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Introduction



Constructing dynamics from data is an old problem

Constructing dynamical models from observations is a fundamental problem

Ptolemy's epicycle models Newton's laws Schrödinger equation
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“The underlying physical laws necessary for the
mathematical theory of a large part of physics and the whole
of chemistry are thus completely known, and the difficulty is

only that the exact application of these laws leads to
equations much too complicated to be soluble. It therefore
becomes desirable that approximate practical methods of
applying quantum mechanics should be developed, which
can lead to an explanation of the main features of complex

atomic systems without too much computation.”

– Paul Dirac
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From microscopic to macroscopic

Microscopic Coordinates Macroscopic Coordinates

Thermodynamics

Closure Coordinates

Prediction, Analysis & Control
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Constructing macroscopic dynamics

?

Microscopic Coordinates Macroscopic Coordinates

Thermodynamics

Closure Coordinates

?

Data

Flow 






Polymer chain
extension

For dynamical processes, finding closure coordinates and constructing
macroscopic dynamics relies on deep theoretical insight + trial and error

Can machine learning automate this process of discovery?

K. Hippalgaonkar, Q. Li, X. Wang, J. W. Fisher, J. Kirkpatrick, T. Buonassisi, Nature Reviews Materials, 1–20 (Jan. 24, 2023)
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Mathematical formulation

We are given

• Microscopic degrees of freedom: X(t) ∈ RD

• Macroscopic state of interest: Z∗(t) = ϕ∗(X(t)) ∈ Rd1 (d1 � D)
• Goal – model the evolution of Z∗(t)

We aim to find

• Closure variables Ẑ(t) = ϕ̂(X(t)) ∈ Rd2 (d2 � D)
• A closed equation for Z(t) = (Z∗(t), Ẑ(t)) ∈ Rd (d = d1 + d2)
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Example: stretching of polymers in elongational flow

• X(t): coordinates of each molecule in the polymer at time t
• Z∗(t): length/extension of the polymer at time t

Strong heterogeneity in extension dynamics1,2

1T. T. Perkins, D. E. Smith, S. Chu, Science 276, 2016–2021 (1997).
2D. E. Smith, S. Chu, Science 281, 1335–1340 (Aug. 28, 1998).
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Two viewpoints for learning dynamics from data

Data

Data-based approach
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Known model: the Onsager principle

The Onsager principle is a general description for near-equilibrium dynamics

Ż(t) = −M∇V(Z(t))

• Z is a generalised coordinate
• V is a generalised potential (or free energy)
• M models dissipation
• M is symmetric (reciprocal relations3) and positive definite (stability)

3L. Onsager, Physical review 38, 2265 (1931).
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Generalised model: generalised stochastic Onsager principle (GSOP)

We generalise the Onsager principle4,5

dZ(t) = − [M(Z(t)) +W(Z(t))]∇V(Z(t))dt + σ(Z(t))dB(t)

• M is symmetric positive semi-definite (dissipative, reciprocal relations)
• W is anti-symmetric (conservative)
• V is lower-bounded, sufficient growth (potential, free energy, -entropy)
• σ is matrix-valued (thermal fluctuations)

4H. Yu, X. Tian, W. E, Q. Li, Physical Review Fluids 6, 114402 (Nov. 23, 2021).
5X. Chen, B. W. Soh, Z.-E. Ooi, E. Vissol-Gaudin, H. Yu, K. S. Novoselov, K. Hippalgaonkar, Q. Li, Constructing Custom Thermodynamics Using Deep
Learning, (http://arxiv.org/abs/2308.04119), preprint.
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Properties of GSOP I - generality

The GSOP form includes many well-known physical dynamical systems

• Langevin equation for molecular dynamics6

mẍ = −∇U(x)− γẋ +
√
2γkBTḂ(t)

• Stochastic Poisson systems7

Ḟ = {F,H} − [F,H] + σ(F)Ḃ(t)

6M. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation, (Oxford university press, 2010).
7N. S. Goel, S. C. Maitra, E. W. Montroll, Reviews of modern physics 43, 231 (1971).
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Properties of GSOP II - invariance

