_4)$ FSE correction to the hadron mass.

Looking at the power-like FSE



We conclude we want

$$m_{\gamma}L \approx 1$$

Suppose at the same time we want

$$m_{\gamma} \leq \frac{m_{\pi}}{n}$$

for $m_{\gamma}
ightarrow 0$ extrapolation. All together this means

$$m_{\pi}L \geq n$$

with the lower bound $m_\pi L \approx 4$ from QCD FSE.

So we need to understand what \emph{n} we need to safely extrapolate in $\emph{m}_{\gamma}.$

From [M. Endres et al., Phys.Rev.Lett. 117 (2016)], the leading effect is linear in m_{γ}

$$\Delta_{\gamma}M^{LO}=-rac{lpha}{2}Q^{2}m_{\gamma}$$

Introduction and motivations

- Mixed action setup [E. Berkovitz et al. Phys. Rev. D 96, 054513 (2017)]. $N_f = 2 + 1 + 1$ HISQ in the sea Möbius domain wall in the valence (after gradient flowing confs)
- a12m310 and a12m310XL with T/a = 64 and L/a = 24 and 48 resp.

Massive QED

•00000000

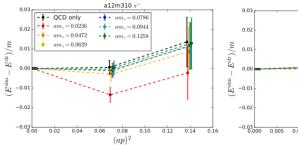
- Electroquenched approximation with Feynman gauge and compact formulation
- Preliminary account in [J. T. Tsang, A. Shindler et al., LATTICE21, arXiv:2201.03251]
- Paper(s) in preparation, with measurements collected on a12m130, a12m220and a09m310 to explore chiral and continuum limit.
- For the moment statistical errors only.

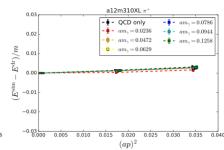
Dispersion relation
$$E^2 = m^2 + p^2$$

As argued in [A. Patella, PoS LATTICE2016 (2017) 020], in the limit $m_\gamma o 0$ at finite L one gets

$$\lim_{m_{\gamma} \rightarrow 0} C(t,\vec{p}) \propto e^{-\frac{e^2}{2m_{\gamma}^2 V_4} t^2} \langle \psi(t,\vec{0}) \bar{\psi}(0) \delta_{Q,0} \rangle_{\mathit{TL}} \left(1 + O(m_{\gamma}^2) \right)$$

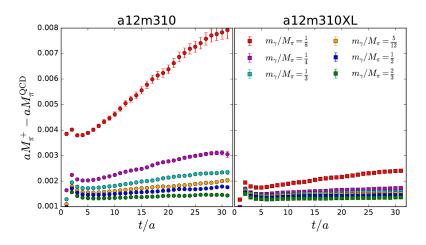
i.e. some stiffness to external momenta. We are not in that regime:



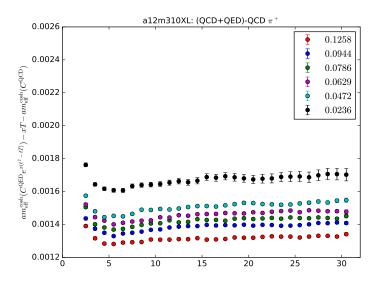


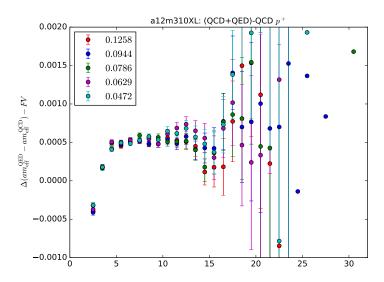
00000000

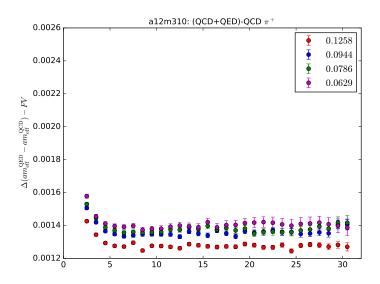
Still, we see zero-mode effects



Those are universal and can be subtracted though.

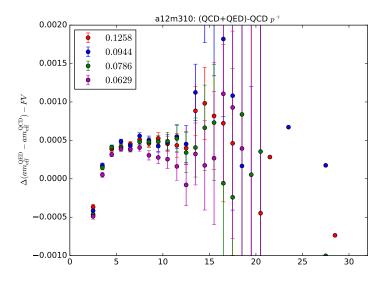




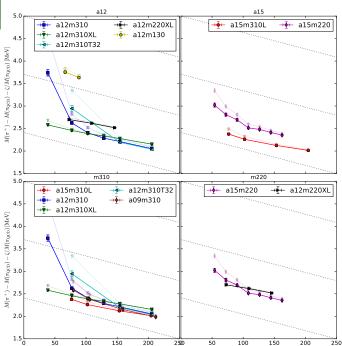


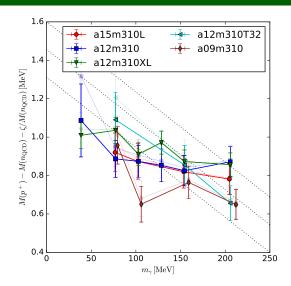
Massive QED

00 00000 000000•00



Introduction and





Massive QED

00 00000 00000000

We also have all other SU(3) baryons.

Conclusions and outlook

 We have shown that QED_M is a viable approach to non-perturbative QED on the lattice with the goal of high precision. We are systematics dominated (error from FSE).

Massive QED

- We completed the *due diligence* by looking at the spectrum.
- We discussed the interplay between m_{γ} and L and we empirically obtained a rule $m_{\gamma}L \geq 1$ (FSE correction 1/10 of the QED effect at most) and $m_{\pi} \geq 3m_{\gamma}$ (baryons) for FSE and m_{γ} -effects to be under control. All in all the $m_{\pi}L \geq 4$ QCD thumb-rule seems enough.
- In our simulations we see residual effects of zero-modes, in particular FSE of $O(1/V_4)$.
- Short run: We plan to include strong-isospin breaking using the 'perturbative' RM123 method.
- Long run: QED corrections to form-factors, starting with g_A .

Short run: Dashen's theorem:

$$(\Delta M_{\pi}^2)^{\gamma} = (\Delta M_K^2)^{\gamma}$$

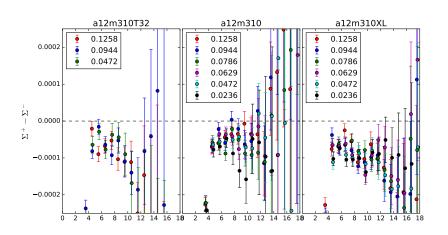
with $\Delta M_X^2 = M_{X^+}^2 - M_{X^0}^2$. Violations are parameterized by

$$\epsilon = \frac{(\Delta M_K^2 - \Delta M_\pi^2)^{\gamma}}{\Delta M_\pi^2}$$

FLAG 21 gives $\epsilon = 0.79(6)$ for $N_f = 2 + 1 + 1$ from 3 computations (RM123, MILC and BMW).

In order to address that we need to define the isospin symmetric point at $\alpha \neq 0$. In [A. Bussone et al., PoS LATTICE2018 (2018) 293] We defined a scheme for that by requiring

$$M_{\Sigma^+} = M_{\Sigma^-}$$



... small valence retuning needed