Apologies for not attending the conference due to sad circumstances.

I want to extend my deepest sympathies and express my gratitude to Tobias for his tremendous effort in ensuring the success of the conference, despite it being regrettably interrupted.

Hopefully peace will prevail and we will be able to resume Hammers & Nails in Israel in 2024/2025.

Deep learning for particle flow

<u>Etienne Dreyer</u>, Eilam Gross Nilotpal Kakati

Hammers & Nails 2023 Swiss Edition

BEBC

🧶 1979

Weak neutral current

UA1

W, Z bosons

984

"Seeing" particles

ATLAS 2013

Truth particles

Part 1

The particle reconstruction problem

Detector hits

Reconstructed particles

Classic object detection

Input

Features: RGB value array

Output

Particle reconstruction

Cardinality prediction

Ex: single jet

*Some particles are not dominant in any one of the cells (i.e. no dedicated color) 7

Particle classification

All examples: ($E = 50 \text{ GeV}, \eta = 0$)

Particle momentum regression

"Particle flow"

An algorithm that combines the information from both tracker and calorimeter to optimize the momentum prediction

True momentum

Particle momentum regression

Measured momentum $\sim \sum_{cells} E_i$

"Particle flow"

An algorithm that combines the information from both tracker and calorimeter to optimize the momentum prediction

Measured momentum

~ 1/curvature

True momentum

Datasets

arXiv:2204.01681

Dimensionality reduction

Credit: Marco Valente

Aside: Event partitioning

Credit: Nilotpal Kakati (more details next week at ML4Jets)

Aside: Event partitioning

Credit: Nilotpal Kakati (more details next week at ML4Jets)

detector hits represe

set of node representations

[1] <u>arXiv:2101.08578</u>
[2] <u>arXiv:2002.03605</u>
[3] <u>arXiv:2212.01328</u>

MLPF jet-level improvement

arXiv:2309.06782

Jet (transverse) momentum ratio

Median, IQR of distribution vs. momentum

[1] <u>arXiv:2101.08578</u>
[2] <u>arXiv:2002.03605</u>
[3] <u>arXiv:2212.01328</u>

Showers in CMS HGCAL (endcap)

arXiv:2204.01681

Truth particle showers (color) + 200 pileup

Reconstructed showers using Object Condensation

What is a hypergraph?

Graph

What is a hypergraph?

Graph

Adjacency matrix

 $(N \times N)$

Adjacency matrix

 $(N \times N)$

cartoon from Nilotpal Kakati

Target hypergraph

Predicted hypergraph

Energy-based incidence matrix

Energy-based incidence matrix

Recurrently predicting hypergraphs

Following Zhang, Burghouts and Snoek (arXiv:2106.13919)

Perks of learning incidence matrix

Assuming we predicted the incidence matrix correctly...

Perks of learning incidence matrix

Assuming we predicted the incidence matrix correctly...

... then we can already guess the properties of the particles:

$$E_a = E_1 + E_2 + (0.58 \cdot E_3) + (0.15 \cdot E_4)$$

Perks of learning incidence matrix

Assuming we predicted the incidence matrix correctly...

.. then we can already guess the properties of the particles:

$$E_a = E_1 + E_2 + (0.58 \cdot E_3) + (0.15 \cdot E_4)$$

Topoclusters

Predicted particles

Learning the energy-based incidence matrix is an inductive bias that aids both prediction of particle properties and interpretability

HGPflow jet-level improvement

28

Summary & outlook

Particle reconstruction is foundational to experimental HEP

Deep learning models are the future for particle reconstruction

Recent GNN-based approaches show prospects to:

- * optimally exploit the set-valued, heterogeneous input space
- * predict set of particles and their properties in one shot
- * improve over traditional parameterized algorithms

Hypergraph learning suits the problem well and aids interpretability

Summary & outlook

Particle reconstruction is foundational to experimental HEP

Deep learning models are the future for particle reconstruction

Recent GNN-based approaches show prospects to:

- * optimally exploit the set-valued, heterogeneous input space
- * predict set of particles and their properties in one shot
- * improve over traditional parameterized algorithms

Hypergraph learning suits the problem well and aids interpretability

Outlook:

- * performance studies on common datasets* will help compare and improve the current SOTA models (MLPF, OC, HGPflow)
- * CMS and ATLAS are both pursuing ML algorithms in their core reconstruction software targeting the HL-LHC timeframe (or earlier)

Example of a single jet

31

arXiv:2212.01328

Example of a single jet

Example of a single jet

