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Self intro

● Computer Science →  

● Data Science for industry → 

● Data Science for Particle Physics 

(CERN, LHCb, CMS, OPERA, …)
○ 7 schools of Machine Learning, online 

course on ML for Particle Physics

→ 

● Data Science for Material Science 

@Institute of Functional Intelligent 

Materials, NUS, Singapore

@Constructor University Bremen
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Two examples of protein 

targets. AlphaFold predicts 

highly accurate structures 

measured against 

experimental result.

The matter lab
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Late news: AI is taking over the science

https://alphafold.ebi.ac.uk/
https://www.matter.toronto.edu/basic-content-page/ai-for-discovery-and-self-driving-labs


Material science in a nutshell

● What if I combine atoms like this? (static, dynamics 
properties)
X → Y

● How should I mix atoms / materials to get desired 
property Y?
Y → X

● What is the most optimal design/process for device W
with materials X that would be optimal for Z?

● What model would be most useful for describing 
properties Y given materials like X?

4Andrey Ustyuzhanin

Structure

Property

Compounds

Comp.

models

Forward Inverse

Device/Proc

P
h

y
s
ic

s

Structure



Basic building block: a crystal cell

A unit cell: 

- minimal set of atoms representing 

crystal geometry (types and 

coordinates)

- set of bonds between atoms

- periodic boundary conditions

- 230 space groups, each having 

point groups
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https://bit.ly/46ToXDq

https://en.wikipedia.org/wiki/List_of_space_groups


Crystal structure representation for ML
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Structure graph representation

(left) Schematic illustration of the construction of property-labeled materials fragments descriptors
(right) The subgraphs of spinel Co304 
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https://bit.ly/3Mnl6Xa

https://go.nature.com/3MpOyMe

https://bit.ly/3Mnl6Xa
https://go.nature.com/3MpOyMe


For periodic crystals: various extensions can be applied (e.g., Ewald sum and sine 
tensors)

Coulomb matrix
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https://doi.org/10.1126/science.aat2663

https://pubs.acs.org/doi/abs/10.1021/ct400195d

https://doi.org/10.1126/science.aat2663
https://pubs.acs.org/doi/abs/10.1021/ct400195d


Topological descriptors

The filtration of 

the distance 

function to a point 

cloud and 

construction of 

persistent 

barcodes

Construction of 

topological 

fingerprint of a Li 

cluster

10Andrey Ustyuzhanin https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.0c00974

https://pubs.acs.org/doi/abs/10.1021/ct400195d

https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.0c00974
https://pubs.acs.org/doi/abs/10.1021/ct400195d


2D diffraction 

fingerprints

● Compiled with 
information of 
periodicity and 
symmetry.

● Discriminative of 
crystallographic 
classification.

● Constrained with 
limited element 
information.

● Incapable of 
describing the atomic 
interactions.

11Andrey Ustyuzhanin
https://go.nature.com/46V3vhE

https://go.nature.com/46V3vhE


Datasets
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Database Name Description

NIST Materials Genome Initiative (MGI) Several databases for different material classes

The NIMS Materials Database (MatNavi)
Polymers, inorganic material, metallic material and 

computational electronic structure

The Novel Materials Discovery (NOMAD) 

Laboratory

Input and output files from more than 100 million high-

quality calculations. It also includes notebooks for 

several materials informatics problems

Materials Project
Inorganic compounds, nanoporous materials, elastic 

tensors, piezoelectric tensors, electrode materials

…
Many more at https://github.com/sedaoturak/data-

resources-for-materials-science

https://www.nist.gov/mgi
https://mits.nims.go.jp/en/
https://nomad-lab.eu/index.php?page=repo-arch
https://nomad-lab.eu/aitoolkit
https://materialsproject.org/
https://github.com/sedaoturak/data-resources-for-materials-science


Forward modelling, state of the art

● Instead of solving multi-particle 

Schrodinger equation, 

● Density Functional Theory (DFT) 

focuses on the electron density as a 

scalar field, making the computational 

problem more tractable.