GSOP is approximately invariant under coordinate transformation

• Let X follow GSOP with some M(·),W(·), V(·), σ(·)
• Let φ : RD → Rd is some approximately invertible transformation

Then, Z = φ(X) follows approximately another GSOP with some M̃(·), W̃(·), Ṽ(·), σ̃(·)
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Properties of GSOP III - stability

The GSOP gives rise to stable dynamics

• Let Z follows GSOP with some M(·),W(·), V(·), σ(·)

Then,

• EV(Z(t)) decreases monotonically to O(‖σ‖2)
• The rate of dissipation is controlled by M(·)
• If sub-level-sets of V are bounded and V has sufficient growth then the
dynamics is stable
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Case study:
polymer stretching dynamics



The closure problem for polymer dynamics

Key questions:

• Accurate dynamical model for the extension Z∗(t)?
• What are the closure coordinates that drive the dynamics?
• What can we learn about the dynamical landscape? Can we interact with it?
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Simulation setup and training

Elongational flow

diameter 

chain extension
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Highly variable unfolding dynamicsSimilar initial extension

Time

Data Visualization

We train a S-OnsagerNet with 2 closure variables, leading to a 3D dynamics
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Capturing unfolding statistics

15



Finding sufficient descriptors for the stretching dynamics

end-to-end distance







foldedness
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Visualising the energy landscape

stable2

stable

manifold


unstable

manifold
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Advancing the classification of polymer behaviour
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Data-driven equation of state

Near Zstable (stretched state), denote by δV ∼ kBT the typical energy fluctuation.
How does Z1, Z2, Z3 fluctuate?

We obtain via automatic differentiation the expansion

kBT ∼ δV ≈ a1 (δZ1 − a4 δZ2)2 + a2 δZ22 + a3 δZ23, δZi = Zi − [Zstable]i,

which can be viewed as a partial “equation of state”
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Controlling the unfolding dynamics

Another expansion near a saddle (folded state) gives

δV ≈ b1 δZ21 − b2 (δZ2 − b4 δZ3)2 + b3 δZ23.

Escape from folded state by increasing |δZ2 − b4δZ3| – a control protocol!

Turn on flow

Brownian motion

Turn off flow

Stretched stateFolded state

Brownian Motion

(Flow Off)

Unstable Manifold

     ( )

C
ha

in
 e

xt
en

si
on

uncontrolled trajectory

controlled trajectory
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Extension to experimental data

Experimental Setup Microfluidic Device DNA Molecules Stretching
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Validation on experimental data

Visually indistinguishable Visually distinguishable

Time

S-OnsagerNet prediction

Manual
Classification
= Dumbbell

S-OnsagerNet prediction

Manual
Classification
= folded

S-OnsagerNet distinguishes
fast/slow trajectories

Learned free energy landscape

S-OnsagerNet captures
fluctuation correlations

Transformation to learned
thermodynamic coordinates

Experimental data (Source 1)

Experimental data (Source 2)

Predicted unfolding time distribution

PD
F

Predicted correlated fluctuations
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Summary

In this talk we discussed how to build a custom thermodynamic description of a
dynamical system via machine learning that allows for Interpretation, analysis
and control

http://arxiv.org/abs/2308.04119

Other applications of this idea

• Rayleigh-Bénard convection8

• Dynamics of intrinsic self-healing materials9

8H. Yu, X. Tian, W. E, Q. Li, Physical Review Fluids 6, 114402 (Nov. 23, 2021).
9H. P. Anwar Ali, Z. Zhao, Y. J. Tan, W. Yao, Q. Li, B. C. K. Tee, ACS Applied Materials & Interfaces 14, 52486–52498 (Nov. 23, 2022).
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Outlook

Many methodological improvements

• Systematic identification of latent dimensions
• Parametric or controlled dynamics
• More general structures

More generally

• Mathematics of unstructured vs structured models
• Flexibility←→ Interpretability
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Thank you!
Joint work with:

Xiaoli Chen, Beatrice Soh, Eleonore Vissol-Gaudin, Zi En Ooi
Haijun Yu, Kedar Hippalgaonkar, Kostya Novoselov

X. Tian, Weinan E, Hashina P. Anwar Ali, Zichen Zhao, Benjamin C. K. Tee
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