● The central idea is that the ground 

state energy of a quantum system can 

be expressed as a functional of the 

electron density

● Large space for ML augmentation
e.g., https://arxiv.org/pdf/2309.15127.pdf,  

https://openreview.net/forum?id=aBWnqqsu

ot7. 

13Andrey Ustyuzhanin http://notes.fluorine1.ru/public/2014/5_2014/letters/letter2.html

https://arxiv.org/pdf/2309.15127.pdf
https://openreview.net/forum?id=aBWnqqsuot7
http://notes.fluorine1.ru/public/2014/5_2014/letters/letter2.html


Scaling to larger systems

● From small unit-cells one can estimate interatomic potential/forces for 

conducting large-scale molecular-dynamics (MD) simulations

14Andrey Ustyuzhanin
https://bit.ly/40eoQQB

https://bit.ly/40eoQQB


Bigger picture

Time and length scales of 

different simulation 

techniques: quantum 

mechanics (QM), including 

coupled cluster (CC) and 

DFT methods, molecular 

mechanics (MM), and the 

Brownian dynamics (BD) 

technique; and continuum 

mechanics (CM).

Demand for surrogate 

multiscale modelling.

15Andrey Ustyuzhanin



Forward model for 

2D materials
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Inputs: unrelaxed 2D material 

structures with point defects

An example MoS2 structure

Properties predicted:

● Defect formation energy

● HOMO – LUMO gap

Objective: be 1000 times faster than DFT 

to allow configuration screening and 

inverse design

Caution: Mathematically, a set of atoms 

and their coordinates, but with peculiar 

symmetries:

• Permutation invariance

• Translation invariance

• Rotation invariance

• Locality of interactions

• Variable number of atoms in a set

"Challenges" for naïve ML – but 

opportunity for inductive bias!



HOMO – LUMO gap
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https://en.wikipedia.org/wiki/HOMO_and_LUMO

https://en.wikipedia.org/wiki/HOMO_and_LUMO


Our 2D materials datasets

High defect concentration dataset

● hBN; v(B), v(N), C(B), C(N)

● InSe; v(In), V(Se), Ga(In), S(Se)

● GaSe; v(Ga), v(Se), In(Ga), S(Se)

● P; v(P), C(P)

● MoS2; v(Mo), v(S), W(Mo), Se(S)

● WSe2; v(W), v(Se), Mo(W), S(Se)

v(X) is a vacancy, X(Y) is an X to Y substitution

Total defect concentrations:

2.5%, 5%, 7.5%, 10%, 12.5%

500 structures per material, 3500 in total

Low defect concentration dataset

● MoS2; v(Mo), v(S), W(Mo), Se(S)

● WSe2; v(W), v(Se), Mo(W), S(Se)

1 – 3 defects

5934 structures with per material, 11868 in 

total
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Huang, P., Lukin, R., Faleev, M. et al. Unveiling the complex structure-property correlation of 
defects in 2D materials based on high throughput datasets. npj 2D Mater Appl 7, 6 (2023).

https://doi.org/10.1038/s41699-023-00369-1
https://research.constructor.tech/pubs-frontend/publications/2d-materials-point-defects/


Project pipeline

Andrey Ustyuzhanin
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Preparation of structures with 

defects

DFT relaxation and band 

structure computation

Machine learning algorithms 

evaluation

Image: Chem. Mater. 2019, 31, 9, 3564–

3572

https://doi.org/10.1021/acs.chemmater.9b01294


Sparse representation
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Input/output: graph with

• V Vertex (or node) 

attributes e.g., atom 

species

• E Edge attributes 

e.g., distances

• Global (or master 

node) attributes e.g., 

energy, band gap Images source: https://distill.pub/2021/gnn-intro/

Build the graph from defects, not atoms

1. Reduces dimensionality from

O(500) to O(9)

2. Preserves information

Node [defect atom, pristine atom]

Edge [distance, Δz]

Global state: pristine formula [42, 16]

https://distill.pub/2021/gnn-intro/


Two vacancies in MoS2

● Energy is non-monotonic with distance

● Baselines fail to learn it, while

● Our sparse representation does
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https://www.nature.com/articles/s41524-023-01062-z

https://www.nature.com/articles/s41524-023-01062-z


Results
● “Sparse 

(MEGNet)” is our 

representation

● Rest are state-of-

the-art baselines 

● by far is the best 

for energy and 

HOMO-LUMO 

gap prediction

22
https://bit.ly/40kVW1h

https://bit.ly/40kVW1h


In more schematic terms
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G: {V, E}

Atomic Structure, 

Point Cloud

X

ML-friendly representation

Graph, also equivariant to 

symmetries

Ŷ

Predicted Property

Energy, Gap, …

Y

G’: {V’, E’} Ŷ’

Subtract

pristine

MEGNet

MEGNet



In more schematic terms
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Atomic Structure, 

Point Cloud

X

ML-friendly representation

Graph, also equivariant to 

symmetries

Predicted Property

Energy, Gap, …

Y

Subtract

pristine

Point Cloud + 

Group

Graph + 

Group

MEGNet + Contrastive Loss



In more schematic terms (2)
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Atomic Structure, 

Point Cloud

X

ML-friendly representation

Graph, also equivariant to 

symmetries

Predicted Property

Energy, Gap, …

Y

PC + Group G + Group MEGNet + Contrastive Loss

PC + Group G + Group MEGNet + CL Embedding:

Vector

Linear



Cloud compute and storage 

resources

Research pipeline visual 

representation 

Collaborative work with versioning 

control

Publication of reproducible 

experiments

Research AI assistant built on a 

scientific based Large Language 

Model is coming

Web-based collaborative platform

https://bit.ly/40kVW1h


Inverse problem, high-throughput screening (HTS)

● Consists of an expert-provided 

algorithm for generating candidate 

materials and 

● a computational module that predicts 

the target properties of a material. 

● Can work either ab initio calculation or 

using machine learning

● Designed as a computational funnel: 

with cheaper / easier-to-compute 

properties as initial filters, and more 

sophisticated properties at later 

stages.
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Chem. Sci., 2020,11, 4871-4881

Generative and

Inverse Design



Generative Design using Fourier transformed crystal 

properties

Training Set

Ren et. al. Matter Volume 5, Issue 1, 5 January 2022, Pages 314-335



Autoencoders for inverse design of 

Inorganic Materials

Inorganic Material 

Representation 
Dimensionality 

Reduction

Inverse Design 
Strategies

Ren et. al. Matter Volume 5, Issue 1, 5 January 2022, Pages 314-335



Schematic representation

Variational Auto Encoder

Manual Descriptor Design

Property Predictor

Crystal,

PC

X

XCP

XFT

XFTCP

Property

Y

ẊFTCP



Crystal Diffusion Variational Auto-Encoder (CDVAE)

32Andrey Ustyuzhanin

https://github.com/txie-93/cdvae

https://github.com/txie-93/cdvae


Crystal Diffusion Variational Auto-Encoder (CDVAE)

CDVAE prediction pipeline
33Andrey Ustyuzhanin

Z𝞊 RD

ḾL 𝞊 R3x3

N 𝞊 R

c 𝞊 R|A|

sx 𝞊 R

PA 𝞊 R

LD 

annealing

X 𝞊 R3xN

A 𝞊 R|A|xN



Probabilistic computing

b) Input-Output characteristic of the p-bit. On average the p-bit output can be described by a sigmoid. 

c) framework of a computer based on p-bits. The p-bits feed random numbers into a Kernel that generates 

the output
34Andrey Ustyuzhanin 10.1109/IEDM45625.2022.10019548

a) s-MTJ based p-bit (T: transistor, s-MTJ: 

stochastic magnetic tunnel junction). The MTJ has 

a fixed ferromagnet (FM) layer and a low-barrier 

magnet (LBM) as a free layer. Input: analog 

voltage , output: digital voltage. 



Application domains

● combinatorial 

optimization, 

probabilistic ML, 

and quantum 

simulation

● fits nicely inverse 

design problems

● aided with ML one 

can optimize 

algorithms on 

really low - atomic 

level

35Andrey Ustyuzhanin https://bit.ly/46982ff10.1109/JXCDC.2023.3256981

https://bit.ly/46982ff


HEP vs Material Science (MS)

Similarities

● fast simulation / generative models

● need for foundation models

● representation learning

● optimal transport methods

● inverse design / design optimization

● ML model uncertainty estimation

● spatial structures representations

● need for differential simulations / 

simulation-based inference

● denoising / stability estimation methods

● anomaly detection methods

HEP distinct features

● Centralized data collection

● Bump hunting

● Science of confidence intervals

● Plenty of theoretical models for unknown

● Search for unknown

MS distinct features

● Multiscale effects / modelling

● Time-dependent modelling

● Data is heavily fragmented

36Andrey Ustyuzhanin



ML challenges summary

● Data efficiency for all challenges below, the search space is vast

● Multimodal data analysis

● Multiscale modelling, both for space and time, static and dynamic

● Language for representing data transformations respecting equivariance to 

symmetries

● Forward problem for various classes of materials: e.g., Structure => Energy
○ Structure robustness estimation

● Inverse problem for atomic structure: Energy => Structure

● Inverse problem for material synthesis process/design

● Theory synthesis (see talk by Li Qianxiao)

37



Every interdisciplinary project is by far - translation problem

Material Science and AI essentially speak different languages
e.g.: fidelity in material science and accuracy in ML are very similar

E.g., for AI + X one usually needs:
● What kind of model you are interested? (forward, inverse, how explanatory should it be? how 

generic should it be?)
● Find and specify good dataset
● Specify computable figure(s) of merit
● Describe some physics intuition behind data
● Define expected data transformation

Curios to discuss (brainstorming or elsehow) if data transformation can be represented in a 
declarative language that takes into account both data formats, information preserved and 
respected symmetries that would be easy to translate into loss function / computer code?

38Andrey Ustyuzhanin



Andrey Ustyuzhanin, Artem Maevskiy https://physh.org/

https://physh.org/


Filling in interdisciplinary gaps with LLMs

Conjecture: 

a) LLMs contains 

information about 

every scientific 

domain structure

b) challenges of 

similar structure can 

be addressed by 

similar methods

40Andrey Ustyuzhanin

Question: can we use LLMs as a source for new method mining?



Hypothesis finder

Andrey Ustyuzhanin, Artem Maevskiy



Question

How can I model a material 

properties like magnetic resistivity 

and electronic bands that depend on 

material atomic structure as well as 

higher-level mesoscopic 

configuration like phase domains in a 

holistic way. 

Such computational model should be 

able to generalize descriptions 

between different scales and help to 

reason about exhibited properties.

Andrey Ustyuzhanin, Artem Maevskiy



Representation and Hypothesis

We hypothesize that by integrating the Path-Integral Hierarchical Equations of Motion

(PI-HEOM) with a multi-scale formalism, it is possible to create a unified computational model. 

This model would permit a comprehensive understanding of material properties like magnetic 

resistivity and electronic bands from atomic to mesoscopic scales. 

The integration of quantum dynamics provided by PI-HEOM with the differential scales of 

interaction given by multi-scale modelling can bridge the gap between discrete atomistic behavior 

and higher-level mesoscopic structure. Steps: 

1. Develop or adapt existing PI-HEOM and multi-scale formalism frameworks. 

2. Create a computational algorithm to integrate both, towards generating a unified model. 

3. Simulate diverse material systems and study properties arising from atomic structure to 

mesoscopic configurations. 

4. Compare the results with existing experimental data to validate the model. 

5. Refine the algorithm based on findings and reiterate.



Conclusion

● Fields are completely different by tasks, 

scales, methods

● From ML perspective similarities prevail

● Rich field for cross-domain collaborations

● Two key issues: finding suitable 

representation and cross-domain 

communication

● LLMs provide opportunities to bridge 

sophisticated multidisciplinary gaps 
○ By translating problems and approaches

○ By finding meaningful representations

44Andrey Ustyuzhanin



Thank you

Andrey   andrey.u@nus.edu.sg

mailto:andrey.u@nus.edu.sg


Backup
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Finding Representations

● Scientific development cycle

● Representation of hypothesis is crucial 

for validation

● Goal: select suitable formalisms given 

the initial problem/question, data and 

metadata using LLMs

Andrey Ustyuzhanin, Artem Maevskiy

Representation



Dan Hendricks: ”Natural Selection Favors AIs over Humans” 

(competence without comprehension)

● The logic of competitive evolution will lead to the same 
outcome as with humans: increasingly intelligent AI agents will 
become more selfish and willing to use deception and force to 
achieve their goals, the main one being power.

● Natural selection of AI agents results in more selfish species 
usually having an advantage over more altruistic ones. AI 
agents will behave selfishly and pursue their own interests, 
with little concern for humans, which could lead to 
catastrophic risks for humanity.

● There is a considerable chance that this will happen not as a 
result of some specific evil intent by humans or machines, but 
solely as a result of applying evolutionary principles of 
development to AI according to Darwinian logic.

● To minimize this risk, it is necessary to carefully design the 
internal motivations of AI agents, introduce restrictions on 
their actions, and create institutions that encourage 
cooperation in AI.

48Andrey Ustyuzhanin https://arxiv.org/abs/2303.16200

https://arxiv.org/abs/2303.16200


Connection between two challenges through optimizaiton

Andrey Ustyuzhanin 49

X:

Y:



Machine Intelligence (or AI) in a nutshell

● Learning complex patterns by fitting weird function into data space under some 
prior constraints

● Critical steps: pick data representation, figure of merit and loss function
● All weird functions are wrong, but some are useful

OK, predictions are accurate, but can we learn some physics from it?
● Conjecture: the better model predicts, the better physics it learned internally.
● Interpretation:

○ Hidden representation
○ Symbolic regression
○ Feature importance
○ Generalization (accuracy on a hidden dataset)

● Architecture regularization by inductive bias: chose architecture in a way that will 
help model to find right internal representation with less data

50Andrey Ustyuzhanin



LLM for structure generation

Can LLMs trained 

using next-token 

prediction generate 

novel and valid 

structures in 3D for 

substantially different 

chemical structures?

● Molecules, 

● Crystals

● Protein binding 

sites

https://arxiv.org/pdf/2305.05708.pdf

https://arxiv.org/pdf/2305.05708.pdf


Schematic representation and Results

MW – molecular weight

SA - synthetic accessibility

QED - quantitative estimate of drug-likeness

XYZ seq

Atom-coords (AC)

Tokens, T

Context

P(Ti+1|…)

Ti+1

XYZ seq’

Transformer

Character (CH)

Tokens, T



On internal space & time by LLM

53Andrey Ustyuzhanin

ArXiv:2310.02207

LLM

Text

Token,

Ti

Context,

Ci

P(Ti+1)

Ti+1

V



Unlocking the Secrets of Materials Science with GPT

● LLM for structured information inference(SII) tasks and 

● material & device prediction(MDP) tasks https://arxiv.org/pdf/2304.02213.pdf

https://arxiv.org/pdf/2304.02213.pdf


Performance evaluation

● Classification
● Power conversion efficiency, PCE level of 

perovskite solar cells under the AM1.5 

spectrum and 1000 W/m2 light intensity

● Regression



Simulation scales

Andrey Ustyuzhanin 56Source

https://doi.org/10.1088/0953-8984/17/27/R02


Representation of an atomic structure

● Some approaches 

work better for 

molecules

● Some approaches 

work better with 

crystals

Andrey Ustyuzhanin 57



Property prediction, forward problem

● Data: DFT-simulated crystal 

configurations

● Source: atomic crystal structure

● Target: HOMO, LUMO, Energy, …

● Data representation: graph with 

atoms as nodes and bonds as edges

● Model class: graph neural network 

that translates a crystal structure into 

a graph, takes it as input and outputs 

scalar values (property of interest)

● Examples: MEGNet, GEMNet, 

SCHNET, Graphormer, M3GNet, …
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AI roadmap for domain X in material science

Near-term:

● ▶️ Static material property prediction 

◀️

● Material structure inference

● Dynamic (out-of-equilibrium) material 

properties prediction

● Learning higher-order emergent properties

● Learning material synthesis path

Mid-term:

● learning material synthesis paths for a 

given physics properties from a textual 

specification

Ultimate:

● AI Research Assistant for domain X

59



Fingerprint for N defects

● N defects can be considered as a composition (product) of edges 

(needs just N-1)

● Need to pick those edges in a unique way, not affected by allowed 

transformations, e.g.:
○ distance from the center plane 

○ atomic number

○ total distance to other neighbors

● Total fingerprint is a product of edges’ fingerprints

- Feature-based similarity, consider all relevant symmetries

- Can be used as semantic features

- Inverse design-friendly, although different dimensionality for different cardinality

Andrey Ustyuzhanin 60



Predicting energy for 3-defect structures

Low density

“Training” sample: all 2-defects 

configurations (127)

Biggest errors for groups:

V3_diff, V3_same, V6, S3

Andrey Ustyuzhanin 61



Latest groundbreaking AI models are very expensive

● YaLM 100B [language] 65 days to train, 800 A100 graphics 

cards and 1.7 TB of online texts, books, and countless 

other sources in both English and Russian.

● DALLE-2 [images] 256 V100 GPUs for 2-4 weeks

● AlphaFold [proteins] ~150 GPUs for a few weeks

Foundation AI model:

● AI Model, that was pre-trained on huge pile of somewhat 

relevant data (like BERT or GPT)

● Thus, it serves as reasonable starting point for many related 

problems [arxiv].

● In material science, such pretrained models are not popular 

yet. E.g., AlphaFold, M3GNET. The latter was trained on 

data of structural relaxations, including energies, forces, and 

stresses from more than 187,000 materials.

The foundation model by Midjourney 62

https://arxiv.org/abs/2108.07258
https://arxiv.org/pdf/2202.02450.pdf
http://midjourney.com/


“AI for science”

● A mathematical framework 
for learning physical models 
and principles like 
conservation of energy

● Algorithms for learning and 
analyzing lineage of physical 
models

● Design and develop an AI 
system that can assist 
domain researchers in 
speeding up the execution of 
hypothesis assessment tasks 
leading to scientific 
breakthroughs

● Approach: design an 
embedding that encodes & 
maps different worlds

Andrey Ustyuzhanin 63



Towards alignment, Machiavelli benchmark

64Andrey Ustyuzhanin

Who else is doing what 

in AI alignment: 

https://bit.ly/41zU5Fc

https://bit.ly/41CFOaM

https://bit.ly/41zU5Fc
https://bit.ly/41CFOaM


Generative Design using Fourier transformed crystal 

properties

New Crystals

Ren et. al. Matter Volume 5, Issue 1, 5 January 2022, Pages 314-335



Synthesizability? Not Stability…

Zhu et. al. ACS Omega Accepted (2023)

Compositional Features

Real-space Crystal features

Ca
20

Calcium

Ti
22

Titanium

O
8

Oxygen

Atomic Radius, Weight …

Site Position

Element Information

Lattice Constant

Lattice Angles

Fourier-transformed Crystal 

Properties

Full Crystal 

Representation

Convolutional 

Encoder

Convolutional 

Layers

Reduced Material 

Space

MLP 0 1
Or

Fully Connected 

Layers

Synthesizability


